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INTRODUCTION
Helicobacter pylori, a Gram-negative,
microaerophilic bacterium, has co-existed
with humans beings as a prominent
member of their gastric microbiota for
approximately 105 years (Moodley et al.,
2012). It infects approximately half the
world’s population, and most infected
individuals are asymptomatic, but his-
tologically exhibit superficial gastritis
(The EUROGAST Study Group, 1993).
Only a minority of infected individuals
develop gastric or duodenal ulcers that
necessitate treatment. Prolonged inflam-
mation caused by chronic (often lifelong)
infection predisposes a small fraction
of infected individuals to develop gas-
tric adenocarcinoma or lymphoma of
the mucosa-associated lymphoid tissue
(MALT lymphoma) (Passaro et al., 2002).
Unfortunately, the prognosis for cases of
gastric cancer is very poor, with 5-year
survival rates being lower than 15% (Peek
and Blaser, 2002).

A mechanism for carcinogenesis ensu-
ing from H. pylori-triggered inflammation
was first proposed by Pelayo Correa
(Correa, 1992; Correa and Piazuelo,
2012). Briefly, chronic inflammation
causes superficial gastritis that progresses
over time to multifocal atrophic gastritis
(MAG), characterized by the destruc-
tion of gastric glands. This is followed
by intestinal metaplasia, wherein gastric
epithelium undergoes an “epithelial-
mesenchymal transition” and begins to
exhibit an intestinal phenotype. The
subsequent stage consists of dysplasia cul-
minating in invasive carcinoma, which
completes the “pre-cancerous cascade.”
The final outcome is also dependent on
host and pathogen genotypes, as well as

environmental factors such as socioe-
conomic indicators, a high-salt diet,
low fruit/vegetable intake and smoking
(Khalifa et al., 2010). Most notably, H.
pylori is the sole bacterium to be classi-
fied by the WHO as a class I carcinogen
(IARC Working Group on the Evaluation
of Carcinogenic Risks to Humans, 1994).

A MECHANISM FOR EPIGENETIC FIELD
CANCERIZATION BY H. pylori DNA
MTases
Field cancerization is a concept first pro-
posed in 1953 in the context of oral strati-
fied squamous epithelium (Slaughter et al.,
1953), and subsequently extended to other
tissues. Briefly, upon exposure to a car-
cinogen at sufficient intensity for a sig-
nificant duration, grossly normal-looking
tissue near tumor sites suffers microscopic
(essentially, molecular) changes that even-
tually result in carcinogenesis. Aberrant
methylation of cytosine residues within
CpG islands (CGI) in genomic DNA
has been reported in a variety of can-
cers, including gastric cancer (Laird and
Jaenisch, 1994; Laird, 2005). This is an
epigenetic change that could contribute
to cancer development by the process of
field cancerization (Ramachandran and
Singal, 2012). Chronic H. pylori infection
in humans is associated with hypermethy-
lation of promoter sequences of different
categories of genes, resulting in downregu-
lation of transcription. Some of these are:
CDH1 that codes for E-cadherin, a trans-
membrane glycoprotein involved in main-
taining epithelial integrity (Chan et al.,
2003); GATA4 and GATA5 encoding tran-
scription factors (Wen et al., 2010); and
TFF2 (encoding trefoil factor 2) (Peterson
et al., 2010) and FOXD3 (encoding a

forkhead box transcriptional regulator)
that are tumor suppressors (Cheng et al.,
2013). However, one unexplored possi-
bility is that one or more of the sev-
eral functional DNA methyltransferases
(MTases) of H. pylori could enter host cells
and methylate their recognition sequences
in chromosomal DNA in an unregulated
manner. The result would be the creation
of an epigenetic field of cancerization.

