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Understanding the causal relation between neural inputs and movements is very important
for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neu-
rons’ firings using statistical, information theoretic, and fractal analysis. The latter include
Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal
analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always
indicates long-range correlations in neuronal firings, irrespective of whether those firings
are correlated with movement trajectory or not, and thus does not reveal any actual corre-
lations between neural inputs and movements. On the other hand, MF-AFA and wavelet
multifractal analysis clearly indicate that when neuronal firings are not well correlated with
movement trajectory, they do not have or only have weak temporal correlations. When
neuronal firings are well correlated with movements, they are characterized by very strong
temporal correlations, up to a time scale comparable to the average time between two
successive reaching tasks. This suggests that neurons well correlated with hand trajec-
tory experienced a “re-setting” effect at the start of each reaching task, in the sense that
within the movement correlated neurons the spike trains’ long-range dependences per-
sisted about the length of time the monkey used to switch between task executions. A
new task execution re-sets their activity, making them only weakly correlated with their
prior activities on longer time scales. We further discuss the significance of the coalition
of those important neurons in executing cortical control of prostheses.

Keywords: brain-machine interface, Fano factor, adaptive fluctuation analysis, wavelet, neuronal firings

1. INTRODUCTION
Brain-machine interface (BMI) is aimed to provide a method
for people with damaged sensory and motor functions to use
their brain to control artificial devices and restore their lost
ability via the devices. The feasibility of using adaptive input-
output models to map the fundamental timing relations between
neural inputs and hand movement trajectory has been extensively
demonstrated (1–20). To achieve the mapping, model parame-
ters are chosen in such a way that the difference between model
output and hand movements is minimized using a statistical cri-
terion such as mean-square error (21–24). The adaptive models
proposed usually contain a very large number of parameters and
require very extensive training (25–27). Moreover, they assume
that neuronal firings in the cortex are stationary, while in real-
ity this rarely can be true. This limits the optimal correlation
between model output and hand trajectory to be around 70–80%.
To help gain fundamental understanding of the causal relation
between neural inputs and hand movements, in this study, we
examine long-range temporal correlations (or long-range depen-
dence, LRD in short) and multifractality in a large group of
neuronal firings.

Events in extracellular neuronal recording generate two types of
time series: (1) the time interval between successive firings, called
the inter-spike interval (ISI) data; (2) a counting process, repre-
senting the number of firings in a chosen time window. In the last

two decades, considerable efforts have been made to character-
ize fractal, non-Poisson behavior of neuronal dynamics (28–38).
While most early works along this line employ Fano factor analysis,
recently, other techniques, including detrended fluctuation analy-
sis (39) and multiplicative cascade multifractal (40) have also been
used. In this work, we employ three different types of fractal and
multifractal analysis methods to explore how temporal LRD may
be associated with the causal relations between neural inputs and
movement trajectory.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL PROCEDURES
Neuronal firing data for 104 cells, collected synchronously at Duke
University when an owl monkey performed a three-dimensional
(3-D) reaching task involving a right-handed reach to food and
subsequent placing the food to mouth (11) were analyzed here. The
total observation time was about 36 min. While the details of the
behavioral paradigm and surgical procedure for chronic microwire
recordings can be found in the literature (11), it is important to
mention the components of the paradigm that are important for
this work. Microwire electrodes were implanted in the cortical
regions with known motor associations (41). Table 1 shows the
assignment of electrode arrays in the four cortical regions. The
monkey’s hand position, which was considered as the desired sig-
nal by adaptive models, was also recorded (with a time shared
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Hu et al. Fractal behavior of neuronal firings

Table 1 | Assignment of electrode arrays in the four cortical regions.

Area 1

33 Cells

Area 2

31 Cells

Area 3

27 Cells

Area 4

23 Cells

Left posterior

parietal (PP)

Left primary

motor (MI)

Left dorsal

premotor (PMD)

Right primary motor

and dorsal premotor

(MI/PMD)

Areas 1–3 were contralateral, and Area 4 ipsilateral, to the moved limb.

clock) and digitized with 200-Hz sampling rate. On average, the
time interval between two successive reaching tasks is about 8 s.
From the neuronal firing data, spike detection was performed.
Note that some neurons fired more than 104 times during about
36 min, while a few neurons only fired a few tens of times during
this entire time period. This indicates the tremendous differences
among the neurons. This point will be further elaborated through
statistical analysis and information theoretical analysis below.

