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Abstract

Hypoxic-ischemic (HI) brain injury and spinal cord injury (SCl) lead to extensive tissue loss and axonal degeneration.
The combined application of the polymer scaffold and neural progenitor cells (NPCs) has been reported to enhance
neural repair, protection and regeneration through multiple modes of action following neural injury. This study
investigated the reparative ability and therapeutic potentials of biological bridges composed of human fetal brain-
derived NPCs seeded upon poly(glycolic acid)-based scaffold implanted into the infarction cavity of a neonatal HI brain
injury or the hemisection cavity in an adult SCI. Implantation of human NPC (hNPC)-scaffold complex reduced the
lesion volume, induced survival, engraftment, and differentiation of grafted cells, increased neovascularization,
inhibited glial scar formation, altered the microglial/macrophage response, promoted neurite outgrowth and axonal
extension within the lesion site, and facilitated the connection of damaged neural circuits. Tract tracing demonstrated
that hNPC-scaffold grafts appear to reform the connections between neurons and their targets in both cerebral
hemispheres in HI brain injury and protect some injured corticospinal fibers in SCI. Finally, the hNPC—scaffold complex
grafts significantly improved motosensory function and attenuated neuropathic pain over that of the controls. These
findings suggest that, with further investigation, this optimized multidisciplinary approach of combining hNPCs with
biomaterial scaffolds provides a more versatile treatment for brain injury and SCI.

Introduction

Hypoxic-ischemic (HI) brain injury, a major cause of
death and serious neurological disability among patients
of all age groups, leads to vast loss of cerebral par-
enchyma, neural cells, and neural connections. Traumatic
spinal cord injury (SCI) causes spinal cavitary lesion, loss
of neurons and oligodendrocytes, axonal damage,
demyelination, and glial scar formation, resulting in
devastating lifelong motor/sensory dysfunctions for
patients. Although extensive research is underway to
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develop translatable neuroprotective and regenerative
therapies, the currently available managements for HI
brain injury and SCI are ineffective' ~°.

Upon implantation into the site of a central nervous
system (CNS) injury, multipotent neural progenitor cells
(NPCs) not only engraft, migrate toward damaged sites,
and differentiate into multiple neural lineages but also
provide trophic/immunomodulatory factors and integrate
into the remaining host neurons, all of which are pro-
mising therapeutic options for neural repair’ **, However,
NPC-based therapies have shown poor cell survival and
integration, as well as either poor differentiation or
restricted differentiation into the glial lineages in the host.
In addition, to achieve full functional recovery after CNS
injury, optimization of cell therapy is needed to recapi-
tulate the precise structural and functional neural wiring

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial
use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the

Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it. The images or other third party material in this article
are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Official journal of the Korean Society for Biochemistry and Molecular Biology


http://orcid.org/0000-0003-4719-9021
http://orcid.org/0000-0003-4719-9021
http://orcid.org/0000-0003-4719-9021
http://orcid.org/0000-0003-4719-9021
http://orcid.org/0000-0003-4719-9021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sunew@yuhs.ac
mailto:kipark@yuhs.ac

Shin et al. Experimental & Molecular Medicine (2018) 50:39

present in the microenvironment of the CNS”'37'¢,
Therefore, the efficacy of NPCs for treating CNS injury is
currently insufficient, and unexpected side effects have
been observed following NPC transplantation”*'>'*17,
Biomaterials that have already been developed and that
are characterized by three-dimensional structure, web-
like fibrous morphology, and the distinctive micro-
structural properties of extracellular matrix (ECM) can
enable and facilitate the site-directed delivery of drugs,
therapeutic proteins, or stem cells to the CNS, promoting
regeneration and repair of damaged neural tissues and
circuits”'>1®1872° Previously, we showed that placement
of a fabricated biomaterial scaffold combined with
immortalized mouse NPCs (C17.2 cell line) into the
infarction cavity of a HI brain injury and a cavity gener-
ated by hemisection of the spinal cord reduced par-
enchymal loss and promoted neurite outgrowth, axonal
sprouting, and connectivity”'®, Repair of the injured
mammalian adult CNS and, in particular, the spinal cord
has been a major challenge for neuroscientists. Despite
the inhibitory milieu of the adult CNS, the multi-
component, synthetic  poly(lactic-co-glycolic  acid)
(PLGA)-based scaffold of specified architecture seeded
with mouse NPCs that acted as a bridge for severe SCI
resulted in significant structural and behavioral recovery
in adult rats'®. Additionally, the scaffold alone appeared to
reduce inflammation and glial scar formation. Compared
with adult SCI, HI brain injury in newborn mouse might
offer a permissive environment to reconstitute the injured
tissue on its own. However, the postnatal mouse HI brain
injury, a well-established model of severe HI encephalo-
pathy/cerebral palsy in human infants, causes profound
tissue damage (a large cystic cavity occupying a significant
portion of the cerebral hemisphere)'"'*. Thus, even the
most “capable” multipotent NPCs need intrinsic organi-
zation, blood supply and a template to guide neural
regeneration. Implanted poly(glycolic acid) (PGA) scaffold
seeded with mouse NPCs into the infarction cavity
facilitated the reciprocal interactions between exogenous
graft and HI-injured host brain, and brain tissue recon-
stitution®. However, in that study, the functional recovery
after PGA-NPCs complex implantation was not tested.
Despite these positive results, there are concerns over
the use of immortalized cells derived from neonatal
mouse cerebellum for cell replacement therapies or for
neuroprotective support or clinical applications in CNS
disorders. Therefore, in this study, we evaluated and
compared the regenerative capabilities of biodegradable
complexes composed of synthetic PGA scaffold, a clini-
cally safe polymer, seeded with human fetal brain-derived
primary NPCs (hNPCs) implanted into the infarction
cavity of unilateral HI brain injury in newborn mouse and
spinal cord hemisection cavity in adult rat, and assessed
motosensory function in the animals after treatment.
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Materials and methods
Human NPC culture and seeding on a fibrous PGA scaffold
Human fetal brain tissue from a cadaver at 13 weeks of
gestation was obtained with full parental consent and the
approval of the Research Ethics Committee of the Yonsei
University College of Medicine, Seoul, Korea (Permit
Number: 4-2003-0078)*'. All procedures conformed to
the guidelines of both the National Institutes of Health
and the Korean Government. The human NPCs isolated
from the telencephalon were grown as neurospheres in
serum-free culture medium (DMEM/F12; Gibco, Grand
Island, NY) with N-2 supplement (Gibco), 8 pg/ml
heparin (Sigma, St. Louis, MO), 20 ng/ml of fibroblast
growth factor 2 (FGF2; R&D Systems, Minneapolis, MN),
and 10 ng/ml leukemia inhibitory factor (Sigma). hNPCs
were passaged every 7-8 days by dissociating the bulk
neurospheres with 0.05% trypsin/EDTA (T/E; Gibco), and
cryopreserved at each passage in a Good Manufacturing
Practice facility. For scaffold seeding, a 90% confluent dish
of cells was trypsinized and resuspended in 1-2 ml of N-2
medium (1 x DMEM/F-12 and 1xN-2 supplement;
Gibco) at 1.5x 10" cells/ml. Then, 100-200ul of the
suspension was pipetted onto each piece of PGA scaffold
(~2 x 2 x 2 mm size for HI brain injury; ~3 x 1 x 1 mm for
SCI; actual bulk density 64.7 mg/ml; Albany Intl. Res. Co.,
Mansfield, MA) in uncoated dishes, and the constructs
were placed in a humidified incubator at 37 °C with 5%
CO, for 30 min. Culture medium was then added to the
dish and changed every 2-3 days.

Induction of unilateral HI brain injury in newborn mouse
and transplantation of hNPC-PGA complexes into the HI-
injured brain

All procedures were approved by the Institutional
Animal Care and Use Committee at Yonsei University
College of Medicine. Under isoflurane anesthesia, a uni-
lateral HI brain injury was induced in ICR mice at post-
natal day 7 by permanent right common carotid artery
occlusion with surgical silk through a ventral midline
neck incision. The incision was closed, and the animals
were kept warm until they awoke and then returned to
their dams for 3 h. The pups were then placed for 1.5 h in
an acrylic chamber with a hypoxic atmosphere (8% O,
and 92% N,). Body temperature was maintained at 37 °C
on a warm plate. The sham control group (Sham)
underwent anesthesia and incision only.

