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Abstract: Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes a range of
serious infections that are often challenging to treat, as this pathogen can express multiple resistance
mechanisms, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) pheno-
types. Ceftazidime–avibactam is a combination antimicrobial agent comprising ceftazidime, a third-
generation semisynthetic cephalosporin, and avibactam, a novel non-β-lactam β-lactamase inhibitor.
This review explores the potential role of ceftazidime–avibactam for the treatment of P. aeruginosa
infections. Ceftazidime–avibactam has good in vitro activity against P. aeruginosa relative to com-
parator β-lactam agents and fluoroquinolones, comparable to amikacin and ceftolozane–tazobactam.
In Phase 3 clinical trials, ceftazidime–avibactam has generally demonstrated similar clinical and
microbiological outcomes to comparators in patients with complicated intra-abdominal infections,
complicated urinary tract infections or hospital-acquired/ventilator-associated pneumonia caused by
P. aeruginosa. Although real-world data are limited, favourable outcomes with ceftazidime–avibactam
treatment have been reported in some patients with MDR and XDR P. aeruginosa infections. Thus,
ceftazidime–avibactam may have a potentially important role in the management of serious and
complicated P. aeruginosa infections, including those caused by MDR and XDR strains.

Keywords: ceftazidime–avibactam; Pseudomonas aeruginosa; multidrug resistance; complicated intra-
abdominal infection; complicated urinary tract infection; hospital-acquired pneumonia

1. Introduction

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for
approximately 5–14% of all nosocomial or healthcare-associated infections and 16–40% of
cases of ventilator-associated pneumonia (VAP) [1–5]. Patients with predisposing factors,
such as severe burn victims, those with reduced immune function and those admitted to the
intensive care unit (ICU), are at increased risk of acute P. aeruginosa infections; patients with
cystic fibrosis (CF) or bronchiectasis may also develop chronic or recurrent P. aeruginosa
infections [5–9]. While the reported extent of co-infection with bacterial pathogens in
patients hospitalized with COVID-19 varies, P. aeruginosa is among the most frequently
identified species in such patients, with a higher proportion in critically ill ICU patients [10].
Moreover, ventilated patients with COVID-19 may be at higher risk of developing VAP,
with P. aeruginosa accounting for a high proportion of cases [11].
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P. aeruginosa infections are often life-threatening and can be difficult to treat because
these bacteria can express numerous acquired antimicrobial resistance mechanisms, virulence
factors and mechanisms for evading host defences (including biofilm formation) [12–14].
Increasing antimicrobial resistance among P. aeruginosa (partly due to inappropriate antibiotic
use) includes de novo development of resistance attributable to complex interactions between
multiple adaptive cellular mechanisms and DNA mutations [15–18]. Healthcare practices
continue to impact resistance profiles; it has been reported that global antimicrobial usage has
surged during the COVID-19 pandemic, and there is concern about the impact this will have
on resistance rates, particularly in ICUs, where P. aeruginosa is most problematic [19,20].

Antibiotics commonly used for P. aeruginosa infections include anti-pseudomonal
cephalosporins, carbapenems, β-lactam/β-lactamase inhibitor combinations, fluoroquinolones,
aminoglycosides and polymyxins [21]. Progressive accumulation of antibiotic resistance mecha-
nisms may result in multidrug-resistant (MDR) and extensively drug-resistant (XDR) pheno-
types of P. aeruginosa [8,12]. Although epidemiologically useful, the bedside applicability of
MDR and XDR definitions is limited, as their definitions require resistance to only one agent
per antimicrobial category, and all antibiotics are weighted equally regardless of effectiveness
and toxicity [22]. Consequently, difficult-to-treat resistance (DTR), defined as in vitro resistance
to all first-line agents, has been proposed to describe antimicrobial resistance in Gram-negative
bacteria [22]. P. aeruginosa was the most frequently identified DTR pathogen (accounting for
38.1% of 1371 episodes) in a recent retrospective review of Gram-negative infections in US hos-
pitals [23]. The development of MDR and DTR P. aeruginosa is of particular concern for public
health and highlights the need for novel therapeutics to treat P. aeruginosa infections [8,12,24].