2.2. STATISTICAL AND INFORMATION THEORETICAL ANALYSIS
If a neuron fires according to a Poisson process, then its ISI follows
an exponential distribution described by

fX (x) = λe−λx , x ≥ 0 (1)

where λ > 0 is a parameter. To assess how different the distribution
of ISI is from an exponential distribution, we shall also exam-
ine gamma distribution, log-normal distribution, and power-law
distribution.

The gamma distribution is specified by

f (x) =
1

Γ (t )
λt x t−1e−λx , x ≥ 0 (2)

where parameters λ, t > 0, and Γ(t ) is the gamma function:

Γ (t ) =

∫
∞

0
y t−1e−y dy .

When t is an integer (say k), the distribution is called the Erlang
distribution, which governs the summation of k independent
exponentially distributed random variables.

Log-normal distribution is given by

f
(
y
)
=

1

σy
√

2π
e
−

(lny−µ)
2

2σ2 (3)

It is the distribution for the random variable Y = eX, where X
has a normal (or Gaussian) distribution. To assess the goodness-
of-fit of log-normal distribution to certain ISI data, one can first
take logarithm of the ISI data, then check if the distribution is
similar to Gaussian.

Power-law distribution can be written as

P [X ≥ x] =

(
b

x

)α

, x ≥ b > 0, α > 0 (4)

where α and b are called the shape and the location parameters,
respectively. When plotted in double-logarithmic scale, such a dis-
tribution produces a straight line. To better understand the causal
relation between neural inputs and movement trajectories, it is
useful to analyze the correlations between them. One simple way is
the cross-correlation analysis. More general correlations, including
non-linear correlations, can be characterized by mutual informa-
tion. To compute the dependence of cross-correlation and mutual
information with time, one can partition the data into many small
segments, then calculate the correlations between the correspond-
ing segments, and finally plot the correlation against the time index
associated with each segment. Let the segment of firing data of a
neuron be denoted by w(t ), and hand trajectory (either x, y, or z
component) be denoted by u(t ). The cross-correlation, denoted
by C(w,u), can be calculated by the simple equation

C (w , u) = maxL〈w (t ) u (t − L)〉,

where 〈〉 denotes average within the segment, and L is a small time
chosen in such a way that 〈w(t )u(t − L)〉 is maximized. When
C(w,u) is normalized by the standard deviations of w(t ) and u(t ),
one obtains the correlation coefficient. Before taking the average
within each segment, one could remove the mean values of w(t )
and u(t ) first.

The mutual information of w(t ) and u(t ), written as I (w,u),
is the amount of information gained about u when w is learned,
and vice versa. Denote the probability distribution for w(t ) by
P(W =wi), i= 1, . . ., Nw, that for u(t ) by P(U = ui), i= 1, . . .,
Nu, and the joint distribution for w(t ) and u(t ) by P(W =wi,
U = uj). Then

I (W , U ) = H (U )−H (W |U ) = H (W )−H (U |W )

= H (W )+H (U )−H (W , U )

=

Nw∑
i=1

Nu∑
j=1

P
(
W = wi , U = uj

)
ln

P
(
W = wi , U = uj

)
P (W = wi) P

(
U = uj

)
(5)

I (w,u)= 0 if and only if W and U are independent.

2.3. LRD AND MULTIFRACTAL ANALYSIS
Multifractal theory provides an elegant statistical characterization
of many complex dynamical variations in nature and engineering
(42). There are two major types of multifractal analysis, structure
function based and singular measure based (42, 43). For a relation
between them, we refer to Hu et al. (44).

