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Percutaneous ultrasonic debridement of
tendinopathy—a pilot Achilles rabbit model
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Abstract

Background: Tendinopathy is a common clinical pathology, with mixed treatment results, especially when chronic.
In this study, we examine the effects of an ultrasonic debridement modality in a rabbit tendinopathy model.
We asked four questions: 1) Was it possible to create and visualize with ultrasound a tendinopathy lesion in a rabbit
Achilles tendon? 2) Was it possible to guide a 19-gauge ultrasonic probe into the tendinopathy lesion? 3) Following
ultrasonic treatment, was tendinopathy debris histologically present? and 4) Was the collagen profile qualitatively and
quantitatively normalized following treatment?

Methods: Skeletally mature female New Zealand white rabbits (n = 12) were injected with, ultrasonography localization,
0.150 ml of collagenase into the Achilles tendon. The collagenase-induced Achilles tendinopathy (3 weeks) was treated
with percutaneous ultrasonic debridement. The tendons were harvested, at 3 weeks after treatment, and were subjected
to histological assessment (modified Movin score) and biochemical analysis (collagen isoform content).

Results: Histopathological examination revealed that all tendons injected with collagenase showed areas of hypercellularity
and focal areas of tendon disorganization and degeneration. The treated tendons had lower (improved) histopathological
scores than injured tendons (P < 0.001). Western blot analysis showed that ultrasonic therapy restored, within statistical
limits, collagen type I, III, and X expressions in a treated tendon, to qualitative and semi-quantitative levels of a normal
tendon.

Conclusions: We were successfully able to create a collagenase-injected tendinopathy lesion in a rabbit Achilles tendon
and visualize the lesion with an ultrasound probe. A 19-gauge ultrasonic probe was inserted into the tendinopathic
lesion under direct ultrasound guidance, and minimal tendinopathic debris remained after treatment. The treated tendon
demonstrated a normalized qualitative and semi-quantitative collagen profile and improved histological appearance in
the short term. This technique demonstrates scientific merit with respect to the minimally invasive treatment of
tendinopathy and warrants further studies.

Clinical relevance: Recalcitrant tendinopathy has evaded consistent non-operative treatment since the tendinopathic
debris remains in situ, to some extent, with non-operative approaches. This percutaneous emulsification/evacuation
approach, under direct ultrasound visualization, has the potential to cure recalcitrant tendinopathies without open
surgery, which would benefit the patient and result in significant healthcare cost reductions.
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Table 1 Scheme of injection regimen and treatment with
Tenex probe in rabbits

Group Rabbit Injected for (weeks) Treated (weeks) retrieved [weeks]

0 1 3 No [3]

2 3 No [3]

I 3 6 No [6]

4 6 No [6]

5 3 No [6]

6 6 No [6]

II 7 3 3 [6]

8 3 3 [6]

9 3 3 [6]

10 3 3 [6]

11 3 3 [6]

12 3 3 [6]

13 3 3 [6]

14 3 3 [6]

Fig. 1 a (A) A normal betadine prepared rabbit Achilles tendon site.
(B) An Achilles tendon at 3 weeks after collagenase injection
demonstrating a fusiform swelling at the injection site. b (A) A
normal Achilles tendon with a diameter A-A, (B) A collagenase-injected
Achilles tendon after 3 weeks (group 1) with a significantly enlarged
diameter B-B
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Introduction
Tendinopathy is a widespread cause of morbidity affect-
ing virtually all joints. Although the etiology is imper-
fectly understood, the path physiology is one of the
degeneration and necrosis at the pathological site [1].
There are several treatment modalities currently used in
clinical practice, including physical therapy, non-steroidal
anti-inflammatories, and injections of corticosteroid and
platelet-rich plasma (PRP) [2–4]. However, no universally
accepted treatment is known to be completely safe and ef-
fective with a high degree of predictability.
In clinical situations, magnetic resonance imaging

