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CNTN6 mutations are risk factors for abnormal auditory
sensory perception in autism spectrum disorders
O Mercati1,2,3,23, G Huguet1,2,3,23, A Danckaert4, G André-Leroux5,6,7, A Maruani8, M Bellinzoni5,6, T Rolland1,2,3, L Gouder1,2,3,
A Mathieu1,2,3, J Buratti1,2,3, F Amsellem8, M Benabou1,2,3, J Van-Gils1,2,3, A Beggiato8, M Konyukh1,2,3, J-P Bourgeois1,2,3, MJ Gazzellone9,
RKC Yuen9, S Walker9, M Delépine10, A Boland10, B Régnault11, M Francois12, T Van Den Abbeele12, AL Mosca-Boidron13, L Faivre13,
Y Shimoda14, K Watanabe14, D Bonneau15, M Rastam16,17, M Leboyer18,19,20,21, SW Scherer9,22, C Gillberg17, R Delorme1,2,3,8,
I Cloëz-Tayarani1,2,3,24 and T Bourgeron1,2,3,17,21,24

Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor
neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders
(ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious
variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five
copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P= 0.00006) and private coding sequence variants
(18/501 ASD vs 535/33480 controls; P= 0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two
deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two
sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying
CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes
in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the
pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
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INTRODUCTION
Autism spectrum disorders (ASD) are a heterogeneous group
of disorders with different causes, phenotypic outcomes and ages
of onset.1–3 The diagnosis of ASD is based on impairments in
reciprocal social communication and restricted, repetitive patterns
of behaviors. In addition to these behavioral phenotypes, sensory-
motor peculiarities are often present and are now included as one
of the possible qualifying behavioral symptoms for a diagnosis of
ASD.4 These include an apparent indifference to pain/heat/cold,
adverse response to specific sounds (for example, hyperacusis) or
textures, excessive sensation when smelling or touching objects,
and fascination with lights or spinning objects.3,5 Individuals with
ASD also exhibit alterations in sensory processing, including
difficulties in the integration of information across different
sensory modalities.6,7 In addition, motor control abnormalities—
for example, poor manual dexterity and coordination—are

frequently reported in patients.8 It has been proposed that these
sensory-motor problems—especially those affecting the auditory
pathway—might lead to communication impairments and subse-
quently to autism.9–17 Interestingly, mutations of genes related to
hearing loss were found in subjects with ASD,18 but to date, no
gene has been directly associated with sensory-motor impair-
ments in ASD and the causes of such clinical features remain
unknown.
Genetic studies have demonstrated that hundreds of genes

may be involved in the pathogenesis of ASD.19–21 The genetic
variations include copy-number variants (CNVs) and single-
nucleotide variants (SNVs), which can be inherited or de novo.19

In a subset of patients, ASD appear to be a monogenic trait
involving a single mutation with high penetrance.22,23 However, in
a majority of patients, the heritability of ASD is considered
polygenic with a combination of inherited rare and common
variants.19,24 In these cases, risk variants may not fully segregate
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with the trait and are usually present in a small subset of
patients.21 At least three main biological pathways have been
associated with ASD: chromatin remodeling, mRNA translation
and synaptic function.25

Among the candidate genes for ASD, Contactin CNTN5 and
CNTN6 genes code for neural cell adhesion proteins that promote
neurite outgrowth and synaptogenesis.26–31 CNTNs are attached
to the cell membrane by a glycosylphosphatidyl inositol anchor
and can be found in two active forms, membrane-bound and
secreted.26,27 They contain six immunoglobulin-like (Ig) domains
followed by four fibronectin type III (FNIII) domains. In mice,
CNTN5 (also named NB-2) and CNTN6 (also named NB-3) are key
proteins for the development of sensory-motor pathways.32–35

CNTN5 contributes to the development of glutamatergic neurons
in the auditory brainstem, from the ear through the inferior
colliculus to the cortex.34 Mice lacking CNTN5 present with
increased auditory brainstem response (ABR) wave latencies.34

CNTN5 is also expressed in mouse retinal neurons36 and at high
levels in the human lingual gyrus, a brain region involved in visual
processing.37 CNTN6 is regulated by T-Brain-1,38 an ASD-risk
protein, and interacts with cell adhesion molecule L1-like,33

another protein associated with intellectual disability (ID) and
language difficulties.39 CNTN6 also interacts with NOTCH1 to
produce oligodendrocytes from progenitor cells40–42 and is highly
expressed in the inferior colliculus and in the cerebellum.32 CNTN6
is crucial for appropriate orientation of dendrite growth in mouse
cortical pyramidal neurons,33 and for synapse formation in
the cerebellum.43 Auditory function has not yet been investigated
in mice lacking CNTN6, but they display impaired motor
coordination.32