After having been seeded with hNPCs in culture for
4 days (as described above), two hNPC-PGA complexes
were transplanted into the infarction cavity of each mouse
brain with microforceps (Fine Science Tools, BC, Canada)
7 days after the induction of HI brain injury. To insert the
complex, a triangular portion of the skull overlying the
infarction cavity was lifted with a surgical blade, carefully
avoiding severing any superficial blood vessels in the brain
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parenchyma. Mice were randomly assigned to four
groups: (@) hNPC-PGA implantation (n =55); (b) PGA
implantation without hNPCs (n=55); (c¢) hNPCs (n=
55), or (d) vehicle (N-2 medium) injection (# = 55). When
hNPCs were transplanted, each mouse was, respectively,
injected with 12 uL of hNPCs (9.6 x 10° cells) into the
center of infarcted region of a unilaterally (right-sided)
asphyxiated brain using a glass micropipette (diameter,
0.3 mm). Pups from three to four different litters were
used in each experimental group; male and female mice
were equally divided among the experimental groups, and
data were obtained in independent experiments. Mice
were kept on a 12 h day/night cycle at 22 °C, fed ad libi-
tum, and maintained in a facility accredited by the
Association for Assessment and Accreditation of
Laboratory Animal Care. Cyclosporine (10 mg/kg, ip.;
Sandimmun, Novartis Korea, Seoul) was administered to
all groups of mice once per day beginning a day before
transplantation until sacrifice.

Hemisection SCI in adult rat and transplantation of
hNPC-PGA complexes into the hemisection cavity

Adult Sprague-Dawley rats (300-350 g in body weight)
were anesthetized with a cocktail of xylazine (10 mg/kg,
i.p.; Bayer Korea, Seoul), ketamine (100 mg/kg i.p.; Yuhan
Co., Seoul, Korea) and promazine (1 mg/kg, i.p.; Samu
median, Seoul, Korea). A 4-cm midline incision was done
on the back, and the paraspinal muscles were retracted to
expose the thoracic laminae. In preliminary experiment,
we confirmed that compared with hemisection SCI at T9-
10 level, SCI at T10-11 level also showed similar deficits in
hindlimb locomotor function. Thus, using a dissecting
microscope, a laminectomy was performed to expose the
dura of the spinal cord at the 10th—11th thoracic
(T10—T1;) spine vertebrae. The midline of the spinal cord
was identified, and one half (the left side) of the spinal
cord at the T19-T1; level was transected completely over
a width of 3 mm using fine surgical scissors and forceps.
After hemostasis was achieved via Gelfoam, a piece of the
hNPC-PGA complex previously prepared as described
above was transplanted into the hemisection cavity of
each rat spinal cord with microforceps. The lesion was
confirmed a priori to be similar across all experimental
groups and animals. Rats were also randomly assigned to
four groups: (a) hNPC-PGA implantation (n=60); (b)
PGA implantation without hNPCs (n = 60); (c) hNPCs (n
=60), or (d) vehicle (N-2 medium) injection (1= 60).
When hNPCs were transplanted, each rat was respectively
injected with 10 uL of hNPCs (8.0 x 10° cells) into the
hemisection cavity using a glass micropipette (diameter,
0.3 mm). After all operations, the musculature was
sutured, the skin closed, and the animals were adminis-
tered cefazolin (50 mg/kg, im.; Chong Kun Dang Phar-
maceutical Co., Seoul, Korea) daily for 3 days. During
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surgery, the rectal temperature was maintained at 37.0 +
0.5°C by a thermostatically regulated heating pad. Ring-
er’s lactate solution (10 ml) was given daily for 3 days
post-surgery, and bladders were manually evacuated three
times daily until reflex bladder emptying was established.
Cyclosporine (10 mg/kg, i.p.; Sandimmun, Novartis Korea,
Seoul) was administered daily to all animal groups
beginning a day before transplantation until sacrifice. All
procedures were approved by the Institutional Animal
Care and Use Committee at Yonsei University College of
Medicine.

Histopathological analysis

Histopathology was analyzed after staining with
hematoxylin—eosin (H&E) and Luxol Fast Blue
(LFB)—cresyl violet (CV). At 8 weeks after HI brain
injury, eight serial coronal sections per mouse (spaced
200 pm apart) were stained with H&E and analyzed with
National Institute of Health (NIH) Image] Software
using images captured via the dotSlide Imaging System
and an Olympus BX61VS microscope. The size of each
lesion was calculated as the [(area of the left con-
tralateral hemisphere —area of remaining the right
ipsilateral hemisphere)/area of the left contralateral
hemisphere] x 100%. At 8 weeks after SCI, a total four
sections per animal (spaced 80 um apart) were stained
with LFB~CV and calculated with NIH Image] software.
The atrophy volume was assessed by measuring the area
between the reduced actual border of the spinal cord
and age-matched intact spinal cord. A demyelination
volume was assessed by measuring the area of LFB™/
CV™ inside spinal cord. The total lesion volume was
defined as the sum of atrophy volume and demyelinated
volume®*.

Immunohistochemistry

For immunocytochemical analysis, cultured cells were
fixed with 4% paraformaldehyde in PIPES buffer (Sigma),
rinsed with phosphate-buffered saline (PBS) solution,
blocked with 3% bovine serum albumin (Sigma), 10%
normal horse serum, and 0.3% Triton X-100 (Sigma) in
PBS. For immunohistochemical analysis, animals were
deeply anesthetized, transcardially perfused, and fixed
with cold PBS followed by 4% paraformaldehyde. Brains
and spinal cords were removed, post-fixed, cryopro-
tected in 30% sucrose, and frozen in O.C.T compound
(Sakura Finetek, Torrance, CA). The brains and spinal
cords were coronally and/or sagitally sliced into 20-um
sections as described®”. The sections on the slides were
stained with following antibodies specific for the fol-
lowing: human nestin (anti-hNestin; 1:200; Chemicon),
human cytoplasm (SC121; 1:500; Stem Cells, Inc,,
Cambridge, UK), human glial fibrillary acidic protein
(GFAP) (SC123; 1:500; Stem Cells, Inc., Cambridge, UK),
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Fig. 1 In vitro characterization of primary hNPCs seeded on a fibrous PGA scaffold. a—d Seven days after being seeded, cells are able to attach,
pervade, and grow exuberantly throughout the PGA fibers. The hNPCs predominantly differentiate into NF™ and TUJ1™ neurons (green) with
neuronal processes that adhere to the PGA fibers (arrowheads in a, d). The PGA fibers are indicated by arrows in a. Many of the DAPI" hNPCs (b, blue)
are co-labeled with anti-NF antibody, seen under dual-filter microscopy in c. e, f The hNPCs differentiate not only into neurons but also into glial cells.
Some human cells express GFAP, an astrocyte/immature cell marker (arrows in e), and a few cells express O4, an oligodendrocyte progenitor marker
(arrows in f). The data shown are representative images. Scale bars: a 100 pm; d 10 um
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glial fibrillary acidic protein (anti-GFAP; 1:1,000; Dako,
Glostrup, Denmark), neuronal class III B-tubulin (anti-
TUJ1; 1:1,000, Covance, Princeton, NJ), human nuclei
(anti-hNuc; 1:100; Chemicon), neurofilament (anti-NF;
1:1,000; Sternberger, Lutherville, MD), O4 (1:50; Sigma-
Aldrich, St. Louis, MO), CNPase (2',3’-Cyclic-nucleotide
3’-phosphodiesterase; 1:500: Chemicon), calcitonin gene
related peptide (anti-CGRP; 1:1000; Chemicon), choline
acetyltransferase (anti-Chat; 1:200; Chemicon), CD31
(1:400; BD Pharmingen), Ibal (1:500; Wako), CD68
(1:100; Bio-Rad, Hercules, CA), CD86 (1:100; BD Phar-
migen), CD206 (1:100; Bio-Rad, Hercules, CA), and von
Willebrand Factor (anti-vWF; 1:400; Abcam). Samples
were mounted onto slides using Vectashield mounting
medium with 4,6-diamino-2-phenylindole (DAPI; Vec-
tor), and analyzed by an immunofluorescence micro-
scope (BX51; Olympus, Center Valley, PA) and a Zeiss
LSM 700 confocal microscope.
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Tract tracing studies

The tract tracer biotinylated dextran amine conjugated
with fluorescein (BDA-FITC) (0.4 ul of 10% BDA-FITC
dissolved in ddH,O; Vector Laboratories, Burlingame,
CA) was stereotactically injected with a glass micropipette
at two points in the sensorimotor cortex contralateral to
the HI brain injury at or after 10 weeks following
administration of the hNPC-PGA complex, PGA alone,
hNPCs, or the vehicle (=10 per group). A glass
micropipette was connected via a polyethylene tube to a
10 uL. Hamilton syringe placed on an infusion pump (KD
Scientific, Holliston, MA) and controlled by a micro-
processor. All injections were performed over 1 min, and
the injection micropipette was kept in place for an addi-
tional minute to minimize leakage on withdrawal. Mice
were sacrificed 14 days later.