(MRI) and ultrasound scanning are commonly utilized
to provide fine internal architectural details of symptom-
atic tendons, for diagnosis and evaluation of treatment
[5]. Typically, ultrasound imaging of tendons has re-
cently become a first-line investigation as it is widely
available, relatively inexpensive, and is easy to use. In
order to understand tendon biology and mechanics in
normal and injury situations, a mouse model is commonly
used [6, 7]. However, the use of diagnostic and localizing
ultrasonography is less straightforward with mice than
with a larger animal model, and hence, we chose a vali-
dated Achilles tendinopathy rabbit model [8, 9]. Further-
more, our choice of treatment is based on the previously
published clinical use of ultrasonic energy to treat lateral
epicondylitis [10].
The primary aim of this study was to characterize the

mechanism by which ultrasonic emulsification and aspir-
ation mechanistically produces its effect in a collagen
degradation model. Our pilot study aims were to create
a collagen degradation/tendinopathy rabbit model from
literature data, treat the lesion using an ultrasonic aspir-
ation probe, and analyze the results with histology and
semi-quantification of the collagen profile. This study is
the first step in characterizing the usefulness of ultrasonic
treatment in tendinopathies, in a limited pilot form.

Materials and methods
Collagenase-induced injury
The use of rabbits for experiments in this study was ap-
proved by the animal research ethics committee of the
University of Kentucky. Twelve female New Zealand
white rabbits (8 weeks old; weight, 2–2.5 kg) were used
to create the tendinopathic model. Although we are
aware of several models for the creation of a tendinopa-
thy lesion, including chronic overload, prolonged PGE1
administration, etc., we chose the collagenase injection
model as a method of studying collagen breakdown deb-
ris associated with tendinopathy [11–15]. They were
randomly divided into control (group I) and treatment
(group II) groups with isoflurane anesthesia utilized, and
the scheme of treatment is shown in Table 1. One hun-
dred and fifty microliters (10 mg/ml in 0.9 % saline) of
collagenase I (Sigma-Aldrich, St Louis, MO, USA) was
injected into the central region of the medial gastrocne-
mius part of the Achilles tendon (Fig. 1), 1 cm above the
calcaneal tuberosity of the right limb of each rabbit
under sterile conditions (Fig. 1), while the contralateral
limb was left un-injected [8, 16]. The needle tip was lo-
calized to the center of the tendon under ultrasound
guidance (GE E logic). Free cage activity, without any re-
strictions, was allowed after the collagenase injections.
No adverse or unexpected morbidity or mortality was ex-
perienced during the test period. We additionally studied
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two rabbits (group 0) at 3 weeks after the collagenase in-
jection, to confirm the development of a tendinopathic le-
sion, both by diagnostic ultrasound, and with histology
and western blotting after harvesting the tissues. These
were in addition to the group I and II specimens.
Ultrasonic treatment
At week 3 after collagenase injection, group II rabbits
were percutaneously treated with a Tenex™ ultrasonic
probe (30 s), under ultrasound visualized guidance
(Fig. 2), following which free cage activity was resumed.
Group I and II rabbits were euthanased at 6 weeks, and
the Achilles tendons were harvested for analysis; histo-
logical specimens were immediately preserved in forma-
lin, and western blot samples were stored in liquid
nitrogen and transferred to a −80 °C freezer. Group 0
was euthanased at 3 weeks.
Histology
Histologic analysis [17] around the injection site was per-
formed to determine the different responses of the tendon
after the collagenase injection and the effectiveness of the
treatment. The tendons were processed for histology, and
8-μm-thick sections were cut and stained with hematoxylin
and eosin (H&E) [18–20]. The H&E slides were analyzed
using a semi-quantitative histopathological grading scale:
modified Movin score [21]. The score is based on eight pa-
rameters, with modifications based on the absence of
minor parameters [8]. The parameters assessed were fiber
structure and arrangement, rounding of nuclei, collagen
stain ability, and four quadrant regional variations in cellu-
larity. The assessment was based on multiple (n = 4)
Fig. 2 a Ultrasound scan of a rabbit Achilles tendon demonstrating a fusifo
weeks after collagenase injection. b Ultrasound of the Achilles tendon dem
quadrant areas and averaged. The total score for a tendon
could vary between 0 and 3 (Table 2).

Protein extraction
Tendons used for protein analysis were immediately stored
in dry ice and subsequently in a −80° freezer. The tissue
was homogenized using a 15-fold excess of extraction buf-
fer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 2 %
SDS) and protease inhibitor cocktail (COMPLETE, Roche).
The homogenate was centrifuged at 13,200 rpm for 30
min, and the supernatant was collected at −80 °C (Thermo
Scientific Forma, −86 °C ULT Freezer, USA). Total protein
concentration in the samples was determined using the
BCA protein assay kit (Pierce, Thermo Scientific, USA).

