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Abstract

Within-host genetic diversity and large transmission bottlenecks confound phylodynamic inference of epidemiological
dynamics. Conventional phylodynamic approaches assume that nodes in a time-scaled pathogen phylogeny correspond
closely to the time of transmission between hosts that are ancestral to the sample. However, when hosts harbor diverse
pathogen populations, node times can substantially pre-date infection times. Imperfect bottlenecks can cause lineages
sampled in different individuals to coalesce in unexpected patterns. To address realistic violations of standard phylody-
namic assumptions we developed a new inference approach based on a multi-scale coalescent model, accounting for
nonlinear epidemiological dynamics, heterogeneous sampling through time, non-negligible genetic diversity of pathogens
within hosts, and imperfect transmission bottlenecks. We apply this method to HIV-1 and Ebola virus (EBOV) outbreak
sequence data, illustrating how and when conventional phylodynamic inference may give misleading results. Within-host
diversity of HIV-1 causes substantial upwards bias in the number of infected hosts using conventional coalescent models,
but estimates using the multi-scale model have greater consistency with reported number of diagnoses through time. In
contrast, we find that within-host diversity of EBOV has little influence on estimated numbers of infected hosts or
reproduction numbers, and estimates are highly consistent with the reported number of diagnoses through time. The
multi-scale coalescent also enables estimation of within-host effective population size using single sequences from a
random sample of patients. We find within-host population genetic diversity of HIV-1 p17 to be 2Ny = 0.012 (95% CI

0.0066-0.023), which is lower than estimates based on HIV envelope serial sequencing of individual patients.
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Introduction

Genetic diversity of pathogens is shaped by evolution at mul-
tiple scales: within individual hosts, at the level of an epidemic
among infected hosts, and within meta-populations of struc-
tured host populations. The importance of evolution within
hosts was highlighted by Grenfell et al. (2004), who intro-
duced the concept of phylodynamics to refer to the study
of pathogen evolution arising from the interaction of within-
host immunological and between-host epidemiological dy-
namics. Despite this, with few exceptions (Wakeley and
Aliacar 2001; Dearlove and Wilson 2013; Didelot et al. 2014)
research in pathogen phylodynamics has neglected the role of
within-host evolution. Genetic diversity within hosts is usually
assumed to be negligible out of mathematical necessity, since
there are very few parsimonious population genetic frame-
works that allow for efficient statistical analysis of highly com-
plex multi-scale evolutionary processes. The current deficit in
efficient analytical approaches for studying multi-scale phylo-
dynamic processes was recently highlighted as a pressing chal-
lenge for the phylodynamics field (Frost et al. 2015).
Assuming negligible within-host genetic diversity has al-
lowed major advances in phylodyanmic methods
(Drummond et al. 2005; Minin et al. 2008). Recently devel-
oped methods enable the estimation of epidemic reproduc-
tion numbers (R,) (Stadler et al. 2012), transmission rates, and

population structure (Rasmussen et al. 2014b). Other
approaches have been developed to estimate the unobserved
number of infected hosts, which can be done explicitly with
coalescent models (Volz et al. 2009; Volz 2012) or implicitly
using sampling-birth—death (BD) models by the estimation of
sampling rates (Stadler et al. 2012). Phylodynamic inference
can also be accomplished by approximate Bayesian compu-
tation (Poon 2015).

It is presently unclear how unmodeled within-host evolu-
tion will bias popular and widely-used phylodynamic infer-
ence methods. For example, the phylodynamics of HIV-1 have
been intensively studied (Volz et al. 2013), and evolution of
HIV-1 within-hosts has been characterized extensively
(Leitner et al. 1996; Leitner and Albert 1999; Vrancken et al.
2014), which has shown that basic assumptions of existing
phylodynamic inference approaches are not likely to be met
in practice (Romero-Severson et al. 2014). Within-host diver-
sity in a donor at time of transmission causes three problems
if the pathogen phylogeny is equated with the true transmis-
sion history (fig. 1): (1) Internal nodes of the tree are always
shifted to the past because transmitted lineages represent a
subset of potentially diverse lineages in the donor. This is
known as the pre-transmission interval (Leitner and Albert
1999). How much they are shifted depends on the diversity of
the donor’s population, which in turn depends on how long
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Fic. 1. The pretransmission interval and incomplete lineage sorting.
The shaded tree represents a transmission chain where each region
represents the pathogen population in each of three patients. The
width of the shaded regions corresponds to the genetic diversity. In
this scenario, A infects B with an imperfect transmission bottleneck,
and then B infects C. The genealogy at the bottom is reconstructed
from a sample of a single lineage from each patient at three distinct
time points. When diversity exists in donor A, a pre-transmission
interval will occur at each inferred transmission event (MRCA(A,B)
precedes transmission from A to B), and the order of transmission
events may become randomized in the virus genealogy. Note that the
pre-transmission interval also is a random variable defined by the
donor’s diversity at time of each transmission. Terminal branch
lengths are also elongated due to these processes.

the donor has been infected at the time they transmit to a
new recipient. (2) When a donor transmits to more than one
recipient, it is possible that the second recipient receives an
older lineage, which causes incomplete lineage sorting, such
that the order of transmissions becomes disordered com-
pared with the transmission history (Romero-Severson et al.
2014). The probability of disordering depends again on the
diversity in the donor, and additionally how much time has
passed between the separate transmission events. Finally, (3)
when transmission involves more than one lineage from do-
nor to recipient, i.e, an imperfect bottleneck, this too may
lead to incomplete lineage sorting, and limited sampling in
this situation may give different phylogenetic reconstruction
results. Thus, within-host population and evolutionary pro-
cesses add both bias and noise to the relationship between
transmission history and pathogen phylogeny making
straightforward epidemiologic interpretations of a phylogeny
difficult.

In this investigation, we develop a flexible phylodynamic
inference framework for estimation of population size and
reproduction numbers through time in the presence of non-
negligible within-host diversity. The approach is based on a
coalescent model for the genealogy and a semi-parametric
model for the birth rate through time, and is similar to widely-
used skyline estimation methods. In distinction to existing
skyline methods, the present approach does not estimate
the effective number of infections through time, but rather
the unobserved distribution of lineages occupying individual
hosts. For example, if there are ten lineages ancestral to a

sample, they may occupy anywhere from one to ten distinct
infected hosts, and the new approach is based on estimating
this distribution as well as the within-host effective popula-
tion size. By estimating a distribution, as opposed to a single
statistic (effective number of infections), this approach can
flexibly accommodate a non-negligible within-host effective
population sizes and an imperfect transmission bottleneck.