The same volume of BDA-FITC as described above was
stereotactically injected with a glass micropipette at four
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points in the sensorimotor cortex contralateral to the side
of the spinal cord hemisection at or after 12 weeks fol-
lowing administration of the hNPC-PGA complex, PGA
alone, hNPCs, or the vehicle (z = 10 per group). Rats were
killed 2-4 weeks later. In separate rats, the tract tracer
Fast Blue (FB; 1 ul of 2% FB dissolved in ddH,O) (Sigma-
Aldrich) was steretactically injected with a glass micro-
pipette into both the left and right sides of the spinal cord
at the T3 level at or after 12 weeks following adminis-
tration of the hNPC-PGA complex, PGA alone, hNPCs,
or the vehicle (n=10 per group). After FB injection,
another tract tracer Fast Dil (Dil; 1 pul of 0.25% Fast Dil
dissolved in dimethylformamide) (Molecular Probes,
Eugene, OR) was subsequently injected into both the left
and right sides of the spinal cord 3 mm caudal to the FB
injection sites in the same rats. The animals were killed
3 weeks later.

Motosensory functional studies and statistical analysis
Neurological and accelerating rotarod tests were per-
formed twice a week from 3 to 7 weeks post-transplant in
neonatal mice with HI brain injury. Neurological func-
tions were assessed as follows: the ability to stay upright
and extend its forelimbs when suspended by its tail, the
ability to turn over to rest in a normal position with all 4
feet on the ground after being placed on its side; the
ability to place a paw on the surface of a table when it
contacts the table edge; and the ability to spread its toes
after being suddenly placed or bounced. Each exam was
scored as “0” if the response was normal and “1” if not.
The accelerating rotarod test was performed on a beam
made of knurled white plastic (diameter: 3 cm, width: 6
cm; LSi Letica; Panlab, Barcelona, Spain), which provides
a firm grip. After a mouse was placed on top of the
revolving beam (4 rpm) in the orientation opposite to its
movement and had become familiarized with the setup,
the velocity of the rod was gradually increased to 40 rpm
over the 5-min test period. The latency to fall from the
rod was calculated from the average of three consecutive
trials. All neonatal HI-injured mice were randomized for
testing into five experimental groups (Sham, Vehicle,
PGA, hNPCs, and hNPCs-PGA groups; n=15 per
group) by a researcher blinded to the treatment group.
Hindlimb locomotor performance was assessed by the
open-field Basso, Beattie, and Bresnahan (BBB) scoring
system>* in rats with SCI. A rat was placed for 5 min at the
center of a circular open field (diameter: 90 cm, wall
height: 7 cm) with a non-slip floor. The locomotor activity
of the ipsilateral lesioned, and contralateral unlesioned,
hindlimbs was monitored 1 week after the injury and
weekly for 8 weeks after transplantation. Each score
represents a distinct motor functional state from 0
(complete paralysis) to 21 (normal mobility) through joint
movements, stepping ability, coordination, and trunk
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stability. The examination was performed by three
observers who were not aware of the treatment received
by each rat. All SCI rats were block-randomized into four
experimental groups (Vehicle, PGA, hNPCs, and
hNPCs—PGA group; n=15 per group) based on BBB
scores recorded on week 1 to ensure equivalent deficits
across the experimental groups before starting the
transplantation.

Hindpaw mechanical allodynia was assessed by mea-
suring withdrawal response to mechanical stimulation
with von Frey filaments (Stoelting, Wood Dale, IL) placed
on the mid plantar surface of the ipsilateral hindpaw. All
rats were tested for mechanical threshold prior to surgery
and on 14, 28, 42, and 56 days after transplantation.
Before testing, rats were housed in the test cage above a
metal mesh and acclimatized for 30 min. The 50% with-
drawal mechanical threshold was measured by using
Dixon’s up and down method®. A series of von Frey
filaments (log unit; 3.61, 3.84, 4.08, 4.31, 4.56, 4.74, 4.93
and 5.18) were applied serially for 10-s inter stimulus
intervals to the hindpaw in six applications, beginning
with the 4.31 log unit von Frey filament.

For statistical analysis, IBM SPSS Software, version 20,
was used. Behavioral data were assessed using a repeated
measures analysis of variance. Whenever a treatment was
found to have statistically different result over time or a
treatment effect was observed, with a p-value of less than
0.05, the Bonferroni post hoc procedure was used for
pairwise comparison of groups. Sample sizes were calcu-
lated using power analyses with an a-level of 0.05 and a
power of 0.8. The data represent the means + standard
error of the mean (SEM). Differences were considered
statistically significant at p-values of <0.05.

Results
Characterization of hNPC-PGA complex in vitro

In this study, a scaffold of PGA fibers (10-15pm in
diameter) assembled into a woven array was used**~>%, To
investigate the attachment, growth, migration, and dif-
ferentiation of progenitor cells on the polymer scaffold, a
suspension of primary hNPCs was seeded onto PGA
fibers in uncoated plastic dishes. After 7 days, the cells
attached, pervaded, migrated, and grew exuberantly
throughout the porous PGA fibers (Fig. 1la—c), indicating
the absence of PGA neurotoxicity (~99% survived; n = 5).
The cells not only grew and flourished but also differ-
entiated into neurons and glial cells (Fig. 1d—f). More than
70% of the cells showed the increased expression of the
neuronal marker NF (Fig. la, green) with neuronal pro-
cesses (arrowheads in Fig. 1a) and the early neuronal cell
marker TUJ1 with neurite extension (arrowheads in
Fig. 1d; n =5 per group), while ~30% expressed GFAP, an
astrocyte/immature progenitor cell marker (arrows in
Figs. 1e), and ~1-2% expressed O4, an oligodendrocyte
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marker (arrows in Fig. 1f; n =5 per group). Cells under-
going neuronal differentiation extended long neurites that
adhered to, stretched along, enwrapped, and inter-
connected with the PGA fibers (arrowheads in Fig. 1d).
These findings demonstrate that PGA fibers can support
hNPC survival, attachment, neuronal and glial differ-
entiation, and neurite outgrowth, suggesting their suit-
ability as an implantable substrate for hNPCs in vivo
within injured neural tissue.

Transplantation of hNPC-PGA complexes into the
infarction cavity of a neonatal Hl brain injury and
neuroregenerative response

Permanent ligation of the right common carotid artery
followed by exposure to 8% O, in 1-week-old mice leads
to extensive infarction of the ipsilateral cortex, hippo-
campus, striatum, and/or thalamus, leading to the evo-
lution of large cystic cavities in the cerebral hemisphere
(asterisks [*] in Fig. 2a) while leaving the contralateral
hemisphere grossly intact. It is thus a well-established
model of severe focal neonatal HI brain injury®. To
investigate in vivo tolerance and the regenerative
response, hNPC-PGA complexes, maintained in culture
for 5 days, were implanted into the evolving infarction
cavity 7 days post-HI brain injury (#=55). The
hNPC-PGA complex refilled the cavity, significantly
reduced parenchymal loss (Fig. 2a and Fig. 4a—d), and
appeared to integrate into the injured cerebrum. By
2 weeks post-transplantation (n =15), the PGA fibers
began to biodegrade (green strands, arrowheads in
Fig. 2a), and the cavity seemed to be filled with de novo
tissue. Immunohistochemical analysis of the de novo tis-
sue within the infarction cavity revealed that donor-
derived cells, recognized by their robust hNestin expres-
sion (Fig. 2a, green) were well engrafted within the cavity,
and some of them differentiated into neurons (~20%;
Fig. 2b—d), which had extended neuronal processes
(arrows in Fig. 2¢, d) that ran along the residual PGA
fibers (arrowheads in Fig. 2b—d) and GFAP™" cells (~35%;
Fig. 2e—g), although most cells expressed nestin (>80%)
immature cell marker at this time. The sum of all quan-
tification markers was more than 100%, suggesting that
there is an overlap between some cell markers. Nestin, in
particular, has been found to colocalize with B-tubulin III,
GFAP, and the oligodendroglial progenitor marker
Olig2*®. Additionally, GFAP expression did not always
mean the acquisition of an astroglial fate in hNPCs
because GFAP-positive cells also represent immature
hNPCs®!. These findings mean that some of the grafted
cells in this study express both neuronal (NF) and glial
cell/immature cell (GFAP) marker suggesting their
immature state in vivo. Furthermore, donor-derived cells
have rarely been observed more than 2 months after
transplantation. Implanted hNPCs appear not to survive
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well for a long time in highly inflammatory, inhospitable
HlI-injured brain following xenotransplantation despite
the wuse of immunosuppressant. Hence, although
implanted hNPCs seeded on PGA scaffold appear capable
of repopulating damaged brain regions, the vast volume of
tissue loss following the severe cases of brain injury would
seem to preclude differentiation of grafted cells and even
partial replacement.