Western blot analysis
Protein levels for collagen types I, III, and X were assessed
using western blot techniques. Aliquots of the protein
samples were then boiled for 5 min in SDS sample buffer
with 2-mercaptoethanol (Bio-Rad) as a reducing agent,
and 10 μg of protein per lane was electrophoretically re-
solved on a 7 % SDS-PAGE and transferred to a nitrocel-
lulose membrane (Pall, East Hill) using a semi-dry transfer
cell apparatus (Trans-Blot SD, Bio-Rad, USA). Immuno-
blotting was done with anti-collagens I, III, and X anti-
bodies (Abcam and Novus Biologicals, USA), used at 8 ng/
ml for collagen I, 4 μg/ml for collagen III, and 500 ng/ml
for collagen X. Calnexin in each sample was probed with
rabbit anti-calnexin polyclonal antibody (2 μg/ml; Abcam,
USA) as a loading control. Goat anti-rabbit IgG-perixodase
(GE Healthcare, Piscataway, NJ, USA) was used as the sec-
ondary antibody at 1:8000 dilutions with ECL as the de-
tection system (Fischer Scientific, USA). For each
rm tendinopathic swelling and the internal tendon architecture 3
onstrating diffusion of the injection throughout the tendon



Table 2 Scoring of histological sections to assess cellularity, vascularity, and collagen fiber organization

Appearance Description

Cellularity score

0 Normal Presence of flattened cells in a linear pattern between fibers

1 Slightly abnormal Some rounded cells present, slight increase in cellularity

2 Abnormal Many rounded cells present, obvious increase in cellularity

3 Markedly abnormal Mostly rounded cells present, much higher numbers

Vascularity score

0 Normal Presence of some vascular bundles parallel to collagen fibers

1 Slightly abnormal Slight increase in number of vascular bundles

2 Abnormal Increased number of vascular bundles

3 Markedly abnormal Large increase in number of vascular bundles

Organization score

0 Normal Parallel collagen fibers of similar widths

1 Slightly abnormal Some loss of fiber organization, some loss of linearity

2 Abnormal Moderate loss of fiber organization, few linear regions

3 Markedly abnormal Total loss of organization, no linear fibers

Scoring was based on the system described by Movin et al. [23]
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independent sample, immunoblotting was done in tripli-
cate. For semi-quantification of western blot signals, the
densities of specific antibodies and calnexin were mea-
sured with Image J (NIH, USA). The same-sized square
was drawn around each band to measure the density, and
background level near the band was subtracted from it.
The levels of collagen subtype (I, III, and X) were normal-
ized against calnexin levels.
Statistical analysis
The ratios of treated to non-treated tendons were calcu-
lated for comparison. Student t test was used for statis-
tical analysis. The contralateral Achilles tendons of the
same rabbit were compared using Microsoft Excel
(Microsoft Corporation, Seattle, WA, USA). Significance
was set at a P value less than 0.05. We treated the Movin
score as a continuous variable and used the Mann-
Whitney U test. The assessments were descriptive and
not analyzed statistically.
Results
Hematoxylin and eosin staining
Two pre-study pilot specimens (group 0) were analyzed at
3 weeks post-injection with collagenase, and the yielded
Table 3 Summary of pathologic scores of the control, injured, and t

Pathologic score Contralateral controls

Mean 0.04

Median 0

SD 0.213
mean pathologic sum score was 2.5 ± 0.577. The mean
pathologic sum scores of the injured (group I—collagen-
ase-induced pathological) tendons were greater than the
mean pathologic score of the treated tendons (3.75 ± 0.5
versus 1.25 ± 0.462, P < 0.001) and control tendons (0.04 ±
0.294, P < 0.0007) (Table 3) (Fig. 3).
Assessment of each variable
Fiber arrangement: In the control tendons, the fibers were
linear and parallel to each other, while collagenase-treated
tendons showed complete disruption of linear fiber archi-
tecture. The fiber orientation of the ultrasonic-treated ten-
dons was heterogeneous, since the normal peripheral
fibers appeared ordered and linear, while the newly laid
down fibers from the evacuation cavity were less ordered.
The median for the control tendons was 0, injured ten-
dons was 3 (group I), and for the ultrasonic-treated ten-
dons was 1.5 (group II).
Cellularity
The randomly assigned four quadrants chosen for fiber
orientation were analyzed for cellularity. Cellularity,
based on nuclear staining, was observed to be dramatic-
ally increased (3/3) in the collagenase-treated group and
reated tendons