Within the framework of structure function based multifrac-
tal analysis, there are three techniques (42): one is the standard
approach, including the Fano factor analysis; another is detrending
based; the third is wavelet based. While they are equivalent when
analyzing ideal fractal processes, detrending and wavelet based for-
mulations are more reliable when analyzing real world data (43).
To facilitate interpretation of our analysis below, we describe them
in order here.
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Hu et al. Fractal behavior of neuronal firings

2.3.1. Structure function based multifractal analysis
Let X = {Xt:t = 0, 1, 2, . . .} be a covariance stationary stochastic
process with mean µ, variance σ2, and autocorrelation function
r(k), k ≥ 0. The process is said to have long-range correlation or
LRD (42) if r(k) is of the form

r (π) ∼ k2H−2, as k →∞, (6)

where 0 < H < 1 is the Hurst parameter: depending on whether H
is smaller than, equal to, or larger than 1/2, the process is said to
have anti-persistent, short-range, or persistent long-range corre-
lations (42, 43). Note that when 1/2 < H < 1, Σk r(k)=∞. This
justifies the term “long-range correlation” or LRD. We now con-
sider estimation of H. A convenient framework is based on the
random walk process y, defined as,

yk =

k∑
i=1

(
Xi − X

)
, (7)

where X is the mean of X. We then examine whether the following
scaling laws hold or not,

F (q) (m) =
〈
|y (i +m)− y (i) |q

〉1/q
∼ mH(q), (8)

where q is real and the average is taken over all possible pairs of
(y(i+m), y(i)). Note that q > 0 emphasizes large absolute value,
while q < 0 emphasizes small absolute value (to better understand
this statement, it is helpful to think about concrete cases such as
q= 10 and −10). When H (q) is a constant, the process is called
a monofractal; otherwise, it is called a multifractal. The case of
q= 2 is of special interest, since H (2)=H. In this case, equation
(8) is often called fluctuation analysis (FA). It is equivalent to many
other methods, including Fano factor analysis. In the context of
ISI analysis, this can be explained as follows. Fano factor is defined
as

F (T ) =
Var [Ni (T )]

Mean [Ni (T )]
(9)

where Ni(T ) is the number of spikes in the ith window of duration
T. For a Poisson process, F(T ) is 1, independent of T. For a fractal
process, Var[Ni(T )]∝T 2H, while Mean[Ni(T )]∝T. Therefore,

F (T ) ∼ T 2H−1 (10)

In other words, Fano factor can be viewed as examining the
relation between [〈|y(i+m)− y(i)|2〉/m] and m instead of the
relation between [〈|y(i+m)− y(i)|2〉] and m.

2.3.2. Multifractal adaptive fluctuation analysis
When a time series is non-stationary or containing a trend, the
standard structure function based approach does not work well.
Our experiences with fMRI analysis (45, 46) and other applications
(47) suggest that detrended fluctuation analysis (DFA) and wavelet
multi-resolution analysis are more robust. Here we apply another
powerful method, adaptive fluctuation analysis (AFA), which is

similar to DFA but provides additional advantages over DFA (48,
49). For example, AFA can deal with arbitrary, strong non-linear
trends while DFA cannot (44, 50), AFA has better resolution of
fractal scaling behavior for short time series (51), AFA has a direct
interpretation in terms of spectral energy while DFA does not (50),
and there is a simple proof of why AFA yields the correct H while
such a proof is not available for DFA (see equations (6) and (7) in
Ref. (50)).

AFA works as follows (50). We first construct a random walk
process from the original data using equation (7). Next, for a win-
dow size w, we determine, for the random walk process u(i) (or the
original process if it is already a random walk process), a global
trend v(i), i= 1, 2, . . ., N (44, 52, 53). Here N is the length of
the random walk process. The residual, u(i)− v(i), characterizes
fluctuations around the global trend, and its variance yields the
Hurst parameter H,

F (2) (w) =

[
1

N

N∑
i=1

(u (i)− v (i))2

]
∼ w2H (11)

AFA can be easily extended to MF-AFA, by extending equation
(11) to a multifractal formulation,

F(q) (w) =

[
1

N

N∑
i=1

|u (i)− v (i) |q
]
∼ wqH(q) (12)

where q is a real number: depending on whether q is positive
or negative, large or small values of deviations are emphasized,
respectively. In many applications, the case of q= 2 may be most
concerned, since H (2)=H. For notational convenience, F (2)(w)
may be simply denoted as F(w).

Equation (11) can also be extended to high-dimensional case,
such as an image or a high-dimensional trajectory. In the case of
2-D, this can be achieved by first applying the algorithm to the
x-component of the data, then applying it to the y-component.
At least for the polynomial order 1, whether x-component first or
y-component first will not make any difference, so far as functions
such as d/dx d/dy ƒ(x,y)= d/dy d/dx f(x,y).