Within-host effective population size is conventionally es-
timated using serial sequence sampling of individual infected
hosts over an extended period of time (Brown 1997; Rodrigo
et al. 1999; Dialdestoro et al. 2016). A significant contribution
of the new approach is that it enables estimation of within-
host effective population size from single-sequencing of path-
ogen lineages from multiple distinct hosts in an outbreak.
We show computationally that within-host effective size
is statistically identifiable from commonly available
single-sequencing outbreak data.

New Approaches
We use a BD demographic process with time-dependent
birth and death rates to model the number infected through
time. This process is described by the following variables:
number infected size y(t), population birth rate f(t), per-
capita transmission rate f(t) = f(t)/y(t), population death
rate (t) and per-capita death rate y(t) = w(t)/y(t). We
restrict our focus to parametric models for f(t) and will gen-
erally assume that y(t) is constant. For phylodynamic infer-
ence, we use a family of flexible spline functions for log(f(t)),
further described in the Methods section, which can well
approximate a range of non-linear epidemic scenarios such
as SIR epidemics with herd immunity or seasonal periodicity
(Anderson et al. 1992). We refer to this semi-parametric ap-
proach as the skyspline model, and likelihoods with the skys-
pline may make use of traditional coalescent models or the
multi-scale coalescent model (MSCoM) described below.
With f(t) and initial infected population size y(0) specified,
the approximate population size through time can be mod-
eled deterministically as the solution to the ordinary differ-
ential equation:

d

2/ =y (B(E) =) Q)
The reproduction number can also be computed directly
from this model:

R(t) = f(1)/ (y(t))

Parameters of the skyspline model are denoted by the
vector 0 and consist of the initial size y(0), constant
per-capita death rate ), and the parameters of the spline
function log(f(t)).

Evolution within hosts is modeled as a neutral coalescent
process with constant size N. Super-infection (infection more
than once from different sources) is disallowed, while co-
infection (transmission of more than one lineage) is possible.
Every host is infected once and only once. Going backwards in
time, at the time of transmission from a donor to a recipient,
all extant lineages in the recipient are transferred to the donor
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representing a (potentially large) transmission bottleneck,
causing a dependence of rates of co-infection on N. The
model therefore accounts for incomplete lineage sorting
and the potentially imperfect correspondence between the
topology of the unobserved transmission tree and the path-
ogen genealogy.

The data used for inference take the form of a bifurcating
genealogy G reconstructed from a sample of one lineage per n
distinct patients at given times (t;,...,t,) and with time-
stamped internal nodes (ti,...,t, 7). Most phylodynamic
inference is concerned with estimation of effective population
size through time, N, (t) (Minin et al. 2008). Here, we are fo-
cused on connecting effective population size to the true num-
ber of infected hosts, and are particularly interested in how
phylodynamic estimates of y(t) are biased by model-
misspecification of the epidemiological dynamics and by ne-
glecting within-host evolution. Phylodynamic estimation of
y(t) as opposed to N, (t) can be accomplished using coalescent
frameworks such as described in Volz et al. (2009), Frost and
Volz (2010), and Volz (2012), sampling-BD models (Stadler
et al. 2012), or approximate Bayesian techniques (Poon
2015). We will build on the approach described in Volz
(2012). According to the coalescent framework in (Volz 2012),

v
2 (t)

With a skyspline model for f(t) and y(t) and the derived
quantity N,(t), the probability density of a genealogy given
Ng(t) can be computed using conventional techniques
(Wakeley 2009) which are further described in Methods sec-
tion. With the likelihoods defined in terms of N,(t), phylody-
namic inference can be accomplished using a variety of
techniques, including maximum likelihood (see Methods sec-
tion). We will refer to this model of N,(t) as the CoM12
model (Volz 2012).

The CoM12 model for N,(t) was derived under a number
of assumptions, including large population size y and assum-
ing nodes in a time-scaled genealogy correspond exactly to the
times of transmission events. This latter assumption, discussed
in greater detail in Romero-Severson et al. (2014), is valid if
within-host diversity of a pathogen is negligible. When it is not,
times of common ancestry will precede times of transmission
between hosts (fig. 1). The pre-transmission interval together
with incomplete lineage sorting may seriously mislead the
epidemiological interpretation if host diversity is not ac-
counted for; order and timing of events can be very different
in the virus genealogy compared with the actual transmission
history. We now derive an approximate coalescent model that
accounts for non-negligible within-host diversity (N> 0) as
well as non-linear epidemic dynamics as specified by the skys-
pline model. We will refer to this as the MSCoM.

Dynamic variables can be defined on both a forward time
axis denoted t and a retrospective times = T — t where T is
the time of the most recent sample. We then make the fol-
lowing definitions:

Ne(t)

. @)

®t=(t,...,t,) ands = (sy,...,s,) define the times of
sampling for each lineage. We assume that each lineage is
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sampled from a unique host. The sequence s = (55, ...,
Sp_1) are the sorted internal node times in G. And,
§ = (5y...5,_1) is the sorted sequence of sample and
node times in G.

® A(s) is the number of extant lineages in the genealogy at
time s

® B(s) is the number of hosts ancestral to the sample at
time s; this is the number of infected hosts with at least
one lineage that has sampled descendants.

Note that if within-host diversity is negligible, A(s) = B(s),
but when it is not, B(s) < A(s). Also note that A(s) is ob-
served from the tree, which is assumed known. B(s) is not, and
we present one strategy for inferring this. The time argument
will be dropped when time-dependency is clear.

At some time s, there may be a number B; hosts occupied
by a single lineage, B, hosts occupied by two lineages, and
generally B, hosts occupied by k lineages ancestral to the
sample with the constraint that ) _ kBy equals the total num-
ber of extant lineages A. Because evolution within hosts is
modeled using a neutral coalescent process with constant size
N in each deme, the coalescent rate among all A lineages is

o) el) )

NN T N

k>2

With the coalescent rate defined in terms of the lineages
through time and s (Equation 3), the probability of a geneal-
ogy is computed in terms of its internode intervals. This is the
probability of an ordered sequence of time points generated
by a point process with time-dependent rates (Wakeley
2009):

p@() = [T " 0+ (6 - )G @

where I,(+) is the indicator function.