Injured tendons Treated tendons

3.75 1.25

3 1.5

0.5 0.46



Fig. 3 Staining of Achilles tendon sections with hematoxylin-eosin. a Normal Achilles tendon, b necrosis and disorganization induced by collagenase
at 6 weeks, and c the histological appearance after 3 weeks of collagenase and 3 weeks of treatment reveals a repopulation of the evacuated cavity
and early collagen bundles
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increased (2/3) in the ultrasonic-treated group and nor-
mal in the controls (0/3).

Vascularity
Vascular bundles usually run parallel alongside the colla-
gen fibers. The number of these vascular bundles in-
creased with degeneration of the tendon. The median
for the control tendon was 0, for the injured tendons
was 3, and for the treated tendons was 1.5.

Western blot analyses
As shown in Fig. 4, the collagen content of types I, III, and
X varied significantly between the control, tendinopathic
(group I), and treated (group II) groups. Although there is
a mild elevation in the levels in the treated group (group
II) compared to the controls, no statistically significant
difference was demonstrable. Collagen I was noted to in-
crease 30 % (±5 %) following collagenase treatment and
remained elevated by 16 % following ultrasonic treatment.
Collagen III increased 225 ± 30 % following collagenase
treatment and remained elevated by 25 ± 5 % following
ultrasonic treatment. Collagen X expression dramatically
decreased by 58 ± 8 % following collagenase treatment
but remained mildly elevated by 4 ± 1 % following ultra-
sonic treatment. Group 0 was also noted to have changes
in collagen expression at 3 weeks following collagenase in-
jection; collagen I increased by 18.4 %, collagen III by 134
%, and collagen X decreased by 10.3 %.

Discussion
Our results corroborate the use of collagenase to effect-
ively induce a tendinopathic lesion in the Achilles tendon
of rabbits, although we wholly understand that there are
several other models that produce more physiological ten-
dinopathies. This finding agrees with other studies on tis-
sue repair in the rabbit and with reports on the treatment
of tendinopathy [8, 20, 22]. To our knowledge, a study ap-
plying ultrasonic therapy to animal model-based tendino-
pathic tissues has not been reported previously.
The Movin scoring system was used to classify the
histopathological findings of the tendinopathy [23]. The
assessment system used was semi-quantitative. We are
conscious of the limitations of this assessment system,
as we categorized in four classes (from 0, normal, to 3,
markedly abnormal); a qualitative evaluation of several
aspects of the histopathological appearance of the ten-
don section was examined. It is likely that the fully auto-
mated image analysis systems used in other fields of
musculoskeletal medicine will be useful in this field in
the future and thus allow a more objective quantification
of the abnormal appearance of tendinopathic tendons.
The Movin score is based on semi-quantitative criteria
to assess the changes associated with the process of ten-
dinopathy on a four-point scale ranging from 0 to 3 [23].
This scale was originally developed for the Achilles ten-
don (Movin) and the patellar tendon, and to assess the
degree of tendinopathy in the rotator cuff and the long
head of the biceps tendon [23–26]. In this study, we
used a modified Movin score, which describes the tendi-
nopathy of the Achilles tendon.
Fibroblasts were well aligned within the tightly packed

and longitudinally arranged collagen fibrils in the normal
tendon (Fig. 3a). Six weeks after collagenase injection,
the tendons showed more immature fibroblast and
mononuclear cell infiltration and a significantly disorga-
nized pattern of collagen fibers. The ultrasonic-treated
group at 3 weeks demonstrated a greater amount of ma-
ture and immature fibroblasts, less mononuclear cell in-
filtration, and a better-aligned pattern of collagen fibers,
indicating that the tissue was regenerating (Fig. 3c).
The tendons themselves are composed of longitudinally

arranged bundles of fibers; blood supply to tendons is
poor compared to muscles and other tissues [27, 28]. The
neovascularization, histologically demonstrated, leads to
an improved blood supply and certainly plays a role in the
tissue regeneration.
In this study, there were differences seen between the

control, injured, and treated groups, in vascularity, colla-
gen density, and collagen fiber organization (Fig. 3),