Several lines of evidence suggest that mutations of CNTNs
and their binding partners, the Contactin-associated proteins
(CNTNAPs), are risk factors for ASD.26,27,44 First, heterozygous
deletions of CNTN4, CNTN5 or CNTN6 (refs 45–52) have been
identified in patients with neuropsychiatric disorders such as ASD
and ID. In addition, individuals with CNTNAP2 mutations display ID
and epilepsy when mutations are homozygous53 or higher risk for
ASD and/or language impairments when mutations are
heterozygous.54–58 Finally, heterozygous deletions of CNTNAP4
and CNTNAP5 have been identified in a few cases of ASD.56,58–62

Recently, a large mutation screen has detected de novo mutations
of CNTN6 and CNTNAP4 in two unrelated patients with ASD, but no
significant association between CNTN and CNTNAP rare SNVs and
ASD.63 Nevertheless, the authors of this study did not exclude that
deleterious CNTN/CNTNAP variants could increase the risk of ASD
in a subset of patients and were soliciting for functional studies to
better ascertain the impact of the variants.63

In our study, we assessed the frequency of CNVs and SNVs
affecting CNTN5 and CNTN6 in patients with ASD. We then
evaluated the functional effects of the SNVs on neurite outgrowth
using cultured neurons and addressed the molecular issues of
those mutations on protein structure. Finally, given the involve-
ment of CNTN5 and CNTN6 in the development of sensory-motor
neuronal pathways, a clinical exploration of motor coordination
and ABR was conducted in patients carrying CNTN5 or CNTN6
variants, and their relatives.

MATERIALS AND METHODS
Patients and controls
The ASD diagnosis was based on clinical expert assessment including the
Autism Diagnostic Interview–Revised (ADI-R)64 and the Autism Diagnostic
Observation Schedule.65 In a few cases, the Diagnostic Interview for Social
and Communication Disorders (DISCO-10)66 was used instead of the ADI-R.
Intellectual quotient was measured using an age-appropriate Wechsler
scale. For the most severe and/or non-verbal patients, the Raven’s
Standard Progressive Matrices and the Peabody Picture Vocabulary test
were used. The cohorts recruited by the PARIS (Paris Autism Research

International Sibpair) study are described in Supplementary Table 1.
Families AUDIJ001 and AUDIJ002 carrying CNTN5 CNVs were not part of
our initial cohort of patients and therefore were not included in the
association analysis (Supplementary Figure 1). Gross and fine motor
coordination abilities were assessed during the neurological exam and
with the Developmental Coordination Disorder Questionnaire (DCD-Q).67

The local Institutional Review Boards at Hôpital Pitié-Salpêtrière (Paris,
France) and University of Gothenburg (Sweden) approved the study.
Written informed consent was obtained from all participants. For the
patients who were unable to consent for themselves, a parent or legal
guardian consented to the study on their behalf.

Auditory brainstem response audiometry
An experienced Ear-Nose-Throat specialist examined some of the
patients carrying CNTN5 or CNTN6 variants and their first-degree relatives.
The exploration included otoscopic examination, tympanogram and
a measurement of the stapedian ipsilateral reflexes. Recording of the
ABR was performed using the Biologic Navigator-Pro Evoked Potential
System (Natus Medical, Mundelein, IL, USA). We used the Wilcoxon non-
parametric test to detect statistical difference in wave latency between
carriers and non-carriers of CNTN5 or CNTN6 variants, and between
affected and non-affected subjects.