With the deterministic model for y(t), we may consider
A(s) to be a deterministic function of 6, and so we may
write the likelihood function

1(01G) = p(G14(-))p(2()|0)p(0) = p(G|0O)p(0)  (5)

This equation will be used for maximum likelihood or max-
imum a posteriori inference for all results presented in the
article. If y is modeled as a stochastic process, inference is still
possible with this coalescent model, but is more complex
since some strategy must be employed to integrate over
the unobserved y|0 (Rasmussen et al. 2014a).

The distribution of B, changes over the history of the tree,
and if the history of the distribution is known the likelihood of
the tree can be computed using Equation 5. To understand
how the configuration (By),., evolves through time, it is
necessary to derive how the distribution changes at transmis-
sion events between two hosts ancestral to the sample, how it
changes at sampling events, and how it changes when two
lineages coalesce within a host. Here, we sketch the main
ideas while detailed derivations are provided in Methods
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section. When a transmission event occurs between two
hosts who are occupied by at least one lineage ancestral to
the sample, the two sets of lineages occupy a single deme. The
rate that hosts ancestral to the sample transmit to one an-
other is modeled using the same framework as in Volz (2012):
Given a transmission event in the population which occurs at
rate f(s), the probability that both hosts involved in the event
are ancestral to the sample is

BUS)BIS) =1 () (B(s) — 1)y(s)?

y(s)y(s)— 1"

where the denominator is simplified because the epidemic
size is generally much larger than the number of ancestral
hosts. If the donor u harbors k, lineages and the recipient
harbors k, lineages, then (By),., undergoes the following
transformation:

By, — By, — 1
Bkv — Bkv —1

Bi,+k, = Bitk, T 1

If the donor and recipient are selected randomly without
replacement from the population of B ancestral hosts, then
k, and k, follow a hypergeometric distribution. Then k, and
k, will have covariance which is O(1/B?). Now we make the
approximation that B is sufficiently large that the covariance
can be assumed negligible. In that case, we can work with the
normalized variables by = By /B, and the probability that the
transmission event yields a host with k lineages is

by = Z by, bx—x, (6)

ky, <k—1

It is laborious to derive dynamics in terms of the convolution
of these random variables, and we therefore present an ap-
proach for computing these changes using generating func-
tions in the Methods section.

Next, consider how By changes following a coalescent
event. The probability that the event happened in a host
with k lineages is proportional to the coalescent rate
Bck(k — 1) /N. Then modifying (by),. , requires appropriate
re-weighting of each element according to the probability of
not coalescing. Full details are provided in the Methods
section.

Finally, a condition of this model is that at most one lin-
eage is sampled from each host, so that following a sampling
event, a new host with a single lineage is added and
B-| — B-| —+ 1.

Results

Simulated Data

Accurate and precise estimates of transmission rates, popu-
lation size, and within-host effective population size are ob-
tained with the MSCoM when fitting to genealogies

generated by a stochastic BD exponential growth process
and when the population size is sufficiently large for the de-
terministic model to approximate well the true stochastic
epidemic trajectory (fig. 2). These estimates are based on
simulated data with very large within-host effective popula-
tion size; in units of coalescent time, the size is equivalent to
the duration of four infectious periods on average (N = 4/7).
The birth rate was 27 and sampling proportion was small
(<1%) with the final sample being collected when the epi-
demic had generated 10,000 deaths. In this case, the epidemic
trajectory is well approximated by a deterministic exponential
function. Computational results suggest that the within-host
effective population size is weakly identifiable from the gene-
alogy (supplementary figs. S1-S3, Supplementary Material
online) in addition to two of the following three parameters:
transmission rate f3, death rate 7, and initial population size
y(0). Estimates of N show upwards bias (mean relative error:
MRE = 67%) but good coverage (98% for 95% Cl using para-
metric bootstrap). The standard coalescent model which as-
sumes N = 0 also provides accurate estimates of the epidemic
population growth rate and transmission rate, however the
estimated population size has very large upwards bias. A the-
oretical explanation for why it is possible for CoM12 to esti-
mate growth rates is provided in the Methods section.
Root mean square error (RMSE) of estimated transmission
rates were 119 and 15.4% with the MSCoM and CoM12,
respectively. Coverage of 95% confidence intervals for trans-
mission rates was 91 and 78% for MSCoM and CoM12, re-
spectively. The MRE of the estimated final number infected
(y(T)) was —0.024 and 2.75 with MSCoM and CoM12, respec-
tively. Whereas MSCoM tends to slightly underestimate pop-
ulation size, CoM overestimates in almost all cases and also
has more large outliers. In simulation experiments with N =10
(not shown), both MSCoM and CoM12 provide accurate and
precise estimates of transmission rates and population size.
While these simulations have demonstrated good perfor-
mance under ideal conditions (large population size and sim-
ple exponential growth), we also investigated performance
under challenging conditions such as sampling when epi-
demic size is small and subject to large stochastic fluctuations.
We simulated the BD process over a range of large sampling
proportions (up to 80%) and over a range of within-host
effective population sizes including very large values (up to
four infectious periods in coalescent time). For each simulated
genealogy we fitted the CoM12 and MSCoM models by max-
imum likelihood and estimated the reproduction number
and the final number infected at the time of the last sample.
Results are summarized in supplementary figures S4-S7,
Supplementary Material online. Results of these experiments
show that CoM12 and MSCoM are biased for different pa-
rameters in different situations: CoM12 shows robust estima-
tion of Ry even when population size is small and within-host
N is small, but is biased upwards when within-host N is >0.
Bias and precision of CoM12 for estimation of R, is not
strongly affected by sample proportion. In contrast,
MSCoM can provide accurate estimates of R, when within-
host N is large, but is more sensitive to sample proportion.
When sample proportion is high (e.g, sampling n = 100 when
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Fic. 2. Estimation of population size and transmission rates from simulated pathogen genealogies in a stochastic exponentially growing epidemic
with large within-host effective population size. Model parameters are described in the text. (A) Example epidemic trajectory (red) and estimated
number infected through time (black). Shaded region shows 95% using parametric bootstrap. (B) Distribution of the estimated population size at
the last sample point using both traditional coalescent model (CoM) and the new MSCoM. (C) Estimated transmission rates using the MSCoM
across all simulation replicates with 95% Cls based on parametric bootstrap. The red line shows the true transmission rate. (D) Comparison of the
estimated (MSCoM) and true population size across all simulation replicates. Colors indicate time in the epidemic when the population size
comparison is made. Green corresponds to the early epidemic and red corresponds to the late epidemic.