2.3.3. Wavelet based multifractal analysis
The essence of wavelet based multifractal analysis is similar to that
of adaptive multifractal analysis. Technically, it is based on the
coefficients of a discrete wavelet decomposition. It involves a scal-
ing function φ0 and a mother wavelet ψ0. The scaling function
satisfies ∫

∞

−∞

φ0 (n) dn = 1.

The wavelet ψ0 must have zero average and decay quickly at
both ends (54). The scaled and shifted versions of φ0 and ψ0 are
given by

φj ,k (n) = 2−j/2φ0

(
2−j n − k

)
,

ψj ,k (n) = 2−j/2ψ0

(
2−j n − k

)
, j , k ∈ Z ,
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Hu et al. Fractal behavior of neuronal firings

where j and k are the scaling (dilation) and the shifting (trans-
lation) index, respectively. Different value of j corresponds to
analyzing a different resolution level of the signal. One pop-
ular technique used to perform the discrete wavelet transform
(DWT) is the multiresolution analysis (MRA). The procedure of
performing MRA consists of the following steps (54):

(1) At the j-th resolution, compare φj,k(n) and ψj,k(n) to the
section at the start of the input signal x(n), this amounts
to taking k = 0. Calculate the approximation coefficient
ax(j,k) and the detailed coefficient dx(j,k) using the following
equations

ax
(
j , k
)
=

∑
n

x (n) φj ,k (n) =
∑

n

x (n) 2−j/2φ0

(
2−j n − k

)
dx
(
j , k
)
=

∑
n

x (n) ψj ,k (n) =
∑

n

x (n) 2−j/2ψ0

(
2−j n − k

)

(2) Shift φj,k(n) and ψj,k(n) to the right, this corresponds to tak-
ing k = 1, 2, . . .. For each k value, repeat step (1) until the
whole signal is covered.

(3) The signal approximation SAj and the signal detail SDj at the
j-th resolution level are computed as

SAj =
∑

k

ax
(
j , k
)
φj ,k (n)

SDj =
∑

k

dx
(
j , k
)
ψj ,k (n)

(4) Repeat steps (1) through (3) for the (j + 1)-th resolution level
but use the signal approximation SAj obtained in step (2) as
the input signal.

For examples detailing these steps, we refer to Hu et al. (47) and
Gao et al. (42).

Let the maximum scale resolution level chosen for analysis be J.
The signal can be reconstructed using the following equation (54):

x (n) = SAJ +

J∑
j=1

SDj =
∑

k

ax (J , k) φJ ,k (n)

+

J∑
j=1

∑
k

dx
(
j , k
)
ψj ,k (n) . (13)

The first term represents the approximation at level J, and
the second term represents the details at resolution level J and
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FIGURE 1 | (A) X, Y, Z components of the monkey’s hand movements. Dashed lines indicate time intervals when the monkey stretched its hand to grab food
and subsequently place the food to its mouth. (B–F) Neuronal firings of five neurons associated with the hand movements plotted in (A).
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lower. MRA builds a pyramidal structure that requires an iterative
application of the scaling and the wavelet functions, respectively.
Let

Γ
(
j
)
=

[
1

nj

nj∑
k=1

|dx
(
j , k
)
|
2

]1/2

,

where nj is the number of coefficients at level j. For fractal signals
such as the spike counting process, one has

log2 Γ
(
j
)
= (H − 1/2) j + c0, (14)

where c0 is some constant.
Formulation based on equation (14) can be extended to wavelet

based multifractal analysis, by considering

γj
(
q
)
=

[
1

nj

nj∑
k=1

|dx
(
j , k
)
|
q

]1/q

, (15)

and examining whether the following scaling relations hold or not:

γj
(
q
)
∼ 2j[H(q)−1/2]. (16)

If yes, then we have

log2 γj
(
q
)
=
[
H
(
q
)
− 1/2

]
j + cq (17)

where each cq is some constant.