Genetic analyses
For CNV detection, 1534 unrelated individuals with ASD (901 from Pinto
et al.68 and 633 from our cohort) and 8936 controls were analyzed using
Illumina SNP arrays (Supplementary Tables 1 and 2). Two CNV detection
algorithms, PennCNV and QuantiSNP, were used and all samples met
stringent quality control criteria as described.68 For SNV detection, 429
individuals (212 independent patients with ASD and 217 controls) were
screened for mutations in all exons of CNTN5 and CNTN6 using Sanger
sequencing (Supplementary Tables 3 and 4). For replication, we had access
to the results of whole-genome sequence from a sample of 289 individuals
with ASD (200 trios and 89 sib pairs).18 The whole-genome sequence was
obtained as previously described.18 The rare variants were defined as in
Murdoch et al.:63 seen in either cases or controls exclusively, missense,
nonsense, splice site, or start or stop codon disruptions with a frequency of
less than 1% in all populations from the general European (Non-Finnish)
population from ExAC (http://exac.broadinstitute.org/). To estimate the
frequency of individuals sequenced for CNTN5 or CNTN6 variants in ExAC,
we used the median of the number of alleles sequenced divided by a
factor of 2 (CNTN5=32858; CNTN6= 33263) and we assumed that a single
individual was carrying only one rare variant. Variants were considered
deleterious when they were predicted as damaging by at least two of
these five criteria: CADD Phred score≥ 20, SIFT≤ 0.05, PolyPhen2≥ 0.453,
Mutation Assessor≥ 2, vertebrate PhyloP≥ 2. We used a one-sided Fisher’s
exact test or a χ2 test to test for enrichment in CNVs or SNVs in patients
compared with controls and the G*power software (http://www.gpower.
hhu.de/) to estimate the achieved power of our analyses. For the multiple
hits in known ASD-risk genes, we identified exonic CNVs and deleterious
SNVs in Class I-III genes from Yuen et al.,18 TADA genes from Sanders et al.
69 or genes from the SFARI database (9 November 2015; https://gene.sfari.
org/autdb/Welcome.do). The overlap between the database is illustrated in
Supplementary Figure 7 and the complete list of genes is indicated in
Supplementary Table 10. For SNVs, we only considered those with a minor
allele frequency of less than 1% in the general population from ExAC and
from the 1000 genomes.

Cell culture procedures and in vitro analysis of neurite outgrowth
Experiments were performed according to the standardized co-culture
assay and automated quantification method, which we published
previously.31 Primary rat cortical neurons were prepared from newborn
(P0-P1) Sprague–Dawley rats, plated at a density of 4x105 cells per ml and
cultured for 6 days before adding the HEK293 cells. HEK293 cells were
cultured in Minimum Essential Medium containing 100 U ml− 1 penicillin,
100 μg ml− 1 streptomycin, 2 mM glutamine (Invitrogen, Life Technologies
SAS, Saint-Aubin, France) and 10% fetal calf serum (ref. CVFSVF00-01,
Eurobio, Courtaboeuf, France). HEK293 cells were transfected with rat
CNTN6 cDNAs cloned in pcDNA3.1 vector (CNTN6 GenBank accession
number: D87248) using the jet PRIME® kit (POL114-15 Polyplus-transfection
SA, Illkirch, France). After transfection, 2–3x105 cells were collected and
seeded on top of the neurons in culture. The percentage of transfected
cells was very similar in all experiments and corresponded to 50% of the

CNTN6 mutations are risk factors for ASD
O Mercati et al

626

Molecular Psychiatry (2017), 625 – 633

http://exac.broadinstitute.org/
http://www.gpower.hhu.de/
http://www.gpower.hhu.de/
https://gene.sfari.org/autdb/Welcome.do
https://gene.sfari.org/autdb/Welcome.do


HEK cells. HEK293 and neurons were co-cultured for 2 days before fixation
with 4% paraformaldehyde. The secreted CNTN6 were at an estimated
concentration of 100 ng ml−1.31 Western blots and immunofluorescence
labeling on HEK293 cells were performed 2 days after transfection as
previously described.31 Mouse anti-rat NB-3 (2F7) monoclonal antibodies
were used at a dilution of 1/500.34,43,70 Cells in co-cultures were incubated
with the primary mouse anti-MAP2 antibody (ref. MAB3418, Millipore,
Molsheim, France) at a dilution of 1/500. The secondary antibody was an
Alexa Fluor 594 Goat Anti-Mouse IgG (H+L) used at a dilution of 1/200
(A11005, Molecular Probes, Life Technologies). After washing, coverslips
were mounted on glass slides with ProLong antifade reagent with DAPI
(Invitrogen, Life Technologies). Fluorescence mosaic images were acquired
with an inverted microscope Axio Observer.Z1 (Carl Zeiss, Le Pecq, France).
Constructs carrying a non-synonymous variant were generated by site-
directed mutagenesis of the wild-type rat CNTN6 cDNA sequence using the
QuikChange XL II Site-Directed Mutagenesis Kit from Agilent (Santa Clara,
CA, USA). Primers were designed using Agilent’s QuikChange Primer Design
program (Supplementary Table 5). Mutated plasmids were then purified
using NucleoBond Xtra Maxi EF from Macherey-Nagel, and sequenced.