there have been 125 epidemic deaths), MSCoM shows sub-
stantial downwards bias for R,. Future work on stochastic
skyspline models may indicate if this bias is attributable to
unmodeled stochastic fluctuations of the population size.
Regarding estimation of population size, both methods
tend to overestimate when sample proportion is high, how-
ever the upwards bias is much more extreme for CoM12 in
common with findings with small sample proportion.
Whereas simulation experiments with the exponential
growth BD process very closely match the assumptions of
the MSCoM model, we also sought to investigate the perfor-
mance of MSCoM in a more realistic epidemiological sce-
nario. We conducted 100 simulations of an HIV epidemic
model. In contrast to the BD simulations, this features higher
sample density (10%) and non-linear epidemic trajectories
(exponential growth followed by decline). Transmission rates
are not constant, but vary over the course of infection (high
during brief acute infection, low during long chronic infec-
tion). And, effective population size within hosts is not

1280

constant (low during brief acute infection, high during long
chronic infection). We evaluated the potential of MSCoM
with the semi-parametric skyspline model to infer population
size through time y(t) and reproduction number through
time R(t). In all cases, we sample homochronously long after
epidemic peak. Results are illustrated in supplementary figure
S8, Supplementary Material online.

Both the CoM12 and MSCoM effectively capture qualita-
tive features of epidemic trends in y(t) and R(t), however both
have substantial bias with low precision. The use of the multi-
scale model did not in general improve performance in this
case, indicating that other forms of unmodeled population
structure or population heterogeneity can have equal or
greater importance than within-host evolution. The MRE of
R(t) averaged over the entire epidemic trajectory was 0.66 and
0.60 using MSCoM and CoM12, respectively. In simulations
with zero genetic diversity within hosts (N =0), the MRE is
reduced to 0.59 and 0.49 for MSCoM and CoM12, respec-
tively. While CoM12 outperforms MSCoM by the MRE


Deleted Text: -

Phylodynamic Inference - doi:10.1093/molbev/msx077

MBE

metrig, it also has more large outliers and thus greater RMSE:
1.79 for CoM12 versus 1.66 for MSCoM. Results for estimated
number infected y(t) mirror those for R(t) with RMSE of 2.37
and 2.10 log units for MSCoM and CoM12, respectively.

In HIV simulations, the within host N is initially small for a
short period (representing early HIV infection, denoted Nj)
followed by a large value in chronic infection (denoted N¢)
which lasts many years. Because N changes over the infectious
period, we cannot compute bias or RMSE, however we can
assess how well the estimated constant N approximates the
true dynamic N. The multi-scale coalescent tends to produce
estimates that fall between the initial and chronic values, but
estimates of N also have large outliers and the mean estimate
of N exceeded the true N. Specifically, where Ny=1 and
Nc =9, the median and mean estimate of N was 7.3 and
14.2, respectively.

Analysis of Latvian HIV Outbreak

We applied the new coalescent models to 227 HIV-1 gag p17
sequences from a Latvian outbreak among injection drug
users and heterosexual sex partners between 1990 and 2005
(Balode et al. 2004; Balode et al. 2012; Graw et al. 2012). Three
different coalescent models were fitted to time-scaled phy-
logenies computed using least-squares dating (To et al. 2015):
We applied a recently-developed Bayesian non-parametric
phylodynamic reconstruction (BNPR) method (Karcher
et al. 2016), which provides estimates of the epidemic effec-
tive population size through time. Next we fit the semi-
parametric skyspline CoM12 model which provides estimates
of the number infected and reproduction number through
time R(t). And, we fit the new skyspline MSCoM model which
accounts for within-host evolution and additionally provides
estimates of the within-host effective population size. The
CoM12 and MSCoM models were fitted using maximum a
posteriori methods; further details on methodology are in the
Methods section.

Figure 3 shows estimated cumulative infections, reproduc-
tion numbers, and effective population sizes using different
methods. Supplementary figure S9, Supplementary Material
online, shows estimated number of infections and reproduc-
tion numbers through time. A novel aspect of the MSCoM
approach is that it provides an estimate of the mean within-
host effective population size from a random sample of pa-
tients (one sequence sample per host). We can therefore
compare these estimates to those obtained by the more
common approach of taking numerous serial samples from
single hosts. We estimated N =2.05 (95% Cl 1.09-3.87) in
units of coalescent time (years), which describes the average
time to common ancestry for a pair of lineages within a host.
The CI width is large, but similar to what was found in sim-
ulation experiments with similar sample sizes where it was
found that N is weakly identifiable. The within-host effective
population size of HIV varies substantially over the course of
an individual infection, and will also vary substantially be-
tween patients. Therefore, this estimate should be treated
as descriptive of epidemic-level genetic diversity but not clin-
ically meaningful on an individual basis. More commonly,
effective population size is reported in units of population

genetic diversity 2Nu where p is the substitution rate within
hosts, and published estimates of within-host 2Ny for HIV-1
env range from 0.04 to 0.144 substitutions/site (Brown 1997;
Rodrigo et al. 1999; Seo et al. 2002). The rate of evolution
outside of the envelope gene is typically much lower (more
than 2-fold) (Berry et al. 2007; Alizon and Fraser 2013), and
population genetic diversity will be correspondingly lower in
the gag p17 gene. We estimate 2Ny = 0.012 (95% Cl 0.0066—
0.023) using a recent estimate of within-host p17 evolutionary
rates by Zanini et al. (2015) of u = 0.003 (range 0.0012-
0.0043) substitutions/site/year. Our estimate of the within-
host effective population size is lower than previous
estimates, which reflects lower evolutionary rates on
HIV-1 gag then env, as well as the fact that these data
were sampled from a rapidly expanding IDU outbreak and
many patients were not infected for very long prior to
sampling. In contrast, previous estimates of 2Ny are based
on HIV-1 env sequences sampled from chronically in-
fected patients over many years.