In histopathological analysis at 8 weeks post-
transplantation (Supplementary Figure Sla, b), H&E-
stained bran sections showed complete degradation of the
PGA scaffold after HI brain injury. Based on assessment
of tissue sparing in brains of each group (n=10 per
group), the infarction volume was significantly decreased
in hNPC-PGA complex-transplanted vs. vehicle-injected
mice (34.3% +6.0% vs. 60.9% + 3.8%, P <0.05), whereas
PGA alone (47.8% +4.3%)-treated or hNPC (50.2% +
6.3%)-treated mice exhibited no difference from the
vehicle group. Hence, hANPC-PGA complex transplanta-
tion effectively reduces infarct volume in HI brain injury.
By 8 weeks post-transplantation (n=15), the newly
formed tissue had become highly vascularized (arrow-
heads in Fig. 4d and e) and appeared to be connected to
the host tissue by an intricate network of multiple
branching neuronal fibers and processes from both host-
derived and donor-derived neurons (arrowheads in
Fig. 2h-k). However, this event was not obvious in the
control groups treated with PGA alone, hNPCs, or the
vehicle after HI brain injury, as noted later (Fig. 4h and k;
n=15 per group). These findings suggest that donor-
derived tissue not only integrate into host tissue but also
intimately communicate with each other, including
through activation of angiogenic-, neurite extension-
promoting, and axonal outgrowth-promoting signals.

To determine whether the hNPC-PGA complex
implanted into the infarction cavity established such long-
distance neuronal connections with some of their prob-
able target regions, tract tracer BDA-FITC was injected
into the contralateral intact cortex (within the pre-
sumptive target region of the transcallosal sensorimotor
fibers) of one group of animals (n=10) at or after
10 weeks post-transplantation. Analysis 14 days later
showed that fluorescein-labeled axons in the cerebral
cortex and external capsule of the intact hemisphere,
projecting through the corpus callosum and toward the
implantation site of the hANPC-PGA complex within the
injured ipsilateral cortex and penumbra (Fig. 21). Some
processes labeled with BDA-FITC in an anterograde
manner from neurons in the contralateral intact hemi-
sphere were observed sprouting their axons toward the
site where the hNPC-PGA complex was implanted in the
new “integrated” cortical parenchyma. In addition, the cell
body and cellular processes of a neuron-like cell in the
ipsilateral cortical penumbra, labeled with BDA-FITC in a
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hNPC-PGA Tx

Fig. 2 Transplantation of hNPC-PGA complexes into the infarction cavity of a Hl brain injury. a Two weeks after transplantation (Tx) of the
hNPC-PGA complexes (an arrow) into the infarction cavity indicated by asterisk, hNestin* donor-derived cells (green) show robust engraftment
within the injured area. The PGA fibers have begun to biodegrade (green strands, arrowheads). b-g Some hNuc™* donor-derived cells (red in b, d, e,
g) show co-localization with NF (blue arrows in b, ¢, d) with extended neuronal processes (white arrows in ¢, d; n = 15) or GFAP (white arrows in e, f,
g; n=15). The PGA fibers are indicated by arrowheads in b-g. h—-k The de novo tissue following Tx of the hNPC-PGA complex into the infarction
cavity (an asterisk in h) is connected to the host brain tissue by multiple NF™ neuronal processes (arrowheads in i, j, k) from host-derived and/or
donor-derived neurons. Some donor-derived cells are identified by anti-hNuc staining (red arrows in h, I, j). The PGA fibers are indicated by green
arrows in k. I, m The tract tracer BDA-FITC was injected into the contralateral intact cortex at 10 weeks following implantation of the hNPC-PGA
complex into the infarction cavity. Axonal projections labeled green with fluorescein can be visualized from the cerebral cortex and external capsule
(EQ) of the intact hemisphere, projecting through the corpus callosum (CC) and toward the implantation site of the hNPC-PGA complex within the
injured ipsilateral cortex and penumbra (I). Some BDA-FITC + anterograde-labeled processes from neurons in the contralateral intact hemisphere are
observed sprouting their axons toward the implantation site of the hNPC-PGA complex (I). The BDA-FITC™ retrograde-labeled cell body and cellular
processes of a neuron-like cell in the ipsilateral cortical penumbra indicated by an asterisk (in 1) are well visualized at higher magnification (m). The
data shown are representative images. Scale bars: a, 1 500 um; b, e, h, m 20 um

retrograde manner and indicated by an asterisk (*), were
well visualized at higher magnification (Fig. 2m). How-
ever, long-distance neuronal extension could not be seen
when PGA fibers alone, hNPCs, or vehicle were admi-
nistered into HI-injured brain regions. These data suggest
that the combination of hNPCs and the polymer scaffold
appears to play an important role in the reformation of
long-distance connections between donor-derived or host
neurons and their targets in both cerebral hemispheres in
some instances.

Official journal of the Korean Society for Biochemistry and Molecular Biology

Transplantation of hNPC-PGA complexes into the
hemisection cavity of an adult SCI and the resulting
neuroregenerative response

A piece of ANPC-PGA complex, maintained in culture
for 5 days as described above, was implanted into the
hemisection cavity of the spinal cord immediately after
the induction of SCI (n = 60). As with the HI brain injury,
the hNPC-PGA complex not only appeared to refill the
cavity and compensate for parenchymal loss but also
became integrated into the injured spinal cord at 4 weeks
post-transplantation (Fig. 3a and b; »=15). In



Shin et al. Experimental & Molecular Medicine (2018) 50:39 Page 8 of 18

hNPC-PGA Tx

»

hNPC-PGA Tx hNPC-PGA Tx

Ipsi MBrjr

Fig. 3 Transplantation of hNPC-PGA complexes into the hemisection cavity of a SCI. a Spinal cord of an untransplanted rat subjected to
complete transection of the left half of the spinal cord (arrow). b A piece of the hNPC-PGA complex was transplanted into the hemisection cavity of
the spinal cord immediately after the induction of SCI. At 4 weeks post-transplantation, the hNPC-PGA complex appears to have filled the cavity
(arrow) and become incorporated into the injured spinal cord. ¢ At 2 weeks following Tx of a hNPC-PGA complex into the hemisection cavity, hNuc™*
donor-derived cells (green) show robust engraftment within the injured area and adjacent intact spinal cord. d, e At 6 weeks following Tx of the
hNPC-PGA complex, the de novo tissue within the hemisection cavity displays an intricate network of multiple long, branching NF* (red) processes
(arrowheads in d) and many very long, complex CGRP* sensory neuronal processes (green; arrowheads in €) within the injury epicenter. The PGA
fibers are indicated by arrows in e. f, g BDA tracing of the corticospinal fibers in a hNPC-PGA implanted animal. BDA™ fibers (green) are observed
through the injury epicenter (arrowheads in f) and caudal to the injury in the same cord as in f (arrowheads in g). h-r Coronal sections of a rat brain
showing FB and/or Dil-labeled neuronal cell bodies in different areas of the brain 3 weeks after FB and Dil were injected into both left and right sides
of the spinal cord caudal to the injury site in a hNPC-PGA implanted rat. While many FB™ (blue) and/or Dil'* (red) retrograde-labeled neurons (arrows)
are identified in the ipsilateral (Ipsi) frontal cortex (FG; in i), deep subcortex (DS in j-I), and midbrain (MBr in m-o), relatively few FB-labeled and/or Dil-
labeled neurons are found in the contralateral (Cont) FC (arrowheads in h—h"), DS (arrowheads in j-I), and MBr (arrowheads in (p-r). (h’~h") The co-
localization of retrograde tracers FB and Dil in the cell body and apical dendrite of a pyramidal neuron in the contralateral FC is easily visualized at
high magnification (arrowheads). (j-I) FB-labeled and/or Dil-labeled neurons are located in both the ipsilateral (arrows) and the contralateral DS
(arrowheads) divided by the third ventricle (3rd V; midline delineated with white dotted lines). m-r FB-labeled and/or Dil-labeled cells are found in
both the ipsilateral (arrows in (m-o0) and the contralateral MBr (arrowheads in p-r). The data shown are representative images. Scale bars: a 500 um; ¢,
d, e h, h, k 100um; g 10 um