Immunoglobulin and fibronectin domains: homology modeling
CNTN6Ig1-4 were homology modeled, using the model-building software
Modeller (mod9v7) from the solved X-ray template of mouse CNTN4Ig1-4

(Protein Data Bank ID: 3KLD). Each CNTN6 variant was introduced in the.pir
alignment file of the corresponding wild-type protein. Models (N=50) were
generated using Modeller, to satisfy the spatial restraints issued from the
alignment with the target protein mouse CNTN4Ig1-4.71 Models with the
lowest score function values and best stereochemistry, checked by
Molprobity (http://molprobity.biochem.duke.edu/), were then subjected to
energy minimization using CharmM forcefield with the backbone con-
strained (DS2.5; Accelrys, San Diego, CA, USA).72 Similarly, each FNIII
sequence was three-dimensionally aligned using Espript (http://espript.ibcp.
fr/ESPript/) with its template selected using HHPred server (http://toolkit.
tuebingen.mpg.de/hhpred). For each FNIII building model, 100 homology
models were generated using Modeller. After minimization with CharmM, all
resulting WT and variant models were manually analyzed using Pymol
(https://www.pymol.org/).

RESULTS
Frequency of CNTN5 and CNTN6 variants in ASD and controls
We first screened for CNVs affecting exons of CNTN5 and CNTN6 in
our cohort of 633 individuals with ASD. We identified one patient
with a deletion of CNTN5 and four patients with a deletion of
CNTN6 (Figures 1 and 2; Supplementary Figures 2 and 3). None of
the patients had a second deleterious CNTN5/6 variant on the
remaining allele. In the cohort of the Autism Genome Project from
Pinto et al.,68 we observed 2 CNTN6 deletions and 2 CNTN6
duplications out of 901 patients with ASD. In our sample of 8936
individuals from the general population (Supplementary Table 2),
we observed 1 deletion and 3 duplications of CNTN5 as well as 1
deletion and 12 duplications of CNTN6. Overall, CNTN6 deletions
were more frequent in patients compared with controls (ASD
6/1534 (0.39%) vs controls 1/8936 (0.01%); P= 6× 10− 5).
We also had access to the phenotypes of the patients from the

Brain & Body Genetic Resource Exchange (BBGRE version 3.0;
https://bbgre.brc.iop.kcl.ac.uk/) database that includes 5891
patients (776 with ASD). We found a total of 14 CNTN6 deletions
out of the 5891 patients (Supplementary Table 11) and a
significant excess of CNTN6 deletions in patients with ASD (6/776;
0.77%; P= 0.02). This excess of CNTN6 deletions in ASD is even
more significant when only small deletions (o500 kb) are
considered. There are 7 small CNTN6 deletions out of 5891
patients listed in BBGRE version 3.0 and 6 out of 776 in patients
with ASD (P= 0.002). Finally, in the Decipher database (https://
decipher.sanger.ac.uk/index), a total of 47 CNTN6 deletions are
listed among 18 506 patients (0.25%). In contrast to the BBGRE
database, the phenotype for autism is rarely indicated, but several
patients carrying CNTN6 deletions have cognitive impairments,
ID or ASD (Supplementary Table 12).

In our cohort of patients, we had access to the DNA from the
parents and all CNVs were inherited. Interestingly, two father
carriers of a CNTN6 deletion were diagnosed with ASD. After this
initial screen, our collaborators (ALMB, LF) identified two
additional families with CNTN5 CNVs (Supplementary Figure 1).
In family AUDIJ001, the mother, who had ASD, transmitted a
deletion of CNTN5 to her daughter with specific language
impairment. In family AUDIJ002, a girl with ASD and attention-
deficit/hyperactivity disorder carried five copies of CNTN5
transmitted by her mother, who had specific learning disorder
(reading).
We then sequenced all coding exons of the CNTN5 and CNTN6

genes in 429 individuals, including 212 independent patients with
ASD and 217 controls from France and Sweden (Figures 1 and 2,
Supplementary Figure 4 and Supplementary Tables 6 and 7). For
CNTN5, we observed private variants in 5/212 (2.35%) patients
compared with 4/217 (1.84%) controls (P= 0.36). For CNTN6, we
observed 9/212 (4.24%) individuals with ASD carrying a private
variant compared with 2/217 (0.92%) controls (P= 0.03, odds
ratio = 4.68, 95% confidence interval = 1–21.8). Among the
affected carriers, we observed a de novo CNTN6P770L variant
predicted as deleterious by all algorithms (Figure 3). We then
confirmed the frequency of rare variants of CNTN5 and CNTN6 in
an independent cohort of 289 patients with ASD from Canada
(Supplementary Figure 5). We found very similar frequencies for
CNTN5 (7/289; 2.4%) and CNTN6 (9/289; 3.1%) rare variants in the
Canadian cohort of patients with ASD compared with our patients
with ASD. In one family, two affected brothers with ASD carried a
CNTN6W923X stop mutation transmitted by the mother.
In summary, both CNTN6 CNVs and rare SNVs were more