Estimated epidemic growth rates using MSCoM, CoM12,
and BNPR estimators were similar, but estimated number
infected using CoM12 were substantially larger than
MSCoM estimates and generally exceeded the number of
diagnosed patients to a large extent. CoM12 estimates were
also more unstable and produced more large outliers. Using
MSCoM, we estimated a reproduction number in 2005 of
R=6.40 (95% Cl 3.2-12.0) and using CoM12 we estimated
R=133 (95% Cl 9.1-19.1).

The estimated number infected in 2005 was 2,673 (95% Cl
219-50,268) and 42,038 (95% Cl 18,200-94,491) with MSCoM
and CoM12, respectively. Estimates with CoM12 are not cred-
ible since in 2005 there were only 2,728 diagnoses in the IDU
and heterosexual risk groups.

Ebola Virus Outbreak in Sierra Leone

We applied the new coalescent models to Ebola time-scaled
phylogenies previously estimated by Gire et al. (2014) in one
of the first phylodynamic analyses of Ebola virus (EBOV) dur-
ing the West African epidemic of 2014. These data were based
on 78 whole-genome EBOV sequences collected over approx-
imately one month during the Summer of 2014 in the border
regions of Sierra Leone near where the epidemic originated. In
contrast to HIV-1, these data represent an outbreak of a
pathogen producing acute hemorrhagic fever with a short
infectious period and with high transmissibility. The within-
host effective population size for EBOV is undocumented to
the knowledge of the authors.

There have been two previous phylodynamic modeling ef-
forts of the same data (Stadler et al. 2014; Volz and Pond
2014), which yielded the first estimates of EBOV reproduction
numbers for the 2014 epidemic based on molecular data.
These analyses neglected, however, potential confounding ef-
fects due to unmodeled within-host evolution. Previous anal-
yses of EBOV sequence data have mixed infections with
substitutions likely persisting through more than one trans-
mission event, suggesting a large transmission bottleneck (Gire
et al. 2014). In this analysis, we evaluate the potential of the
new methods to estimate EBOV effective size within hosts and
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shows posterior median.

the potential of the skyspline approach to provide a more
refined estimate of reproduction numbers through time.
Figure 4 illustrates estimated cumulative number of infec-
tions through time using the MSCoM and CoM12 models.
Supplementary figure S10, Supplementary Material online,
shows the number of infections and reproduction numbers
through time using both models. Both estimators show con-
cordance with the number of cases reported by the World
Health Organization (points), and WHO case reports were
not used for model fitting or calibration. Note that up until 18
June, ~60% of probable EBOV infections were sequenced and
that the sequence sampling rate varied dramatically through
time (Volz and Pond 2014). The true number of infections is
unknown. Sequence data were collected up until 19 June
2014, and the red shaded region shows an extrapolation
from the fitted model to a time horizon beyond when se-
quence data were collected (up to 9 September 2014).
Estimates produced by MSCoM and CoM12 are highly similar,
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with the greatest difference being the size of the estimated
credible interval that is due to the estimation of an additional
parameter with the MSCoM (N). The estimated cumulative
number of cases at the time of the last sample in late June is
117 (95% Cl 53-412) using MSCoM and 140(95% Cl 109-185)
using CoM12. The actual number of cases reported by the
World Health Organization on June 18, 2014 was 136. The
small difference in median estimates is likely due to the rela-
tively small within-host N estimated with MSCoM: N =0.16
(95% Cl 0.007-3.49) in units of coalescence time (days).

The previous analyses of these data (Stadler et al. 2014;
Volz and Pond 2014) were based on models with constant
transmission rates and death rates, and as such could not
detect changes in the reproduction number over the course
of the outbreak. The skyspline approach, however, allows R(t)
to vary smoothly over the outbreak, and we find that the early
reproduction number was much larger than at the time of
the last sample denoted T. We estimate R(T) = 1.36
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(95% Cl 0.82-2.14) with MSCoM and R(T) = 1.27 (95%
Cl 1.03-157) with CoM12. The noisiness and non-
constancy of R(t) may partially explain discrepancies between
early published estimates of R, which were often found to
exceed 2, and later estimates of R, which were generally
<1.75 (King et al. 2015).

Discussion

The development of a likelihood-based framework for multi-
scale coalescent processes opens an interesting avenue for
estimating within-host pathogen diversity from data consist-
ing of a single sequence sample from multiple patients in an
epidemic. Single sequencing data is far more abundant than
serial-sampling data, and serial sampling data is often not
available in outbreak situations or with emerging pathogens.
We have shown computationally that within host effective
population size is identifiable from this type of single sampling
data. This may appear surprising in light of population genetic
theory developed for stochastic BD processes, which has
shown that at most two of three parameters describing a
simple BD process will be identifiable from a genealogy: the
birth (i.e, transmission) rate, and death rate or population
size (equivalently the sampling rate) (Stadler 2009). In addi-
tion, our computational results show that the within-host
effective population size is weakly identifiable given a geneal-
ogy featuring within-host evolution (supplementary fig. S1,
Supplementary Material online).

CoM12 and MSCoM make different approximations that
can lead to different forms of bias in particular situations.
Estimated population size with CoM12 tends to be substan-
tially over-estimated when within-host N >0, yet MSCoM
estimates can be biased downwards when the sample propor-
tion is high and when epidemic size is small and subject to
large stochastic variation. When estimating R,, CoM12 is ro-
bust to high sample proportion, but not to N >0, and the
opposite is the case for MSCoM. When N >0 and sample
proportion is high, the probability that more than one lineage
will occupy a host is high, making it more important to ac-
count for within-host processes with MSCoM. Yet the current
implementation of MSCoM is based on a deterministic ap-
proximation to the evolution of the number of lineages per

host and does not cope well with noisy population dynamics.
These results indicate a direction for further extension of the
MSCoM approach to stochastic demographic processes,
which has already been done for CoM12 (Rasmussen et al.
2014a). In general, when N is small, estimates of population
size have lower precision using MSCoM, and there is a tradeoff
between estimating within-host N versus detecting changes in
epidemic size. The analysis of EBOV phylogenies shows that
estimated population sizes were similar, but MSCoM was less
precise. When N is extremely large, the ability to infer popu-
lation dynamics diminishes, since the relationship between
transmission events and coalescent events grows weaker.