Official journal of the Korean Society for Biochemistry and Molecular Biology
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Fig. 4 Implantation of a hNPC-PGA complex into HI brain injury inhibits glial scar formation and the gliotic response and increases

neovascularization. a, b The hNPC-PGA Tx into the infarction cavity, indicated by an asterisk (in a), leads to a significant decrease in the density of
GFAP staining (green) at the lesion epicenter, while there is intense GFAP staining in the peri-infarct area at 8 weeks post-transplantation (arrowheads
in a, b). A few of hNuc™* donor-derived cells (red) are found within the newly formed tissue by implantation of the hNPC-PGA complex (arrows in b).
f, i The PGA-alone Tx also causes a significant decrease in GFAP staining (red) in the injury epicenter (an arrow in f), while there is highly increased
GFAP staining (red) in the injury epicenter and peri-infarct area of vehicle-injected (Vehicle Inj.) animal at 8 weeks post-injection (an arrow in'i). ¢, g, j
Tx of hNPC-PGA or PGA-alone into the infarction cavity causes less Ibal staining (green) in the injury epicenter than vehicle injection (arrows in ¢, g, j,
respectively). d, e, h, k At the same time post-transplantation, ANPC-PGA Tx causes highly significantly more CD31% (red) small blood vessels in the
injury epicenter (arrowheads in d, e) than implantation of PGA alone and injection of the vehicle (arrows in h, k). The data shown are representative

images. Scale bars: a, d 500 um; e, f, i 200 um

histopathological analysis at 8 weeks post-transplantation
(Supplementary Figure Slc, d), LFB-CV-stained spinal
cord sections showed complete degradation of the PGA
scaffold after SCI. Based on assessment of tissue sparing
in spinal cords of each group (n = 10 per group), the total
lesion volume (atrophy volume + demyelination volume)
was significantly decreased in hNPC-PGA-transplanted
vs. vehicle-injected rats (3.1 mm?® + 0.4 mm?® vs. 5.2 mm®
+0.6 mm>, P<0.05), whereas PGA alone (4.0 mm? + 0.2
mm? )-transplanted or hNPC (4.4 mm? + 0.2 mm?)-trans-
planted rats demonstrated no difference from vehicle
group. We also quantified demyelination volume. How-
ever, hNPC-PGA-, PGA alone-, hNPCs-, and vehicle-
treated rats showed no difference in SCI-induced
demyelination volume (1.2 mm?®+ 0.5 mm? 1.5mm?+
0.1mm?% 1.7 mm®+02mm? and 1.6 mm?+0.7 mm?
respectively). Hence, hNPC-PGA complex transplanta-
tion shows the significant neuroprotection against SCI,
but do not effectively reduce demyelination volume.

Official journal of the Korean Society for Biochemistry and Molecular Biology

Immunohistochemistry demonstrated that donor-derived
cells, recognized by their robust hNuc expression (Fig. 3c),
were well engrafted within the hemisection cavity. They
migrated toward adjacent intact spinal cord segments, and
a few of them differentiated into TUJ1" neurons (~9%),
GFAP™" astrocytes (~4%) and CNPase " oligodendrocytes
(~2%), though most donor cells remained in an immature
hNestin-positive state (>80%) (Supplementary Figure S2).
Hence, although implanted hNPCs seeded on PGA scaf-
fold appear capable of repopulating lesion sites, the sheer
volume of tissue loss and inhibitory milieu of the adult
injured spinal cord would seem to preclude differentiation
of the grafted cells and even partial replacement. By
6 weeks post-transplantation (n = 10), the de novo tissue
consisting of the hNPC-PGA complex within the hemi-
section cavity exhibited many long, complex NF* neurite
outgrowths (Fig. 3d) and became highly vascularized
(Fig. 5d), suggesting that the newly formed tissue was
connected by neuronal fibers and processes with host
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Fig. 5 Implantation of a hNPC-PGA complex into a SCI inhibits glial scar formation and the gliotic response and increases
neovascularization. a, b Tx of hNPC-PGA into the hemisection cavity causes a significant decrease in the density of GFAP staining (green) at the
lesion epicenter (white arrows in a; asterisk in b), while there is intense GFAP staining in the perilesion area at 6 weeks post-transplant (arrowheads in
a, b). The PGA fibers are indicated by red arrows in a. e, h Tx of PGA alone also leads to significantly lower GFAP staining (green) in the injury
epicenter (asterisk in e), while there is significantly more GFAP staining (green) in the injury epicenter and perilesion area of the vehicle-injected
(Vehicle Inj.) animal at 6 weeks post-injection (arrowheads in h). ¢, f, i Tx of hNPC-PGA and PGA alone into the hemisection cavity causes less
Ibal staining (red) in the injury epicenter (asterisk in ¢, f), while there is highly increased Iba1 staining (red) in the injury epicenter and perilesion area
of the vehicle-injected animal at 6 weeks post-injection (arrowheads in i). (d, g, j) At the same time post-transplantation, ANPC-PGA Tx causes highly
significantly more VWF (red) small blood vessels (arrowheads in d) in the injury epicenter (asterisk in d) than implantation of PGA alone or injection
of the vehicle (arrowheads in g, j). An asterisk (* in g, j) indicates the injury epicenter. The data shown are representative images. Scale bars: a 500 pm;

Vehicle Inj.

spinal cord and well vascularized. However, donor-
derived cells identified in the spinal cord both rostral
and caudal to the injury epicenter were not immunopo-
sitive for NF (Supplementary Figure S3a-c) but immu-
nopositive for hNestin (Supplementary Figure S2),

Official journal of the Korean Society for Biochemistry and Molecular Biology

suggesting that the extensive neurite outgrowth in the
new parenchyma was actually of host origin. In fact, an
intricate network of multiple branching NF* processes
were present within the hNPC-PGA complex and its
parenchyma running along the length of the dissolving
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PGA fibers (Supplementary Figure S3d-f). In addition, to
examine whether implantation of the hNPC-PGA com-
plex promotes sensory and motor axon regeneration, the
growth of sensory and motor neuronal processes within
the injury epicenter were assessed using immunostaining
with anti-CGRP and Chat antibodies, respectively. Many
exceedingly long, complex CGRP" processes (Fig. 3e) and
some Chat" neuronal processes (Supplementary Fig-
ure S4) were observed within the new parenchyma,
showing evidence of the regeneration of sensory and
motor spinal axons through the hNPC-PGA complex
“bridges”. By contrast, the control groups treated with
PGA alone or the vehicle post-SCI (1= 10 per group)
showed much less neovascularization (Fig. 5g and j) and
neurite extension throughout the injured region of the
cord. These findings suggest that implantation of the
hNPC-PGA complex remarkably improves integration
and communication between donor-derived tissue and
host tissue in SCI as well as HI brain injury.

To examine whether the hNPC-PGA complex
implanted into a SCI establishes a corticospinal tract
(CST), BDA-FITC was injected into the sensorimotor
cortex contralateral to the side of the spinal cord hemi-
section of a group of animals (z=10) at or beyond
12 weeks post-transplantation. Analysis 2—-4 weeks later
demonstrated that fluorescein-labeled CST axons were
detected through the injury epicenter (Fig. 3f and Sup-
plementary Figure S5) and caudal to the injury (Fig. 3g
and Supplementary Figure S5). BDA, better known as an
anterograde neuronal tracer, had been transported along
either spared or regenerated corticospinal fibers. By
contrast, administration of PGA fibers alone, hNPCs, or
the vehicle (n =10 per group) showed positive BDA tra-
cing rostral but not caudal to the injury epicenter (Sup-
plementary Figure S6). As an independent verification of
these findings, we used retrograde neuronal tracers, FB
and Dil, to label cell bodies of neurons with axons pro-
jecting into or through the injury epicenter of the spinal
cord following implantation of the ANPC-PGA complex.
FB and then Dil were injected into the left and right sides
of the spinal cord, respectively, caudal to the injury site in
the same rats (m=10) at or after 12 weeks post-
transplantation. Three weeks later, FB-labeled and/or
Dil-labeled neuron cell bodies through both the right
intact and left injured cords were observed in multiple
areas of the brain (Fig. 3h—r). Many neurons labeled with
EB and/or Dil in a retrograde manner were identified in
the ipsilateral frontal cortex, deep subcortical region, and
midbrain to the spinal cord hemisection (Fig. 3i, j-I,
m-o). By contrast, relatively few neurons labeled with FB
and/or Dil were found in the contralateral frontal cortex,
deep subcortex, and midbrain to SCI (Fig. 3h-h", j-I,
p-r). In control animals treated with PGA alone, hNPCs,
or the vehicle (# = 10 per group), no labeled neurons and
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axons were observed in the side of the brain contralateral
to the spinal cord hemisection (Supplementary Figure S6).
In tract tracing studies, it may be possible that axons
crossing hNPC-PGA graft placed at the lesion site, and
rostral or caudal graft—host interface could have arisen
from spared ventral or lateral corticospinal axons. How-
ever, to prove the CST regeneration, further research is
required to confirm the electrophysiological connectivity
generated by the regenerating corticospinal axons within
the graft and beyond spinal cord lesion sites. Hence, these
findings suggest that ANPC-PGA graft may protect some
injured corticospinal fibers.

Implantation of the hNPC-PGA complex inhibits glial scar
formation, alters the gliotic response, and increases
neovascularization

Following CNS injury, the formation of a glial scar
creates a physical and molecular barrier to regeneration.
Reactive astrocytes are the major component of the glial
scar, which inhibits axonal regeneration and functional
recovery’”, In this study, we used immunostaining to
analyze GFAP expression surrounding the HI brain injury
site at 8 weeks (n = 15) and SCI site at 6 weeks (7 = 10)
post-transplantation. The group with hNPC-PGA
implanted in HI brain injury showed significantly lower
density of GFAP staining at their lesion epicenters
(Fig. 4a, b) than the vehicle-injected control group
(Fig. 4i). The newly formed tissue within the infarction
cavity showed almost no GFAP staining, while there was
intense immunostaining in the peri-infarct area around
the perimeter of the implants (Fig. 4a, b). The PGA-alone
group exhibited significantly less GFAP staining in the
injury epicenter than the vehicle-injected group (Fig. 4f, i;
n =15 per group).