3. RESULTS
3.1. VARYING DEGREE OF CORRELATION BETWEEN NEURONAL

FIRINGS AND HAND TRAJECTORY
To understand how neuronal firings control hand trajectory, it is
instructive to visually examine the correlation between neural fir-
ings and hand trajectory. For this purpose, three consecutive hand
movements are shown in Figure 1A, while neuronal firings of five
neurons associated with those three hand movements are shown
in Figures 1B–F. A number of interesting features can be observed
from Figures 1B–F: (i) the firing rate varies considerably among
the neurons. For example, neuron 1, plotted in Figure 1B, fired
a lot more than most other neurons. (ii) The firing of neuron 1
of Figure 1B does not have much correlation with the hand tra-
jectory. In fact, more than half of the neurons behaved like this.
(iii) While neurons 2–4, plotted in Figures 1C–E, appear to have
strong correlations with the hand movement trajectory, the degree
of correlation varies with time considerably. For example, neuron
2, 3, and 4 did not fire much during the monkey’s “first,”“second,”
and “third” period of hand movement, respectively. It should be
mentioned that albeit neuron 5, shown in Figure 1F, fired a lot
during all these three periods, it also had “quiet” periods even
though the monkey was actively grabbing food to mouth. These
observations suggest (i) different neurons have different degree
of importance in determining the causal relation between neural
inputs and hand movements, and (ii) even for the same neuron,
this degree of importance varies with time considerably.

3.2. HETEROGENEITY OF NEURONAL FIRINGS REVEALED BY
DISTRIBUTIONAL ANALYSIS

Conventionally, neuronal ISI data are modeled by exponential and
gamma distributions. Besides these two distributions, many other
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FIGURE 2 | Four types of neuron ISI distributions. (A) Exponential, (B) gamma, (C) log-normal, and (D) power-law. Plotted in (A–C) and (D) are probability
density functions (pdfs) and complementary cumulative distribution function (CCDF), respectively.
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Hu et al. Fractal behavior of neuronal firings

distributions have been observed from the monkey’s neuronal
firing data, such as log-normal and power-law distributions. Four
examples are shown in Figures 2A–D, for exponential, gamma,
log-normal, and power-law distributions, respectively, for four
different neurons. Systematic distributional analysis of the 104
neuronal firings examined here reveals that there are 13, 21, 24,
and 22 neuronal firings follow exponential, gamma, log-normal,
and power-law distributions, respectively, while 24 firings could
not be classified, due to lack of data. See Table 2. These distri-
butional analyses clearly indicate that the ISI data of different
neurons may follow very different distributions, and therefore,
the neurons, in terms of their firing patterns, can be considered
very heterogeneous. It is well-known that associated with a dis-
tribution, there is a specific stochastic process (55, 56). Existence

Table 2 | Number of neuronal firings following exponential, gamma,

log-normal, and power-law distributions.

Distribution Exponential Gamma Log-

normal

Power-

law

<100 Spikes

Number of

neurons

13 21 24 22 24

When fewer than 100 spikes had occurred, we did not attempt to classify the

distribution.

of multiple distributions therefore implies existence of different
stochastic processes underlying neuronal firings in the cortex.

3.3. NON-STATIONARY NEURONAL FIRINGS REVEALED BY
CORRELATION ANALYSIS

To quantify the time-varying correlations between the neuronal
firings and movement trajectory, we computed cross-correlation
coefficient and mutual information. The results are shown in
Figures 3A,B, respectively. Evidently, both types of correlations
vary with time considerably. Since hand trajectory is station-
ary, this indicates that neuronal firing patterns are highly non-
stationary. The non-stationarity is one of the fundamental reasons
that the accuracy of currently used adaptive models cannot be
further improved.

3.4. LRD IN NEURONAL FIRINGS REVEALED BY FANO FACTOR
ANALYSIS

To gain insights into the distinguished features that define the
set of neurons that have strong correlations with hand trajectory
(i.e., neurons that are similar to those shown in Figures 1C–F),
we now carry out Fano factor analysis on the counting process
of spikes. For this purpose, we have classified neurons into two
groups, one group is not correlated with hand movement, just as
the one shown in Figure 1B, while the other group is well corre-
lated with hand movement, as those shown in Figures 1C–F. We
then have obtained the counting processes by choosing the size of
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FIGURE 3 |Time-varying correlations between spike counting data and hand movement data. (A) Correlation coefficient; (B) mutual information.