Analysis of the Latvian HIV-1 outbreak data provides esti-
mates of within-host diversity that are close to estimates
obtained from serial sequencing data of individual HIV-1 pa-
tients over many years. We conjecture that estimation of
within-host effective population size is possible because of
the way that the coalescent rate is modulated by the distri-
bution of lineages among hosts. In a standard coalescent
process, the coalescent rate changes in a predictable way
following a coalescent event: It will decrease by a factor

A—1 A
of /

2 2
multi-scale coalescent process, the decrease in coalescent
rate depends on the variance in the number of lineages
among hosts; if all lineages occupy a single host, the rate
will decrease in the same way as the standard coalescent.
But if all hosts but one have a single lineage, and one host
has two lineages, then the coalescent rate would be zero
following the coalescent event, and would not rebound
until the epidemic process causes more lineages to be
co-located in a single host.

Whether it is of practical importance to consider within-
host diversity when conducting phylodynamic inference de-
pends on details of the specific outbreak and pathogen being
considered. Analysis of the Latvian HIV-1 outbreak shows that
standard coalescent models tend to produce larger estimates
of population size than are credible based on independent

surveillance data. The multi-scale coalescent process yields
estimates that are much closer, but slightly less than the

=A —2/A (Wakeley 2009). In a
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reported cumulative number of diagnoses. In both cases, esti-
mated growth rates in the number of cases are highly consis-
tent with surveillance data, and simulation results suggest that
estimates of reproduction numbers will be robust to unmod-
eled within-host evolution. Good performance of the standard
coalescent model for estimating transmission rates in the pres-
ence of large within-host effective population size may appear
surprising, however this is the prediction of existing theory for
coalescent processes in large metapopulations (Wakeley and
Aliacar 2001). In the Methods section, we show how the
growth rate of the population effective population size is in-
dependent of within-host effective size provided transmission
rates are constant and there is no super-infection.

In contrast to the HIV-1 outbreak data, analysis of the
EBOV outbreak data did not indicate substantial within-
host diversity. Estimated population sizes with the multi-scale
coalescent were highly consistent with estimates using the
standard coalescent and both estimates were very close to
the number of cases reported by the World Health
Organization over time. The early EBOV epidemic in
Western Africa was characterized by several point-source out-
breaks originating from unsafe burials (Team 2014).
Alternative coalescent approaches such as the lambda-
coalescent (Pitman 1999) may also be a useful alternative
to the standard coalescent since many lineages will share a
common ancestor originating in a single host. The MSCoM
implicitly accounts for this as well, since unlike CoM 12, times
of common ancestry are not presumed to coincide exactly
with times of transmission.

While the development of the multi-scale coalescent goes
some way towards resolving bias in phylodynamic estimates
of the number of infected hosts, other forms of unmodeled
heterogeneity can also play an important role. Our simulation
results show that even if within-host diversity is negligible,
failure to account for variation in transmission rates over an
infectious period can substantially bias estimates. Other forms
of epidemic-level heterogeneity (different risk groups, geo-
graphic structure, age structure, different levels of risk behav-
ior) would presumably also introduce bias into skyspline
estimates of epidemic size. Flexible structured coalescent
models have been developed which can account for these
forms of epidemic-level heterogeneity, however it remains to
integrate the structured coalescent model with a parsimoni-
ous model of within-host evolutionary dynamics. Future de-
velopments on MSCoMs could also incorporate an explicit
transmission bottleneck and realistically account for how
within-host effective size varies over the infectious period.

Methods

In this section, we derive the multi-scale coalescent model,
describe simulation models, and analysis methods for the
HIV-1 and Ebola datasets.

Multiscale Coalescent Model

A(s) and B(s) are the number of lineages and ancestral hosts
at time s before the most recent sample. B (s) is the number
of hosts harboring k ancestral lineages, and by (s) = B(s)/
B(s) is the proportion of ancestral hosts harboring k of A(s)

1284

lineages. N denotes the within-host effective size which is
constant, and f(s) and y(s) are, respectively, the total birth
rate and epidemic size through time.

Note that this definition conditions on having at least one
lineage, so bo(s) = 0,and >, by(s) = 1. We can also define a
probability generating function (Wilf 2013) for this distribu-
tion, and derivations will be easier working with the generat-
ing function than using by variable for all k.

g(x;s) = Z bk(s)xk

k>0

While generating functions make the derivation more parsi-
monious, we also provide a derivation for the dynamics of by
(s) without generating functions in the Supplementary Text
online.

The mean number of lineages in an ancestral host is
> kkbi(s) = g'(1;s). Note that B and A are related through
the mean number of lineages per ancestral hosts, since we
must have g'(1)B = A, and B(s) is easily defined in terms of g
and A:

B(s) = A(s)/g'(1;5).

This substitution will sometimes be made in the following

equations.
Initially, all lineages begin in a distinct host, so b;(0) = 1
and g(x; 0) = x
The coalescent rate can be defined in terms of g
k bk(S)
He)=B(s) Y | | = =B (1s)/(2N)
k
g'(1;s) 1
Sl 7
) 05N )

where N is the pathogen effective population size within
hosts.

Now we can derive the asymptotic dynamics of g(x;s) in
the limit of large A. The main result is:

og(x;s A(s)f (s

o) A s gl ®
Note that this describes the dynamics of g only in internode
intervals, and that discrete changes in the distribution will
occur at nodes and at sample times in the genealogy. Readers
may also refer to the online Supplementary Text online for an
alternative derivation of an equivalent system of equations
that does not require generating functions.

To derive 8, note that g will change when one ancestral
host infects another. This occurs at the rate (see Volz 2012).