frequent in patients with ASD compared with the general
population. Given our sample and effect sizes, our achieved
statistical power was 92% for the CNVs, but only 62% for the SNVs.
To increase our statistical power for the SNVs, we used the
sequencing data obtained in 430 000 individuals from the ExAC
database (Supplementary Figure 6). The frequency of rare CNTN6
variants in individuals from the general European population from
ExAC (533/33263; 1.6%) was not significantly different from our
controls (2/217; 0.92%; P= 0.6). Using the cohorts from PARIS and
Canada and the ExAC data set, the enrichment of rare CNTN6
variants in individuals with ASD compared with the general
population was highly significant (ASD: 18/501; 3.59%; controls:
535/33 480; 1.6%; P= 0.0005) and with an achieved power to
observe such a difference of 87%.

Additional ASD-risk gene deleterious variants in patients carrying
CNTN6 variants
As often found in genetic studies of ASD, the risk variants do not
always co-segregate with the phenotypes. We therefore investi-
gated whether individuals with ASD carrying a rare CNTN6 variant
had other rare (minor allele frequencyo1% in 1000 genomes or
ExAC) and deleterious (considered as damaging by two algo-
rithms) variants in genes known to be associated with ASD (for the
ASD-risk genes see Supplementary Figure 7 and Supplementary
Table 10). For all patients carrying CNTN6 variants, we searched for
rare CNVs and screened for exonic SNVs in CNTN3, CNTN4 and
CNTNAP2. Finally, we analyzed the data from whole-exome
sequencing (N= 9 families) and whole-genome sequencing
(N= 11 families) to identify deleterious variants in known ASD-
risk genes. Among the CNVs that we identified (Table 1), we found
a maternal deletion of 29 kb including the fifth exon of the
X-linked Duchenne muscular dystrophy (DMD) gene in a patient
carrying a paternal CNTN6 duplication, a paternal duplication of
285 kb including all exons of Nephrocystine 1 (NPHP1) gene in a
patient carrying a maternal CNTN6 deletion, and a paternal
duplication of 873 kb including the first exon of the glutamate
receptor ionotropic delta 2 gene (GRID2) in a patient carrying a de
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novo CNTN6P770S variant. For the families with whole-exome/
genome sequencing data, we found a X-linked stop mutation of
the Ras-Associated RAB39B gene causing X-linked ID73 in two
brothers carrying the stop mutation CNTN6W923X. A paternally
transmitted frameshift mutation of the histone deacetylase HDAC4
gene associated with ID68 was identified in a patient carrying the
CNTN6I529L variant. In summary, although our study is under-
powered to identify specific biological pathways mutated in

patients carrying CNTN6 variants, we could detect several
additional rare deleterious variants in known risk genes for ID
or ASD.

Functional impact of CNTN6 variants
CNTN6 is known to enhance neurite outgrowth both in vitro31 and
in vivo.35 In order to estimate the functional impact of CNTN6
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Figure 2. Frequency of CNTN5 and CNTN6 exonic CNVs and rare SNVs identified in patients with ASD and in controls. Differences in frequency
of carriers of CNTN5 or CNTN6 CNVs or SNVs between patients and controls were calculated using a Fischer’s exact test. The rare SNVs were
defined as in Murdoch et al.:63 seen in either cases or controls exclusively, missense, nonsense, splice site, or start or stop codon disruptions
with a frequency of less than 1% in the general European (Non-Finnish) population from ExAC (http://exac.broadinstitute.org/). ASD, autism
spectrum disorder; CNV, copy-number variants; SNV, single-nucleotide variants.
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variants, we used five prediction algorithms, an in vitro assay for
the effect of CNTN6 variants on neurite outgrowth and a
homology modeling of the protein (Figure 3 and Supplementary
Figures 8 and 9). Several CNTN6 variants identified in this
study were considered deleterious by at least two algorithms
(Figure 3). Using an in vitro assay, we showed that some variants
(CNTN6G310S, CNTN6I683S, CNTN6P770S) could affect the promoting
effect of CNTN6 on neuritogenesis, whereas others did not
(CNTN6S57L, CNTN6T958I, CNTN6R303Q, CNTN6G678S; Figure 3 and
Supplementary Figure 8). Based on the homology model of
the CNTN6 protein structure, the variant CNTN6G310S, observed in
the French and Canadian cohorts of patients, might induce a
molecule distortion (Supplementary Figures 8 and 9). The
CNTN6T958I variant located in the fibronectin domains and
identified in a patient with ASD, corresponds to the position of
a critical amino acid (L1046) of the neogenin, a receptor of the
axon guidance molecule netrin and a binding partner of the
repulsive guidance molecule family members.74 For this
CNTN6T958I variant, we observed a putative secreted dimeric form
suggested by the presence of an additional band of twice the
molecular weight of the CNTN6 protein on western blot analysis
(Supplementary Figure 8). However, further molecular studies
would be required to firmly establish impaired ligand interactions
or protein folding.