Frontiers in Neurology | Movement Disorders October 2013 | Volume 4 | Article 158 | 6

http://www.frontiersin.org/Movement_Disorders
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hu et al. Fractal behavior of neuronal firings

the small time window to be ∆t = 0.1 s. Figure 4 shows the results
for six neurons,where F(T ) denotes Fano factor. Note that neurons
(a–c) are not well correlated with hand movement, while neu-
rons (d–f) are. Recall that for a Poisson process, F(T )= 1, while
for a fractal process, F(T )∝T 2H − 1. Since in no cases F(T )= 1,
we have to conclude that Poisson processes are not relevant here.
While Figure 4 suggests fractal neuronal firings, we have to note
that the power-law scaling of F(T )∝T 2H − 1, where 2H − 1 is the
slope of the plots in the Figure, are not well defined for most of the
neurons. Nevertheless, H is generally greater than 1/2, especially
when time scale is large. Recall that H > 1/2 indicates LRD. In the
context of neuronal firings, this means that very active firing will
be more likely followed by another active firing, while quiet fir-
ing will be more likely followed by another quiet firing. In other
words, a small ISI will be more likely followed by another small ISI,
while a large ISI will be more likely followed by another large ISI
[for a similar interpretation in the context of switching times in
multistable visual perception, we refer to (57, 58)]. Therefore, the
firings of these neurons have LRD. However, Fano factor analysis
does not clearly indicate the correlations between neuronal firings
and the hand movement.
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2H −1. Note that visually, neurons (A–C) are not well correlated with hand
movements, while neurons (D–F) are highly correlated with hand
movements.

3.5. LRD IN NEURONAL FIRINGS REVEALED BY AFA
Next, we apply AFA to the spike counting processes of the same six
neurons. The results are shown in Figure 5. Note that the slopes
in the Figure correspond to H. It is observed that the lines are
quite straight, therefore, the power-law relation of equation (11)
is well defined. More interestingly, it is observed that three neu-
rons, shown in Figures 5A–C, are characterized by a single fractal
scaling, with the Hurst parameter ranging from about 0.5 to about
0.73, indicating no correlations or weak correlations. On the other
hand, the three other neurons shown in Figures 5D–F have very
large Hurst parameters, indicating very strong temporal LRD. Note
that the AFA curves for those three neurons present a turning
point (called fractal scaling break) at around m= 26 ∼ 27, which
corresponds to about 6.4∼ 12.8 s. Interestingly, the time scale of
6.4∼ 12.8 s is comparable to the average time of 8 s between two
successive reaching tasks. These two features, a large Hurst para-
meter, and fractal scaling break at the time scale comparable to
the average time between two successive reaching tasks, suggest
that neurons well correlated with hand trajectory experienced a
“re-setting” effect at the start of each reaching task, in the sense
that within the movement correlated neurons the spike trains’
LRD persisted about the length of time the monkey used to switch
between task executions. A new task execution re-sets their activity,
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making them only weakly correlated with their prior activities on
longer time scales. This necessitates that a difference in the detail
of long-range dependence must come into being with the new task
execution, breaking the LRD associated with the prior task.

3.6. LRD IN NEURONAL FIRINGS REVEALED BY WAVELET ANALYSIS
Figure 6 shows the result of wavelet analysis of the spike count-
ing data of the same six neurons. We observe that the results are
consistent with those based on AFA. Therefore, we can conclude
that firings of the neurons well correlated with hand movements
are characterized by large H with a scaling range up to the average
time between two successive reaching tasks.

3.7. MULTIFRACTAL AFA AND WAVELET ANALYSIS OF
SUPERIMPOSED NEURONAL FIRINGS

To examine whether the neurons in the four brain areas (Table 1)
may have different fractal properties, we combined the neuronal
firings in each brain area and obtained a “superimposed” spike
train, and then performed multifractal analysis based on MF-
AFA and multifractal wavelet analysis. The results are shown in
Figures 7 and 8, respectively. Recalling that multifractal is charac-
terized by a non-constant H (q), while a monofractal is character-
ized by a fairly constant H (q), we conclude that areas 1 and 4 show
multifractal behavior, while areas 2 and 3 show weak multifractal
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FIGURE 6 | Wavelet analysis of the same six neurons. Here, the slope
equals H. Notice the consistency with AFA analysis.

or monofractal behavior. This suggests that different brain areas
may have different roles in coordinating movements.