B(s) \_ £(s)
2 )26

When an ancestral host with k; lineages transmits to a
host with k, lineages it will yield a host with k; + k, lineages.
Under the approximation that both k; and k; are iid from
the same distribution generated by g, the new host has a
number of lineages generated by g*(x;s) (see properties of
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generating functions in Wilf 2013). In particular, the proba-
bility that two randomly chosen hosts will have a total num-
ber of lineages equal to k is . _ bub_p (see
Supplementary Material online). In reality, k; and k, will be
correlated, however this correlation will be O(1/B?) (follow-
ing from the hypergeometric distribution and given that we
sample k; and k, without replacement), and if the number of
ancestral hosts is large, this will be a good approximation.
Concurrently with the transmission event, the hosts with
ki and k, lineages will be replaced with a single host
with ki + k; lineages. The total number of hosts will be
reduced from B to B — 1. Thus one out of B — 1 hosts will
have k generated by g?(x;s) and B - 2 hosts will have k
generated by g(x; s). And the size of the change in g will be

g'(xs) | B(s)—2
B(s)—1 B(s)—1

B(s
Multiplying this change by the rate ( ) ) 2f(s)/y*(s)
yields Equation 8. 2

It remains to show how the distribution generated by g
undergoes discrete changes at nodes in the tree and at sample
times.

At an internal node of the tree, a host with k lineages is
reduced to k — 1 lineages and the probability of a particular
host with k lineages losing a lineages is proportional to
k(k —1)/g"(1;s). The probability that any host with k line-
ages loses a lineage is g = bgk(k — 1)/g"(1;s). Recall that
the number of hosts with k lineages is By = Bby. The follow-
ing may occur:

glx;s) —g(x;s)

® With probability gy, By — By — 1
® With probability gx1, Bx — By + 1
® With probability 1 — gk — g+1, Bk is unchanged.

Tabulating these events and computing by = By /B provides
the updated value of g(x;s + As).

When a lineage is sampled, a new host with one lineage is
added to the distribution,and B — B + 1. Thus by (s + As) =
(1+bB)/(B+1) and for k>1, bi(s+ As) =
bB/(B+1).

Semi-Parametric Phylodynamic Inference and the
Skyspline

In many infectious disease epidemics, incidence of infection
through time is likely to change in a nonlinear fashion and
potentially very rapidly. We sought to develop a semi-
parametric model for the population transmission rate f{t)
which could well describe a large range of epidemic scenarios
ranging from exponential growth, SIR dynamics, or endemic
equilibrium. We use cubic akima splines (Akima 1970) which
are robust to large variation in spline coordinates and prevents
outlying values. The spline has the following parameters:

® A sequence of time coordinates T ... Ty
® A sequence of transmission rate coordinates for log(f(t)):
ay...dg.
The order of the spline k is not determined in advance, but
must be estimated. In all experiments, we used a likelihood

ratio test to optimize k. In order to reduce the number of
parameters that must be estimated, we estimate the spline
coordinates ay ...a, but the spline time coordinates are
adapted to the genealogy as follows:

® 7, is set to be the TMRCA of the tree

® 7. is set to be the time of the most recent sample

® The remaining k — 2 calibration times are set to corre-
spond to evenly spaced quantiles in the distribution of
node heights in the genealogy.

Whenf(t; Ty ... Tk, dq . .. ax) is specified, the population size
can be derived numerically by solving Equation 1. We refer to
this model as the skyspline model.

A final refinement to the skyspline model is to penalize the
likelihood of trajectories if the computed size y(t) falls below
the number of lineages A(t), which is a logical impossibility for
the CoM12 model. For all results presented in this article,
likelihoods were heavily penalized: If A <y and fewer than
20% of coalescent events remain counting from tips to root,
the skyspline method will return zero likelihood. The thresh-
old of 20% was chosen so that trajectories with small popu-
lation sizes subject to stochastic fluctuation would be
permitted.

Coalescent Processes in Large Metapopulations

In Wakeley and Aliacar (2001), the effective population size is
derived for a large metapopulation with constant effective
size within demes and constant rates of migration between
demes and founding unoccupied demes:

o y
Ne =k B+ m) ©)
14+ fN/x (10)

"1+ PNJK + 2mN’

where F is the fixation index which depends on the inoculum
size K. The rate of super-infection is denoted m, and in our
model m = 0. In this case F — 1 and

Ne = y/Zﬂ

This is equivalent to the effective population size as a func-
tion of true size and transmission rate derived in Volz
(2012) and Dearlove and Wilson (2013). Importantly, this
implies that

(ANe)/Ne _ (Ay)/y
At At

so the growth rate of N, will be the same as y even if N > 0.

Simulating Genealogies and the Parametric Bootstrap
Equations 7 and 8 provide a means of simulating genealogies
under the multi-scale coalescent process in addition to com-
puting likelihoods. We use Algorithm 1.

The ability to quickly simulate trees using Algorithm 1
enables a fast approximate parametric bootstrap approach
for estimating standard errors and confidence intervals for
estimated y(t) and f(t) (Volz and Frost 2014). The parametric
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Algorithm 1: Simulation of genealogy using MSCoM.
Data: Sequence of sample times s;, parameters 0
Result: Simulated genealogy G

initialization;

compute f(t) and y(t)|6;
start at most recent sample time s =s; and
initialize G with a single lineage;

while G does not have n — 1 internal nodes do
Increment time s’ = s + As;

Add any lineages sampled in interval

(s,s') t0o G;

Compute A|A, g (Equation 7);

Update g in the interval (s,s’) using

Equation 8;

Draw a number of coalescent events

X ~ min(Poisson(4), A(s) — 1);

For each coalescent event, randomly

sample two lineages u and v without
replacement and form new node w = (u, v)
with time s’ to G;

Sets =

end

bootstrap is described in Algorithm 2 and was used for all
results. Data: Sequence of sample times s, estimated param-
eters 0, number of replicates m Result: Estimate variance-
covariance matrix of parameters 6 for i=1:m do

Simulate g<’)|é using Algorithm 1; Estimate MLE or MAP

é('>|g<">,- end Compute VCOV({@O)},-:””); Algorithm 2:
Parametric bootstrap estimation of variance-covariance of
MLE or MAP estimates of parameter vector 0.

To generate Cl's for derived quantities such as population
size y(t), we sample 0 from a multivariate normal distribution
centered on the 0 with the estimated variance covariance
matrix. y(t) is simulated from each sampled parameter vector
and desired quantiles are computed at a given time point.