In the SCI experiment, the hNPC-PGA group as well as
PGA-alone group showed highly significantly lower den-
sity of GFAP staining at their lesion epicenters (Fig. 5a, b,
e) than the vehicle-injected group (Fig. 5h; n =10 per
group). The newly formed tissue within the hemisection
cavity showed almost no GFAP staining, while there was
intense immunostaining in the peri-injury area around the
perimeter of the implants (Fig. 5a, b, e). These results
suggest that hNPC-PGA complex or PGA alone
implantation significantly reduces GFAP-positive astro-
cyte infiltration after CNS injury, in turn reducing astro-
gliosis and glial scar formation.

To examine whether hNPC-PGA complex implanta-
tion would alter microglia/macrophage response to CNS
injury, immunostaining for Ibal, CD68 (activated micro-
glia/macrophage marker), CD86 (marker for M1 polar-
ization of microglia/macrophage), and CD206 (marker for
M2 polarization of microglia/macrophage)®=* was per-
formed at 8 and 6 weeks post-transplantation into the HI-
injured brain and injured cord, respectively. In both brain
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Fig. 6 Behavioral performance of animals treated with hNPC-PGA, PGA alone, hNPCs, or vehicle after HI brain injury or SCl. a, b The results
of the neurological test (a) and the latency to fall in the accelerating rotarod task (b) in HI brain injury are shown at 3, 5, 7, 9, and 11 weeks post-
transplantation. a * and ** indicate a significant difference between the hNPC-PGA-treated and vehicle-treated groups, * exhibits a significant
difference between hNPC-treated and vehicle-treated groups, and ** represents a significant difference between sham controls and vehicle-
injected group. b ** indicates a significant difference between the hNPC-PGA-treated and vehicle-treated groups, and * and " represent a
significant difference between sham controls and vehicle-injected group. ¢, d The BBB open-field walking scores for the ipsilateral lesioned (c) and
contralateral unlesioned hindlimbs (d) after SCl are shown at 1, 7, 14, 21, 28, 35, 42, 49, and 56 days post-transplantation. * and ** indicate a significant
difference between the hNPC-PGA-treated and vehicle-treated groups in ¢, d. e Von Frey test for mechanical allodynia on ipsilateral lesioned
hindlimbs after SCl are shown at a day before SCI, and 14, 28, 42, and 56 days post-transplantation. The data represent the mean + SEM. (¥, TP < 0.05

vs. vehicle; ¥*P < 0.01 vs. vehicle; T7P < 0.001)

injury and the SCI, the hNPC-PGA-implanted and PGA
alone-implanted groups exhibited less Ibal and CD68,
and more CD206 staining in the injury epicenter than the
vehicle-injected group (Fig. 4c, g, j; Fig. 5b, ¢, f, i; and
Supplementary Figure S7 and S8). Additionally, the
hNPC-PGA graft group showed less CD86 staining than
that of vehicle control in HI brain injury (Supplementary
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Figure S7d, f). Thus, these data indicate that ANPC-PGA
complex or PGA alone implantation may reduce micro-
glia/macrophage infiltration following CNS injury and
change polarization of microglia/macrophage from M1 to
M2 type, which is considered to be beneficial for neural
repair®>>*,
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As noted earlier, to investigate the effect of implanting
the hNPC-PGA complex into brain injury or SCI on
neovascularization of the de novo tissue within the lesion
cavity, immunostaining for CD31 and vWF was per-
formed. At 8 weeks post-transplantation, the ANPC-PGA
group showed highly significantly more CD31" blood
vessels in the HI-injured brain than the groups treated
with PGA-alone or the vehicle (Fig. 4d, e, h, and k). At
6 weeks post-transplantation into a SCI, the ANPC-PGA
group also demonstrated many more vWF " blood vessels
than the PGA-alone and vehicle-only groups (Fig. 5d, g, j).
These findings suggest that implantation of hNPC-PGA
complex provides structural support for hNPCs, as well as
promote a neovascularization in the HI brain and SCI.

Implantation of the hNPC-PGA complex facilitates
motosensory recovery

We evaluated the therapeutic potential of the implanted
hNPC-PGA to improve neurological and motor functions
in neonatal mice with HI brain injury. Vehicle-injected
mice showed significant higher impairment of neurolo-
gical function than the sham controls at 3, 5, 7, 9, and
11 weeks post-injection (2.11 £0.11 vs. 0.33+0.17, P<
0.001; 2.44-+ 0.18 vs. 0.22 £ 0.15, P <0.001; 3.22 + 0.28 vs.
0.33+0.17, P<0.001; 2.78 £ 0.22 vs. 0.22 + 0.15, P < 0.001;
and 3.00 £ 0.29 vs. 0.33 £ 0.17, P < 0.001, respectively; n =
15 per group; Fig. 6a). Mice treated with hNPC-PGA (n
=15) demonstrated significant improvement in the
sensory-motor response in neurological tests at 5, 7, 9,
and 11 weeks post-transplantation compared with the
vehicle-injected mice (1.67 £0.17 vs. vehicle, P< 0.01;
2.22 + 0.28 vs. vehicle, P < 0.05; 1.56 + 0.28 vs. vehicle, P <
0.01; and 1.56 +0.24 vs. vehicle, P< 0.01, respectively;
Fig. 6a). However, hNPC-grafted mice showed significant
improvement only at 5 weeks after transplantation (1.71 +
0.13, P<0.05 vs. vehicle injection) and PGA alone-
implanted mice (n=15 per group) showed no differ-
ences from the vehicle-injected mice (Fig. 6a). In the
accelerating rotarod task, vehicle-injected mice at 5, 7, 9
and 11 weeks post-injection showed significantly lower
motor coordination than the sham controls (111.33 +
13.54 vs. 162.37 £13.03s, P<0.05; 118.30+19.41 ws.
179.67 £ 22.54s, P<0.05; 126.89+13.71 vs. 190.07 £
22.83s, P<0.05; and 113.37 + 17.41 vs. 191.04 + 15.56 s, P
<0.001; n =15 per group; Fig. 6b). The mice treated with
hNPC-PGA (n=15) showed a significantly higher
latency to fall at 11 weeks post-transplantation than
vehicle-injected mice (178.22 +15.63s vs. vehicle, P<
0.01). However, implantation of PGA alone or hNPCs
made no differences to these values compared with
vehicle injection (n = 15 per group; Fig. 6b). These results
indicated that hNPC-PGA transplantation promoted
motosensory functional recovery without causing the
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mice to exhibit abnormal neurological behaviors after HI
brain injury.

We assessed the capacity of implanted hNPC-PGA to
improve hindlimb locomotor function, assessed by the
open-filed BBB scores in the rats with SCI. In the ipsi-
lateral lesioned side, hANPC-PGA implantation induced
significant functional recovery at 14, 21, 28, 35, 42, 49, and
56 days post-transplantation compared with vehicle
injection (6.75 £ 1.27 vs. 2.55 + 0.84, P < 0.01; 7.55+0.93
vs. 3.86 +0.66, P<0.01; 9.34 £1.25 vs. 4.08+1.20, P<
0.01; 9.50+£1.22 vs. 479 +1.24, P<0.01; 9.57 £1.22 vs.
492+ 141, P<0.05 9.41+098 vs. 519 +1.18, p <0.05;
and 9.45 + 1.23 vs. 5.38 £ 1.35, P < 0.05, respectively; n =
15 per group; Fig. 6¢). The hemisection of the spinal cord
led to severance of many blood vessels and may have
caused hypoxia and/or ischemia-associated secondary
injury on the unlesioned contralateral side'®. Hence, both
hindlimbs were damaged. The performance of the con-
tralateral side appeared to be similar to that of the ipsi-
lateral side. hNPC-PGA implantation significantly
increased locomotion of contralateral hindlimb at 14, 42,
and 56 days post-transplantation compared with vehicle
injection (9.70 + 0.98 vs. 6.38 + 0.80, P < 0.05; 11.54 + 1.05
vs. 8.99 £1.06, P< 0.05; and 11.72 + 1.05 vs. 9.08 + 0.82,
P < 0.05, respectively; Fig. 6d). However, rats implanted
with PGA alone or hNPCs (# = 15 per group) showed no
differences in the locomotor functions of either hindlimb
compared with the vehicle-injected rats (Fig. 6d). These
data demonstrated that hNPC-PGA transplantation
improved hindlimb locomotor performance without
causing the rat to show abnormal neurological behaviors
after SCI. We also evaluated the effects of hNPC-PGA
implantation on postinjury development of sensory defi-
cits associated with neuropathic pain in SCI, mechanical
allodynia via the von Frey test. Compared with a day
before the induction of hemisection SCI, the mechanical
withdrawal threshold in vehicle-injected rats was mark-
edly decreased on ipsilateral lesion side at 14, 28, 42, and
56 days post-injection (2.20 + 0.79, 1.80 + 0.70, 1.55 + 0.52,
1.57 £ 0.74, respectively; n=15; Fig. 6e). These data
indicate the development of mechanical allodynia per-
sisting until 56 days after SCI. Rats implanted with PGA
alone or hNPCs (n = 15 per group) showed no difference
in the mechanical withdrawal threshold on ipsilateral
lesion side compared with the vehicle-injected rats.
However, the decrease of mechanical withdrawal thresh-
old was significantly less in hANPC-PGA implanted rats at
14, 28, 42, and 56 days post-transplantation compared
with vehicle injection (6.00 +£0.94 vs. vehicle, P < 0.05;
5.20 £ 0.87 vs. vehicle, P < 0.05; 5.01 £ 0.69 vs. vehicle, P <
0.05; and 5.52 + 0.86 vs. vehicle, P < 0.05, respectively; n =
15 per group; Fig. 6e). Hence, hNPC-PGA complex
transplantation attenuated mechanical allodynia after SCI.
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Discussion