3.8. IMPORTANT VS. IRRELEVANT NEURONS
Although 104 neurons have been analyzed here, there are only
slightly more than 10 neurons that exhibit the interesting fractal
scalings discussed above, and thus can be classified as impor-
tant neurons. Amazingly, when those neurons are used to train a
Wiener filter, the simulated trajectory already achieves about 65%
correlation with the actual hand trajectory. However, when similar
number of other neurons are used to predict a trajectory, the cor-
relation between the predicted trajectory and the actual trajectory
becomes very poor. Therefore, those neurons are indeed the most
important in reaching tasks.

4. DISCUSSIONS
To better understand the causal relation between neural inputs
and movements, in this study, we have employed three different
types of fractal and multifractal techniques, including Fano factor
analysis, multifractal adaptive fluctuation analysis (MF-AFA), and
wavelet multifractal analysis, to study whether neuronal firings
related to movements may have LRD. We find that Fano factor
analysis always indicates LRD in neuronal firings, irrespective of
whether those firings are correlated with movement trajectory or
not. Therefore, Fano factor analysis, while indicating that neuronal
firings related to movements are generally non-Poisson, does not
reveal any actual correlations between neural inputs and move-
ments. This may be due to the overwhelming non-stationarity
nature of neuronal firings. More interestingly, we have found that
MF-AFA and wavelet multifractal analysis can clearly indicate
that when neuronal firings are not well correlated with move-
ment trajectory, they only have weak or very short-range temporal
correlations. When neuronal firings are well correlated with move-
ments, they are characterized by very strong temporal correlations,
up to a time scale comparable to the average time between two
successive reaching tasks. Beyond that time scale, LRD no longer
exists. This suggests that neurons well correlated with hand tra-
jectory experienced a re-setting effect at the start of each reaching
task, in the sense that within the movement correlated neurons the
spike trains’ LRD persisted about the length of time the monkey
used to switch between task executions. A new task execution re-
sets their activity, making them only weakly correlated with their
prior activities on longer time scales. This necessitates that a dif-
ference in the detail of long-range dependence must come into
being with the new task execution, breaking the LRD associated
with the prior task.

The existence of a group of neurons whose firings are well
correlated with hand movement suggests that neural informa-
tion processing is carried out by a dynamic coalition of neurons,
as hypothesized by Edelman and Tononi (59), Crick and Koch
(60), Gao et al. (57), and Furstenau (61). By a coalition of neurons,
it is meant that the coalition involves many types of excitatory
and inhibitory interconnected neurons, which change the activi-
ties of their fellow members. By dynamic, it is meant that neurons
within the coalition may leave the coalition and not partici-
pate in neural information processing, such as controlling hand
movements. After they leave the coalition, they may re-join the
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coalition later; or new neurons can join the coalition. To better
understand these statements, we note that in the time interval
of three hand movements shown in Figure 1, if we define the
dynamic coalition of neurons by their correlation with the hand
trajectory, then neuron 1 does not belong to the coalition, neu-
ron 5 belongs to the coalition, and neurons 2 to 4 are transient
members – they do not belong to the coalition at the 1st, 2nd,
and 3rd hand movement, respectively. This dynamic aspect is also
responsible for the re-setting aspect of the important neurons
discussed earlier. While the process of leaving and joining the
coalition makes the structure of the network of the coalition
highly time-varying, the collective behavior of the coalition must
be fairly stable, since it controls movements. It is interesting to
note that the notion of soft assemble proposed by Turvey (62) and
the hypothesis of self-organization perception and action pro-
posed by Van Orden et al. (63) are consistent with the framework
discussed here.

The above discussion highly suggests that understanding the
collective behavior of the coalition of neurons will be critical for
fully realizing the promises of BMIs. One testable idea is to select
neurons having relatively large Hurst parameters for adaptation
algorithms thereby reducing the number of free parameters. Our
own experience, as described in the last section, suggests that this
is a valid idea. This is also consistent with the work of Sanchez
et al. (26). The best predictions by adaptive algorithms may be
obtained by not only using the notion of LRD, but also the notion
of “dynamic”or“non-stationary.”By the latter, we mean that when
a neuron has left the coalition of neurons performing a desired
task, it then should be removed in the adaptive algorithm for
prediction.
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