THE NUMEROUS DNA MTases OF H. pylori
DNA MTases are sequence-specific DNA-
binding enzymes that methylate adenine
or cytosine residues in the context of their
cognate recognition sequences using S-
adenosylmethionine as the methyl donor,
and are widespread among prokaryotes
(Roberts et al., 2010). Depending on the
enzyme in question, a methyl group may
be added at the N6 position in ade-
nine forming N6-methyladenine (m6A)
or the N4 or C5 positions in cyto-
sine forming N4-methylcytosine (m4C)
or C5-methylcytosine (m5C) respectively.
DNA methylation of regulatory sequences
is known to result in changes in gene
expression in a wide variety of organ-
isms, both prokaryotes and eukaryotes.
Therefore, should DNA MTases encoded
by pathogens gain entry into host cells by
specific or non-specific means, there is a
strong possibility that they could modify
host regulatory DNA sequences (nuclear,
and perhaps even organellar), making the
process at least partially inflammation-
independent.

Several pathogens, including H. pylori,
are known to introduce virulence fac-
tors into eukaryotic host cell by a vari-
ety of mechanisms. Recently, a type I
DNA methyltransferase subunit (HsdM)
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of Klebsiella pneumoniae was found to have
a nuclear localization signal (NLS). When
expressed in in the COS-1 (African green
monkey kidney) cell line, HsdM localized
to the nucleus. Surprisingly, HsdM was
capable of methylating DNA even in the
absence of the specificity subunit (HsdS),
albeit at much lower levels (Lee et al.,
2009). A recent study demonstrated that
a transposase (Tnp) of Acinetobacter bau-
manii was targeted to the nuclei of A549
(a human lung carcinoma) and COS-7
(African green monkey kidney) cell lines,
and that this resulted in specific CpG
methylation of the CDH1 (E-cadherin)
promoter (Moon et al., 2012).

A survey of the database of restric-
tion enzymes (REBASE; http://rebase.neb.

com) indicates that H. pylori encodes a
noticeably large number of DNA MTases,
known or putative—ranging from 25 in
the strain SouthAfrica7 to 37 in strain
Puno135. Very few prokaryotes encode
such a large number of DNA MTases
or restriction-modification (R-M) sys-
tems. A majority of the predicted/known
DNA MTases encoded by H. pylori,
both adenine- and cytosine-specific, are
type II enzymes (http://tools.neb.com/∼
vincze/genomes/index.php?page=H). In
this class of DNA MTases, the functions of
sequence-specific DNA binding and DNA
methylation are carried out by the same
protein, and do not require any acces-
sory protein factors for full activity. DNA
transfer experiments between H. pylori
strains clearly demonstrated sequence-
specific DNA methylation in cell extracts
(Donahue et al., 2000). Several studies
have indicated that many of the DNA
MTases encoded by the H. pylori genome
are expressed and functional (Vitkute
et al., 2001; Takata et al., 2002; Vale and
Vítor, 2007; Kumar et al., 2012a), and can
affect H. pylori protein expression in a
strain-specific manner (Donahue et al.,
2002; Takata et al., 2002; Kumar et al.,
2012a; Vitoriano et al., 2013).

ENTRY OF H. pylori DNA MTases INTO HOST
CELLS
There are at least three mutually non-
exclusive routes by which DNA MTases
could gain entry into host cells. Firstly,
while H. pylori is predominantly extracel-
lular, studies have indicated that it may be
a facultatively intracellular as well (Kwok

et al., 2002; Necchi et al., 2007; Liu et al.,
2012). As a chronic pathogen, its intracel-
lular persistence could conceivably result
in the DNA MTases gaining access into
the host cell cytoplasm. Secondly, H. pylori
is also known to release membrane vesi-
cles containing cellular proteins, and it
is possible that DNA MTases could be
transported into to the host cytoplasm
in these vesicles. However, a recent pro-
teomic study of H. pylori vesicles failed
to detect any DNA MTases in them, indi-
cating that this is unlikely, but it is pos-
sible that growth of H. pylori on plates
or in broth might not correspond to the
situation in vivo (Olofsson et al., 2010).
Thirdly, many H. pylori strains encode
components of a type IV secretion sys-
tem (termed the cag pathogenicity island,
cag PAI) that is capable of translocating
a protein, CagA (Odenbreit et al., 2000),
and peptidoglycan (Viala et al., 2004) into
host cells. Presently, there is no conclusive
data on whether or not DNA MTases or
other cell components could be similarly
translocated, though a recent computa-
tional prediction using indicates that 1–3
DNA MTases could translocated by the
cagPAI (Wang et al., 2014), based on the
model underlying the prediction.