HI brain injury in neonatal mouse might offer a per-
missive environment to reconstitute the injured tissue on
its own because young developing brain would even offer
a receptive environment for grafting multipotent NPCs
than the adult spinal cord. But this is not the case. It
should be noted that neonatal HI brain injury is far
beyond the period of cortical neurogenesis, which ends in
fetal life. In this study, the postnatal mouse HI brain
injury, a well-established model of sever HI encephalo-
pathy or cerebral palsy in human infants, leads to exten-
sive tissue loss (a large cystic infarction cavity occupying a
significant portion of the cerebral hemisphere with its
attendant glial scar and inflammation)®* due to loss of
trophic factors, blood supply and synaptic input from
neighboring cells, and widespread disturbances in
maturation of neuronal or glial cells, resulting in altered
neuronal connections and behavioral disabilities®>*”. In
this challenging environment, all neural cell types have
been severely damaged, their interactions distorted and
disconnected, and glial support disrupted. Thus, the
requirements for repairing tissue lost to HI brain injury
are so demanding that current stem cell transplantation
strategies has only shown modest structural and func-
tional benefits. Even the most “capable” multipotent
NPCs need intrinsic organization, blood supply and a
template to guide neural regeneration within the huge
cystic infarction cavity. Like HI brain injury, repair of the
injured spinal cord has been a major challenge for neu-
roscientists due to the inhibitory milieu of the adult CNS.
The patterns of SCI are remarkably heterogeneous; the
regional severity of cord injuries can differ both seg-
mentally and longitudinally, and it mostly affects both
central gray matter and the ascending and descending
white matter tracts. Thus, cell or stem cell-based therapy
for severe SCI with complete loss of function below the
injured segmental levels would not be effective if confined
simply to the delivery of some types of neurons and/or
glia®,

In the present study, we demonstrated that clinical
applicable, primary hNPC-PGA scaffold grafts into the
infarction cavity of neonatal HI brain injury and hemi-
section cavity of the adult spinal cord promoted neural
regeneration and motorsensory functional improvement
and helped to rebuild some damaged neuronal circuits.
The interactions between not only hNPCs and scaffold
but also the hNPC-scaffold complexes and the host brain
and spinal cord tissue appeared to induce specific
regenerative process and cellular responses, including
survival, migration and differentiation of donor-derived
cells, neurite outgrowth and axonal extension over long
distances, reduction of brain infarction and spinal cord
lesion volume, inhibition of glial scar formation and
microglia/macrophage infiltration, polarization change of
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microglia/macrophage from M1 to M2 type, and neo-
vascularization. Implanted cells seeded onto scaffold
migrated and engrafted well into the lesion center and
penumbra, and they differentiated into neurons and glia,
although most of them remained immature. The differ-
entiation patterns of donor-derived cells seeded on PGA
scaffold in in vivo studies are a little different between
neonatal HI brain injury and adult SCI. However, the
majority of grafted cells in both models still remain
immature state. Hence, although implanted hNPCs see-
ded on PGA scaffold appear to be capable of repopulating
damaged brain and spinal cord regions, the vast volume of
tissue and cell loss and inhibitory milieu of the CNS
would seem to preclude differentiation of the grafted cells
and even partial cell replacement.

Although implanted hNPCs showed a prolonged sur-
vival in rodent brain®*~*', recent studies demonstrate that
the immune response of neonatal mouse brains is
uniquely sensitive against xenografts derived from human
fetal brain®*** and grafted cells rarely observed at 5 weeks
or later post-transplantation*>**, In this study, hNPCs
implanted into HI-injured brain have rarely been
observed more than 2 months after transplantation.
Implanted hNPCs appear not to survive well for a long
time in highly inflammatory, inhospitable HI-injured
brain following xenotransplantation despite of the use of
immunosuppressant. A comprehensive knowledge of how
transplanted hNPCs exert their therapeutic effects in CNS
injury is still lacking and alternative pathways of hNPCs-
mediated repair should also be considered. Neuronal
differentiation of implanted NPCs could promote
restoration of disrupted circuitry by formation of bridges
or bypass connections** or may provide trophic support,
enhancing neuroprotection and regeneration**®, Addi-
tionally, accumulating evidences suggest that transplanted
NPCs can have a variety of effects on the host micro-
environment. NPCs, especially undifferentiated cells,
release anti-inflammatory or immunomodulatory mole-
cules at the site of tissue damage, and, in turn, promote
functional recovery from CNS injuries*”**, Stem cell
transplantation promotes regeneration of host CNS via
favorable changes in the cytokine and growth factor
milieu in the damaged CNS, thereby stimulating endo-
genous repair system, regardless of prolonged survival of
grafted cells****~>!. Hence, in this study, neurobehavioral
recovery up to 11 weeks after transplantation of hNPCs
into HI-injured brain may indicate that the limited pre-
sence of hNPCs implanted into mouse brain could ame-
liorate neurodegenerative environment through not
functional integration of donor-derived cells but activat-
ing endogenous neurorestorative mechanisms that
include neurogenesis, neural plasticity, angiogenesis, and
anti-inflammation.
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Taken together, in this study, hNPC-scaffold complex
grafts significantly restored motosensory function in brain
injury and SCI, and attenuated neuropathic pain in SCI.
Therefore, the structural and functional benefits following
hNPC-PGA complex grafts in brain injury and SCI might
be induced through multimodal actions of neuroprotec-
tion, neural plasticity, anti-inflammation/immunomodu-
lation, and angiogenesis that limit secondary damage, and
enhance neurite outgrowth and axonal extension over
long distances, rather than by direct cell replacement or
synaptic connections between grafted cells and host
neurons. However, further researches are required to find
out the difference in the repair mechanisms of
hNPC-PGA grafts in neonatal HI brain injury and adult
SCL

The implantation procedure did not result in any
adverse effects, such as infection, hemorrhage, tumor,
atypical locomotion, aberrant motor coordination, or
neurological deterioration. Regarding mortality following
implantation, all animal groups in this study exhibited
similar death rate (for mice with a HI brain injury, hNPC-
PGA, n=5/55; PGA, n=6/55; hNPCs, n=6/55; and
vehicle, n =4/55, where n =number of mice dead/total
mice per group; for rats with SCI, hNPC-PGA, n =7/60;
PGA, n=7/60; hNPCs, n=8/60; and vehicle, n = 6/60,
where n=number of rats dead/total rats per group).
These results suggest that the combination of hNPCs and
biomaterial scaffolds contribute to the development of a
multidisciplinary therapeutic approach for neonatal HI
brain and adult SCI. Furthermore, the development of
novel biomaterials that can enable greater control over
biomaterial-stem cell interactions and targeted delivery of
therapeutic proteins or drugs in combination with stem
cells similarly engineered to express complementary fac-
tors or receptors might lead to a significant regeneration
of extensively damaged tissue in the CNS™°,

As natural or synthetic polymer-based scaffolds are
proposed to serve as a delivery vehicle for stem cells and
to connect the gap of the large lesions as contact gui-
dance, NPCs combined with biomaterial scaffolds appear
to favorably modify the microenvironment at the CNS
injury site, structurally integrate with host tissue, and
result in functional recovery™'®'®>*=>* Polymer scaffolds
are fabricated to mimic some characteristics of natural
ECM, which provides cells with structural and functional
support. The individual components of ECM bind to
surface receptors found on cells that can regulate cell
behaviors, such as attachment, growth, migration, differ-
entiation, survival, and other functions®® %, In addition,
biodegradable polymers allow the diffusion of nutrients
and metabolites, hinder the formation of scar tissue,
concentrate neurotrophic growth and angiogenic factors,
facilitate neurite outgrowth and axonal extension, and aid
in connecting the neural network lost in the
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injury'>'®2%°962 Thus, the combinatorial approach of

biomaterial, stem cells and biomolecules might change
the local signals in the microenvironment of a brain injury
or SCI, promoting the repair of injured CNS tissue with
improved neurological function. However, a previous
study showed that implantation of PLGA scaffold alone
with specified architecture tailored to enhance spinal cord
repair substantially improved function in SCI model'®, By
contrast, implantation of PGA scaffold in this study and
PLGA scaffold designed to maintain stemness of
mesenchymal stem cells (MSCs) was not sufficiently
efficacious for brain injury and SCI recovery®. These data
suggest that the appropriate design and fabrication of
synthetic scaffold is crucial for actualization of functional
biological effects. The therapeutic potential of biologic
ECM scaffolds derived from mammalian tissue, both
soluble and insoluble, for CNS repair has only recently
been recognized®®. Hence, further work is required to
evaluate the response of neural tissue to biologic ECM
scaffold materials in various CNS injury models.