Analysis of Latvian HIV Outbreak Data

Data for this analysis were previously described in Balode et al.
(2004, 2012) and Graw et al. (2012). These data comprised an
alignment of 227 HIV-1 gag p17 sequences (HXB2 coordinates
790-1230) collected between 1990 and 2005 from Latvian
injection drug users (IDU) and heterosexual sex partners
(HET). The Latvian surveillance data were provided by the
Infectology Center of Latvia. Previous analyses of the same
data (Graw et al. 2012) indicated that the heterosexual and
IDU outbreaks were phylogenetically mixed indicating fre-
quent cross-transmission, especially from IDU to HET, so
data from both groups was used for phylodynamic analysis.
Maximum likelihood phylogenies and 100 bootstrap trees
were estimated using PhyML (Guindon et al. 2010) using a
GTR + I'(4) + | substitution model. Each sequence had a
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known date of sampling so that a molecular clock could be
fitted. We used least squares dating (LSD) (To et al. 2015) to
fit a molecular clock, root the bootstrap phylogenies, and to
rescale bootstrap phylogenies to calendar time.

The skyspline model with either MSCoM or CoM12 like-
lihoods was used to estimate y(t) and R(t). The likelihood was
computed as the mean likelihood from a random sample of
20 phylogenies from the PhyML/LSD bootstrap replicates.
Estimates were obtained by maximum a posteriori using
the simplex optimization algorithm in R. A weak lognormal
prior was placed on the death rate (median: 5 years, log
standard deviation: 0.75). All other parameters had an im-
proper uniform prior. The parametric bootstrap was used to
derive Cls for y(t) and R(t) with 120 replicates.

To estimate 2Ny, estimates of within-host effective size (N)
were combined with estimates of within-host evolutionary
rates on HIV-1 p17 (i) by Zanini et al. (2015). Estimates of 1
were based on a 500-bp sliding window covering p17 (HXB2
coordinates 760-1260) using serial deep sequencing data
from eight patients. To generate credible intervals, we used
Monte Carlo integration by repeatedly sampling N from the
bootstrap distribution and sampling 1 from a normal distri-
bution using sample means and standard deviations from all
eight patients.

Analysis of EBOV Outbreak Data

Data for this analysis come from a previous phylogenetic
analysis by Gire et al. (2014), who estimated time-scaled phy-
logenies from 78 whole EBOV genomes sampled during the
beginning of the 2014 outbreak in West Africa. Phylogenies
were estimated by Gire et al. using Bayesian methods (BEAST
1.8) (Drummond et al. 2012), and we use a sample of 40 trees
from the posterior distribution for our analysis.

The skyspline model with either MSCoM or CoM12 like-
lihoods was used to estimate y(t) and R(t). The likelihood was
computed as the mean likelihood over the sample of 40
posterior trees. Estimates were obtained by maximum a pos-
teriori using the simplex optimization algorithm in R.

A strong lognormal prior was placed on the removal rate
(median:15 days, log standard deviation: 0.12), reflecting the
large amount of data that have emerged on the natural his-
tory of Ebola infection during the West African epidemic
(Team 2014). We found that it was difficult to estimate the
removal rate with MSCoM and that estimates converged to
unrealistically low values. We therefore fixed the removal rate
in MSCoM to the MAP estimated gained by CoM12 (rate-
=1/10.6 per day). An exponential (rate = 2) prior was used
for the within-host effective population size and an exponen-
tial (rate = 4) prior was used for the initial number infected.
All other parameters had an improper uniform prior. The
parametric bootstrap was used to derive Cls for y(t) and R(t).

Simulation Models

In simulation experiments, we consider two stochastic
continuous-time epidemiological models, a simple BD process
and a more realistic HIV model. In the BD model, | %2/ and
1 & 5 where o.=1and f = 0.5. The within-host population
size was assumed to be 2 in units of coalescent time


Deleted Text: o
Deleted Text: d
Deleted Text: (
Deleted Text: ;
Deleted Text: as
Deleted Text: one hundred
Deleted Text:  
Deleted Text: Zanini et<?A3B2 show $146#?>al. (
Deleted Text: -
Deleted Text: o
Deleted Text: d
Deleted Text: Gire et<?A3B2 show $146#?>al. (
Deleted Text: s
Deleted Text: ,
Deleted Text: m
Deleted Text: birth-death (
Deleted Text: )
Deleted Text: multi-scale coalescent model

Phylodynamic Inference - doi:10.1093/molbev/msx077

MBE

(Sjodin et al. 2005). The HIV model has states S for susceptible, V
for initial infection stage, A for acute infection, and C for chronic
infection. The following reactions govern the system

5SS

us

S—J

v o

A o

(utdc)C

cC - g

SaA
v

A%

S i A

where  =(AB, + CPc) 37 €=180, u =5, dr = 365,
Op =1, dc=3, Pa=05 pc=01, y= 15
giving Ry ~ 2.8. The within-host populations size is state-
specific with parameters Nt = Ny = N¢ = 0 corresponding
to no within-host diversity and Nyt = 0,Ny = 1,Nc =9
corresponding to high diversity. Note that effective size is
reported in units of coalescent time (Sjodin et al. 2005).
Sampling in the BD model was concomitant with death, while
sampling in the HIV model was homochronous at time 60.

To simulate the viral genealogy we first simulated a trans-
mission history (who infected whom when) from a given
transmission model. We then removed all individuals not
ancestral to at least one sampled individual. Then, for each
individual in a depth-first order, we simulated a within-host
genealogy assuming topological neutrality and piece-wise
constant population size, propagating any un-coalesced line-
ages up to the donor.

For the BD process, we can estimate the initial population
size, the birth rate, and within-host effective population size
assuming death rate is known. In this case, the mathematical
method developed in this article is well adapted to this sto-
chastic simulation. However, in the HIV model, we include
additional population structure and heterogeneities that are
not accounted for in the MSCoM:

® Transmission rate varies over the course of an individual
infectious period; five times more infectious in the first
year compared with chronic infection.

® Effective population size within hosts also varies over the
infectious period. We also include a very shot ‘transmis-
sion’ stage that produces a more realistic population bot-
tleneck at transmission.

® We simulate the epidemic in a finite population, and thus
the epidemic trajectory is nonlinear. The number of in-
fected hosts initially grows exponentially, saturates, and
then slowly decreases.

® There is also natural mortality (one per 30 years per per-
son) and constant birth into the susceptible population
(180 individuals per year).

Because of the additional unmodeled complexity in the
HIV simulation, we believe this will give a more realistic pic-
ture of how the multi-scale coalescent will perform in real-
world applications.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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