Clinical characterization of patients carrying CNTN5 or CNTN6
variants
CNTN5 and CNTN6 are interesting for ASD because of their role in
the development of sensory-motor neuronal pathways.28–31 We
therefore explored sensory-motor abnormalities in the patients
carrying CNTN5 or CNTN6 variants.
Based on the ADI-R and clinical evaluation, the vast majority of

the patients carrying a CNTN5 or CNTN6 variant presented with
fine or gross motor coordination problems, but did not statistically
differ from the overall cohort for these symptoms (P= 0.44). When
considering the item of the ADI-R related to excessive sensibility
to noise (Figure 4), we found that probands carrying CNTN5 or
CNTN6 variants were more prone to suffer from hyperacusis
(39/48; 81%) than the rest of the cohort (360/548; 66%; P= 0.036).
They also displayed more abnormal idiosyncratic-negative
response to specific sensory stimuli (23/41; 56%) than the rest of
the cohort (153/505; 30%; P= 0.001).
We then ascertained ABR for a subset of families with CNTN

variants that were re-evaluated on this purpose (Figure 4). A total
of 24 individuals (8 probands with ASD, 2 siblings with ASD,
2 fathers with ASD and 12 unaffected relatives) from
8 independent families were enrolled in this study. Three
probands carried a CNTN6 deletion, three carried a CNTN6-coding
sequence variant affecting neurite outgrowth (CNTN6G310S,
CNTN6I683S and CNTN6S858N), one carried a CNTN5 deletion and
one carried a CNTN5L254F variant predicted as deleterious. The
clinical description of the probands is presented in Supplementary
Table 8. Remarkably, except the carrier of CNTN6S858N, all
probands suffered from hyperacusis (which was painful during
ear examination). None of the individuals without variants and
none the unaffected relatives carrying variant showed over
sensitivity to sound. ABRs were recorded for intensities of 60
and 80 dB and frequencies of 29 clicks per second. Wave latencies
tended to be shorter in subjects carrying a CNTN5 or CNTN6
variant compared with non-carriers (Figure 4 and Supplementary
Table 9).

DISCUSSION
In the present study, we identified CNTN5 and CNTN6 rare variants
in individuals with ASD and investigated their impact on clinical
phenotypes. Although we observed CNTN5 genetic abnormalities

in patients with ASD, the demonstration of an association
between this gene and neuropsychiatric disorder would require
larger cohorts of patients. In contrast, we provide further support
that CNTN6 mutations are risk factors for ASD. Our results confirm
data from previous reports describing patients diagnosed with
ASD and/or ID carrying inherited or de novo CNTN6 CNVs or
SNVs.49–52

Interestingly, two previous studies from Van Daalen et al.49 and
Hu et al.52 reported that relatives of patients carrying CNTN5 or
CNTN6 CNVs were diagnosed with neuropsychiatric disorders or
had deficits in social interactions.49,52 Similarly, in our study,
several parents carrying CNTN6 variants were diagnosed with ASD.
This co-segregation between CNTN6 variants and the presence of
neuropsychiatric disorders in the relatives could explain why
Murdoch et al.63 did not found a significant association between
CNTN6 rare variants and ASD in the Simons Simplex Collection.
Indeed, having first-degree relatives on the autism spectrum is an
exclusion criterion of the Simons Simplex Collection.75
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Figure 3. Functional impact of the CNTN6 variants. The predicted
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Divided squares represent multiple autism spectrum disorder (ASD)
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Table 1. Multiple hits identified in patients with ASD carrying CNTN6 rare variants

IID Status Sex Cohort CNTN6 variant Maternally inherited variants Paternally inherited variants

AU-RD-LAB-192-003 ASD M FR CNTN6 chr3:1336137-
1368840 32 kb
deletion (MI)

NPHP1-chr2:110863095-111148771 285 kb duplication

AU-FRA-MIC-033-003 ASD M FR CNTN6-I683S (PI) CTTNBP2-P1586L, PTPRM-S706G
C0733-011-017-005 ASD M FR CNTN6-P770L (de novo) GRID2-chr4:92606953-93480717 873 kb duplication,