Many experiments have been performed in vitro to
evaluate the efficacy of scaffolds for NPC growth and
differentiation'®~** however, whether the conditions that
enable optimal and long term cell culture can be directly
translated to in vivo experiment, as well as other impor-
tant factors, including the optimal time window for
transplantation of the NPC-scaffold complex into the
injured brain, remains unknown. Nevertheless, some
recent studies showed the considerable potential of graf-
ted NPCs combined with biomaterial scaffolds in brain
injury. In an adult ischemic brain injury model, implanted
rat fetal NPCs within a collagen hydrogel promoted tissue
repair better than NPCs alone®®, and implanted ESC-
derived hNPCs with Matrigel™ significantly decreased
infarct volume and increased sensorimotor and cognitive
function®. In neonatal HI brain injury, immortalized
mouse NPCs—PGA complex implanted into the infarction
cavity showed robust engraftment and differentiation of
donor-derived cells, decreased parenchymal loss and the
extent of inflammation and glial scarring, and increased
neurite arborization of host and donor-derived neurons’.
More recently, NPCs seeded onto PLGA microparticles
implanted into an adult stroke model confirmed that cells
integrated efficiently within the host tissue and formed
primitive neural tissue®”. Additionally, vascular endothe-
lial growth factor (VEGF)-loaded PLGA microparticles
with immortalized hNPCs were transplanted into an adult
stroke model. The data showed that significant endothe-
lial infiltration and neovascularization within the damaged
hemisphere, but neither the survival nor the differentia-
tion of donor-derived cells was enhanced®.

For SCI repair, both NPCs and MSCs using a variety of
biomaterial scaffolds (PLGA scaffolds or conduit, PLGA
film, poly[e-caprolactone] scaffold, self-assembling
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peptide nanofiber scaffold, collagen Gelfoam, chitosan
channels, gelatin sponge, HPMA—-RGD hydrogel, etc.)
have been used'®. Although implanted NPCs and MSCs
seeded within polymer scaffolds have different mechan-
isms in post-SCI functional recovery, varying degree of
axonal regeneration, behavioral improvement, survival
and differentiation of donor-derived cells, reduced
inflammatory response and scar formation, and angio-
genesis have been reported. Recently, implantation of
human MSCs (hMSCs) seeded on unique PLGA scaffold
that augmented stemness, engraftment, and function of
hMSCs demonstrated motosensory improvement, pain
and tissue damage mitigation, and myelin preservation in
hemisection SCI. These scaffolded hMSCs supported the
propriospinal projections, neuromuscular junctions, and
reticulospinal reinnervation to activate central pattern
generator for restoring locomotion via multiple mechan-
isms neurotrophism, neurogenesis, angiogenesis,
antiautoimmunity, and antiinflammation®®., Such an
understanding of these uncovered neural circuits and
their mechanisms will undoubtedly help inform the
development of rehabilitation therapies after SCI. In some
other recent studies, NPCs were also reported to have the
potential to reconstitute lesion sites with neurons and glia
in SCI°**7°, Furthermore, homologous reconstitution of
the lesioned adult spinal cord with caudalized NPCs or
with spinal cord-derived NPCs supported the robust
regeneration of corticospinal axons’'. Genetically mod-
ified NPCs combined with biomaterial scaffolds implanted
into the SCI site increased the survival and neural dif-
ferentiation of donor-derived cells as well as both beha-
vioral and electrophysiological recovery’>”®, Furthermore,
newly developed injectable and gel-like three-dimensional
electrospun nanofibers fostering a highly favorable
environment for hNPC stemness and viability will
broaden their applicability for brain injury and SCI'.
These studies represent a substantial step forward in the
technological development for clinical translation of this
approach.

In this study, hNPC-scaffold grafts appear to reform the
transcallosal connections between donor-derived or host-
derived neurons and their targets in both cerebral hemi-
spheres in HI brain injury and protect some injured
corticospinal fibers in SCI. These histological and axonal
tract tracing findings help to explain possible mechanisms
leading to the motosensory recovery after brain injury and
SCIL. However, the mechanisms by which hNPC-PGA
complex facilitate functional recovery including regen-
eration of propriospinal, raphespinal or reticulospinal
projections, and neuromuscular junctions clearly require
further investigation. Many more studies need to be
conducted to increase the number of regenerating axons,
achieve the proper directionality of the ascending and
descending propriospinal tracts in SCI, and optimize
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trophic and angiogenic support to promote neurite
extension and axonal growth. In addition, electro-
physiological recordings showing efficient axonal con-
nectivity should be performed to analyze functional
recovery.

The formation of a dense glial scar composed of
astrocytes, oligodendrocytes, myelin, cellular debris, and
microglia/macrophage at the injury site is one of the
major challenges for long-distance axonal regeneration in
the CNS>*', A recent study revealed that astrocyte scar
formation aids rather than prevents CNS axon regenera-
tion’*. However, the abundance of other data shows that
reactive astrocytes seem to be a barrier to severed axons.
In addition, inflammatory cells, including highly activated
microglia/macrophages that are present within the lesion
center and penumbra, induce extensive axonal retrac-
tion’”. Hence, it appears that a decrease in astrocyte and
microglia/macrophage infiltration, and a change of
polarization of microglia/macrophage from M1 to M2
type following injury would be favorable for axon
regrowth.  Although the mechanism by which
hNPC-PGA augments motosensory recovery is not yet
known, hNPC-PGA complex or PGA scaffold appears to
inhibit the ingrowth of reactive astrocytes and microglia/
macrophages into the CNS injury site, as well as the
ingrowth of other various cell types that may be associated
with inflammation and glial scar formation”>'®>°, This
anti-inflammatory effect of the hNPC-PGA complex or
PGA scaffold through inhibiting astrocyte and microglia/
macrophage infiltration, and the polarization change of
microglia/macrophage into anti-inflammatory activation
following CNS injury may partly contribute to the
reduction of tissue loss from secondary injury processes as
well as the promotion of axonal growth. The hNPCs used
in this study generated not only neurotrophins (BDNF
[brain-derived neurotrophic factor], NTF3 [neurotrophin-
3], NTF4 [neurotrophin-4], and NGF [nerve growth fac-
tor]) but also other trophic and angiogenic factors,
including VEGF, FGF2, and GDNF (glial cell line-derived
neurotrophic factor). Furthermore, hNPC transplantation
markedly attenuates astrogliosis, microgliosis, and the
expression of pro-inflammatory mediators, as well as
modulating immune responses through interactions of
the implanted NPCs with T cells, microglia, or dendritic
cells in a variety of neurological disease models>>**"®7”,
In particular, we also displayed that hNPCs attenuated
microglial activation through cell-to-cell contact and
secretory molecules (TGF [transforming growth factor)-
B1, IL4 [interleukin-4], IL13 [interleukin-13], CX3CL1,
CD200, and CD47]*?. These findings suggest that not only
PGA scaffold but also the hNPCs appear to prevent the
formation of scar tissue and inflammatory reactions and
concentrate neurotrophic and angiogenic factors, which
contribute to the reduction of parenchymal loss,
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induction of survival and differentiation of donor-derived
cells, and promotion of neurite outgrowth and axonal
extension.

Therefore, future investigations might involve the
development of smart biomaterials which have mechan-
ical properties equivalent to those of CNS tissues,
appropriate ligand presentation for implantation of dif-
ferent stem cell types, proper trophic factor sequestering
ability, or capability to enhance tissue reconstruction and
modulate inflammatory response. In combination with
hNPCs genetically or non-genetically engineered to
express disease-modifying molecules, this will provide a
versatile tool for the treatment of brain injury and SCIL
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