Regardless of the mechanism by which
bacterial proteins might enter the host
cells, the fact remains that none of
the known DNA MTases (or restriction
endonucleases) of H. pylori possess any
recognizable nuclear localization signals,
so that the actual mechanism of nuclear
translocation required for DNA methyla-
tion, if it happens, is still open to question.

INFERENCES FROM STUDIES IN THE
MONGOLIAN GERBIL (Meriones unguiculatus)
MODEL
Humans are the only known natural host
for H. pylori. However, H. pylori-infected
Mongolian gerbils reproducibly develop
gastric adenocarcinoma upon oral N-
methyl-N-nitosourea administration, and
have therefore been used in animal stud-
ies for more than 15 years now (Watanabe
et al., 1998). Niwa et al. have used this
model system to examine DNA methy-
lation in gastric cancer in detail over a
duration of up to a year (Niwa et al.,
2013, 2010). In their earlier study, they
first demonstrated that carcinogenesis
is accompanied by hypermethylation of

promoters, and that cyclosporin A (CsA),
an anti-inflammatory agent, does not
interfere with bacterial colonization of the
animals, but abrogates DNA hypermethy-
lation significantly. Their studies demon-
strated that the inflammatory response to
H. pylori infection in Mongolian gerbils is
associated with an increase in DNA methy-
lation in gastric epithelial cells (GECs).
This was taken by them to imply that
methylation is not directly attributable to
any bacterial effectors such as CagA or
DNA MTases (Niwa et al., 2010). However,
the same study also observed an unex-
pected decrease in the transcription lev-
els of the host DNA MTases (Dnmts)
in the GECs of infected gerbils com-
pared to uninfected controls. Is it possible
that cellular Dnmts are down-regulated
in response to the chronic burden of a
large number of bacterial DNA MTases,
and the significant association of H. pylori
with cancer development is due, in some
part, to its large complement of DNA
MTases? An additional fact to consider
is that bacterial DNA adenine MTases,
depending on their specificity, could mod-
ify adenine residues in regulatory regions
in the DNA. More importantly, the speci-
ficity of some adenine MTases may also
be relaxed, resulting in cytosine methy-
lation at the N4 position (Jeltsch et al.,
1999). A cytosine DNA MTase of H.
pylori (M.HpyAVIB) was found to exhibit
relaxed specificity upon mutation (Kumar
et al., 2012b). Lastly, given that adenine
methylation is not routinely examined in
studies targeting promoter hypermethyla-
tion in humans on the basis of the very low
incidence of m6A in mammalian DNA,
it may well have been missed in studies
concentrating on CGI methylation.

CONCLUSIONS
While the link between viruses and can-
cer has been extensively researched, it
is notable that Helicobacter pylori has
remained the best-studied and, for nearly
two decades, the sole bacterial pathogen
systematically linked with any type of can-
cer in clinical practice. Some bacterial
effector molecules associated with carcino-
genesis, such as CagA and VacA, have
been studied in great detail. Owing to a
combination of unique characteristics—
encoding a large number of functional
DNA MTases, lifelong persistence in the
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host and facultative intracellularity—H.
pylori may well be a unique member of
the stomach microbiota that affects its
host in unforeseen ways. The investiga-
tion of the effects of the entry of DNA
MTases (and restriction endonucleases,
including methylation-dependent restric-
tion enzymes, that can cause DNA breaks)
and other proteins of the microbiome into
host cells has the potential to uncover
novel interactions between evolutionarily
disparate species. More generally, it is pos-
sible that these proteins are effectors of
inter-specific epigenetic signals, that per-
haps enable commensals, symbionts and
pathogens to adapt to their ecological
niches by modulating host gene expres-
sion. While housekeeping DNA MTases
(e.g., the Dam methylase of E. coli) of
bacteria, pathogenic or non-pathogenic,
are known to be important for bac-
terial viability (Marinus and Casadesus,
2009), the role of bacterial DNA MTases
in infectious diseases and importantly, in
the evolution and maintenance of host-
microbiome interactions remains unclear,
and perhaps merits fresh consideration in
terms of the epigenetic modulation of host
physiology.
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