NINL-R112Q, CADPS2-S11L, ATP2B4-V543I
AU-RD-BOR-104-003 ASD M FR CNTN6-S419C (PI) TAF1L-I1335T, RB1CC1-Y513H ANK2-E1449G
AU-RD-BUR-237-004a ASD M FR CNTN6-S858N (PI) PARK2-chr6:162614973-162791579 176 kb deletion
AU-RD-BUR-237-005a ASD M FR CNTN6-S858N (PI) PARK2-chr6:162614973-162791579 176 kb deletion
AU-RD-BOU-233-005 ASD M FR CNTN6-T958I (MI) HDAC4-A786T MYO1A-G651R, GRIK5-R582H
1-0232-003/5241-3 ASD M CA CNTN6-chr3:3:464181-

1251877 787 kb
duplication (PI)

DMD-chrX:31883357-31912783 29 kb deletion, DISC1-
E783Q, POGZ-P955R, JMJD1C-E2531K, CACNA1C-G37R,
GNPTAB-N351S, AKAP9-V3780L, CREBBP-L551I

COG1-Q301H, NRCAM-G1168V, TGFBR2-S578T, ARFGEF2-
G1298S, LRP2-R3888H, RELN-G370R, SPTAN1-E298G, ;
MYO1A-R628G, DAPK1-G1348V, CREBBP-L551I

2-1335-003 ASD M CA CNTN6-G310S (MI) USP45-splice-A99930627G, CACNA1D-A1305T, SUCLG2-
K101R, GTF2I-N440S, CEP290-D433G

chr15:29322000-29584000 262 kb duplication (NDNL2
and APBA2), KMT2C-C1114R, CNTNAP4-A600T, SYNE1-
L3050V, LRP2-G3470D, NPHP1-S629L, CTTNBP2-E9K, MFRP-
L458F, GTF2I-N440S, CEP290-D433G

2-1335-004 ASD M CA CNTN6-G310S (MI) CNTNAP2-C9S, MYO1A-K485E, CACNA1H-F1452S, HDLBP-
P372A, (CEP290-D433G Inheritance unknown)

KAT6B-chr10:76755251-76841351 86 kb duplication,
CNTNAP4-A600T, RELN-E2174K, (CEP290-D433G
Inheritance unknown)

2-0018-003 ASD M CA CNTN6-W923X (MI) RAB39B-E187X, DNAH10-E3125K, DMD-M264T, PGAP3-
A141G

CD163L1-T1307A

2-0018-004 ASD M CA CNTN6-W923X (MI) RAB39B-E187X, DNAH10-E3125K, CDH9-E603G, PGAP3-
A141G, JMJD1C-E2531K

PIGV-L457F, RAI1-A381V, USP45-C62F, KIAA1033-R717Q,
PAH-T380M, ASXL3-L2067R

2-1380-proband ASD M CA CNTN6-I529L (PI) CHST5-I121fs, CADPS2-V799L, FBXO40-G517E, ASPM-
E216K, GNPTAB-R46Q,

HDAC4-M902fs, NDUFA5-Y3X, MFRP-I331T, ARID1A-
R1323C, PAH-I421T, CACNA1G-V96M, GFAP-D157N,
SPARCL1-T363S, MYO1A-D67H

1-0366-006 ASD M CA CNTN6-I529L (MI) KLC1-splice-G104145883T, CNTN3-V950I, COL4A1-G936A, CNTN3-T901M, TTC8-K95R, ERBB2IP-H1045Y
2-1222-proband ASD M CA CNTN6-I109V (MI) CD44-splice-G35243921A, MIR17HG-splice-T92005592G,

ZBTB20-D315E, TAF1L-E935K, ASTN2-A154V, LRP2-R2126G
FCRL6-Q276X, CNTNAP4-I763F, ETFB-R98C, KHDRBS2-
Y305C, KIAA1033-T1046I, ANKRD11-R840Q

2-1357-003 ASD M CA CNTN6-S995T (PI) FGFR2-X681W, COL4A1-P304L, MYO9B-V1702I, FKRP-
N480I, ERCC5-R1302W, ZNF423-L1068M, ASMT-T235N,
HDAC4-P428T, AP4B1-I397V, CHD7-S2490P,

DHCR7-splice-C71146886G, RAD21-splice-C117879001T,
C5orf42-G3098R

2-1195-proband ASD M CA CNTN6-A827V (PI) PARK2-Q34R, LMX1B-G210R, DLGAP2-R566H, PCNT-P2420L CNTN3-H625R, CNTN3-H75D, COG1-Y744C, TTC8-G411R,
SNTG2-Y212C, HOXA1-R121S, FGFR2-I8S, PRSS12-V424I,
CDH15-L240F