Fig. 4 a Semi-quantification of collagen subtypes using western blot analysis. b The Y-axis corresponds to signal intensities: (A) collagen I (129 kDa), (B)
collagen III (138 kDa), and (C) collagen X (66 kDa)
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results of which are in agreement with previous pub-
lished studies [29, 30].
In accordance with other studies, the proportion of

type III collagen was increased in specimens of ruptured
Achilles tendon [31]. Type III collagen is a major fibril
collagen in compliant tissues such as skin and blood ves-
sels and is normally only found in small quantities of
normal tendons [32]. Maffulli et al. reported greater
amounts of type III collagen in ruptured and tendino-
pathic Achilles tendons compared to normal human
Achilles tendons [33]. The results from this current
study are twofold, in that a massive increase in collagen
II following collagenase treatment may demonstrate a
greater fragment availability for western blot analysis,
while a true up-regulation of 25 % was present at 3
weeks after ultrasonic treatment. The latter result cor-
roborates those previous studies, reinforcing the role of
collagen III as an important early stabilizer of a repair-
ing/regenerating tendon [25–27].
Recently, some researchers have mentioned the abun-

dance and ratio of type I and type III collagens [34, 35].
The change of the collagens I to III ratio after adminis-
tration of reagents and after tendon rupture was
highlighted. Thomopoulos et al. studied, a canine model,
the effects of exogenous basic fibroblast growth factor
on intra-synovial flexor tendon healing [35]. Tendons
that were treated with basic fibroblast growth factor had
a lower ratio of type I collagen to type III collagen from
DNA concentration. This indicated increased scar forma-
tion due to the growth factor. Otoshi et al. studied the
process of tendon regeneration in an Achilles tendon re-
section rat model as a model for hamstring regeneration
after harvesting for anterior cruciate ligament reconstruc-
tion [34]. Using immunohistochemistry, the type I–type
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III collagen ratio in the regenerate tendon was significantly
decreased in the early phase but gradually increased with
time. The increase in type III collagen expression would
have an influence on the inferior mechanical properties of
the immature regenerate tendon. In our study, based on
the percentage increase from a control starting point,
there was a relative up-regulation of collagen III (25 %)
compared to collagen I (16 %), further demonstrating an
immature collagen ratio for the regenerating tendon.
In this study, it is interesting to note that collagen X is

expressed and mildly up-regulated in the 3-week regener-
ating tendon. There might be morphological changes simi-
lar to tendon insertion, spur formation, intra-tendinous
calcification, and fibro-cartilaginous zone [36, 37]. We hy-
pothesized that this cartilage-specific collagen would be
similar between the groups, but in the collagenase-treated
group, the expression of type X collagen was significantly
decreased, as compared to the treated groups. This effect
may result from the non-specific collagenase destruction
of this protein or a secondary loss due to collagen I
disintegration.
Several limitations are recognized with this current

study. Although validated, the collagenase-induced ten-
dinopathy model may not truly represent an in-vivo
chronic tendinopathy, with several other mechanically
induced tendinopathy models available, and as men-
tioned previously. However, we recognize that all such
models have limitations. Secondly, the follow-up time
frame after treatment was insufficient to demonstrate a
full restoration of the tendon, which will be the subject
of future, longer term studies, as well as investigating the
effect in different models of tendinopathy. Group 0 con-
sisted of two specimens (to confirm the development of a
tendinopathic lesion) compared to four specimens in
groups I + II, and while this should be noted, future stud-
ies will aim to have equal numbers in all groups. Finally,
our power analysis indicated that we needed four speci-
mens per experimental group, but since there was a learn-
ing curve involved in the use of the ultrasonic probe, we
decided to double the number in group II. This can be
viewed as a deviation from an experimental protocol, and
future experiments should utilize the same specimen
numbers in all groups.

Conclusions
Two major effects of ultrasonic emulsification and
evacuation treatment of a tendinopathic lesion have
been identified. Firstly, the treatment results in the re-
moval of pathological degenerate tendon material leav-
ing a debris-free space that becomes filled with cells
involved in tendon regeneration. Secondly, the qualita-
tive collagen profile of the tendon is returned to a more
normal state. Longer term studies are required to better
elucidate the potential for complete tendon healing.
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