1-0273-004 ASD M CA CNTN6-P38A (PI) KATNAL2-Q53X, ERBB2IP-D1135N, IQSEC2-P899L, DAG1-
E37Q, PIK3CG-S1003G, ANKRD11-K2038E, ARFGEF2-E731K,
BRWD1-D675V, BZRAP1-P1073A, ERCC6-G1322V, ST3GAL3-
R414Q, PVRL1-G44S, SYNE1-Y7418C

FOLR1-splice-T71906793C, SRCAP-T1156fs, CNTNAP1-
R1200C, DIAPH3-P596, RARS2-R560C, ERCC2-V476I,
VPS13B-T3012S, PIGV-P426L

1-0366-003 ASD M CA CNTN6-I529L (MI) KLC1-splice-G104145883T, ASMT-splice-T1748834C,
COL4A1-G936A, RANBP17-R491H, GFAP-E312Q

CEP41-P206A, TTC8-K95R, CARKD-V208L, AFF4-R225C

1-0518-proband ASD M CA CNTN6-N334T (MI) MIR17HG-splice-T92004837C, CNTN3-T657M, TTC8-M240I,
PMM2-R141H, PTK7-S136L

SOX5-splice-C24521496-, NINL-Q522H, DLGAP2-R785C,
GRID2-F974Y, ATP2B4-E661K, CEP290-D1413H

Abbreviations: ASD, autism spectrum disorder; CA, Canada; FR, France; M, male; MAF, minor allele frequency; MI, maternally inherited; PI, paternally inherited. When both parents are carriers of the variant, the
inheritance is indicated as unknown. For CNVs, only the rare and exonic CNVs are indicated. For SNVs, only the rare variants (MAFo1% in 1000 genomes and ExAC) and considered deleterious by at least 2
algorithms (CADD Phred score≥ 20; SIFT≤ 0.05, PolyPhen2≥ 0.453, Mutation Assessor≥ 2, vertebrate PhyloP≥ 2) are indicated. The complete list of ASD-risk genes is available in Supplementary Table 10.
aIndividuals with no available WES/WGS information. Likely gene disrupting mutations are indicated in bold.
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We, and others,49–52 showed that CNTN6 mutations are not fully
penetrant, but they might represent risk factors for ASD in specific
genetic backgrounds.76 Using additional genotyping and sequen-
cing data, we could detect multiple hits in the patients carrying
the CNTN6 variants. Several mutations were affecting genes such
as GRID2, DMD and RAB39B that are known to be risk factors
for ID, neuromuscular disorder, epilepsy and in some cases
ASD.73,77–80 It would now be interesting to ascertain if patients
with some genetic backgrounds are more sensitive to CNTN6
mutations. Testing for such association would, however, require
very large cohorts of patients and controls with genetic and
phenotypic data.
Given the expression patterns and the roles of CNTN5 and

CNTN6 in the development of sensory-motor neuronal pathways,
either loss or gain of neurite outgrowth might perturb the
sensory-motor functions of patients with ASD. CNTN6 is highly
expressed in the granule cells of the cerebellum (but not in
Purkinje cells) and is involved in the postnatal synapse formation.
This expression pattern in the cerebellum is similar to that of
SHANK3, another gene associated with ASD.23,81 Both CNTN5 and
CNTN6 are also expressed in the inferior colliculus, the principal
midbrain nucleus of the auditory pathway.32,34 This structure
receives input from several peripheral brainstem nuclei in the
auditory pathway, as well as from the auditory cortex. Remarkably,
mice lacking CNTN5 display disorganized tonotopy and auditory
brain response abnormalities.82 Accordingly, we observed that
almost all the patients who we reassessed suffered from painful
hypersensitivity to noise. Some of these patients also displayed
shortened waves latencies in their ABRs. Thus, abnormal gene
dosage of CNTN5 or CNTN6 might represent a risk factor for the
auditory problems recurrently reported in patients with ASD.9–16

In conclusion, we identified rare CNTN5 and CNTN6 deleterious
mutations in a subset of individuals with ASD. Both CNTN5 and
CNTN6 are expressed at high levels in the auditory pathway. This
is in accordance with the fact that a majority of patients with
mutations displayed painful hyperacusis. There is an emerging

literature on the prominent role of sensory dysfunctions in the
development of ASD. A better understanding of the genetic
pathways associated with these abnormalities should lead to
better clinical interventions in ASD.
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