Ceftazidime–avibactam is a combination antimicrobial agent comprising ceftazidime
(an extended-spectrum, third-generation, semisynthetic anti-pseudomonal cephalosporin)
and avibactam (a novel non-β-lactam β-lactamase inhibitor) [25–28]. Ceftazidime has
broad in vitro activity against Gram-negative aerobic bacteria, including P. aeruginosa and
Enterobacterales [29]. However, the utility of third-generation cephalosporins has become
compromised by the increasing prevalence of MDR Gram-negative bacteria, including those
producing extended-spectrum β-lactamases (ESBLs), chromosomal AmpC cephalospori-
nases, Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs) [30].
Avibactam restores the in vitro activity of ceftazidime against bacteria expressing Am-
bler class A (e.g., ESBLs and KPCs), class C (e.g., AmpC cephalosporinases), including
some that co-express class D (e.g., oxacillinase-48) β-lactamases, but not against those that
produce MBLs [25,26,30]. Ceftazidime–avibactam is active in vitro against many MDR,
ceftazidime-non-susceptible and carbapenem-resistant P. aeruginosa strains [31–34].

This mini-review explores the potential role of ceftazidime–avibactam in the manage-
ment of P. aeruginosa infections.

2. Antimicrobial Resistance in P. aeruginosa

P. aeruginosa, a ubiquitous organism with a relatively large genome and flexible
metabolic capabilities, can exploit numerous environmental niches [35,36]. P. aeruginosa dis-
plays a formidable array of resistance mechanisms including efflux pumps, porin mutations
and enzymes that confer resistance to β-lactam and aminoglycoside antibiotics [37–40].
Its intrinsic resistance to many antibiotics is largely due to the low permeability of its
outer membrane, which limits drug penetration [41], and at least five families of efflux
pumps that actively extrude antibiotics (e.g., MexA-MexB-OprM) have been identified
in P. aeruginosa [42,43]. In addition, P. aeruginosa can acquire multiple resistance mecha-
nisms through chromosomal gene mutations and horizontal transfer of mobile genetic
elements, including plasmids, transposons, integrons, prophages and resistance islands,
via conjugation, transformation or transduction [41,43]. In P. aeruginosa, horizontal gene
transfer primarily affects aminoglycoside and β-lactam resistance but has been reported
for other antibiotic classes, including fluoroquinolones [41,44–47]. P. aeruginosa biofilms
are associated with persistent infections that are often recalcitrant to host defences and
antibiotic therapy [35,48].
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Although anti-pseudomonal β-lactams such as ceftazidime play an important part in
treatment of P. aeruginosa infections, acquired β-lactamases in P. aeruginosa including ESBLs
and carbapenemases can hydrolyse manyβ-lactams, including broad-spectrum cephalosporins
and monobactams [49]. P. aeruginosa carries a chromosomal drug-inducible gene, ampC, which
encodes AmpC, a broad-spectrum class C β-lactamase [50]. Wild-type P. aeruginosa typically
express AmpC constitutively at low levels [38]. However, in the presence of an inducing
β-lactam, AmpC expression may increase 100- to 1000-fold, greatly increasing resistance
to antipseudomonal penicillins (ticarcillin and piperacillin), monobactams (aztreonam) and
third- (ceftazidime) and fourth-generation (cefepime) cephalosporins [50,51]. Regulation of
ampC expression is controlled by three major gene products, namely an inner membrane
permease (AmpG); a cytosolic amidase (AmpD); and a positive transcriptional regulator
(AmpR), belonging to the LysR family [38]. Overproduction of AmpC is associated with
mutations arising in ampG, ampD and ampR [52,53]. Some P. aeruginosa isolates exhibit hyper-
production of the chromosomal β-lactamase caused by mutations in the regulatory circuit that
controls the β-lactamase-inducible gene, ampC, and thus greatly increases the resistance to
cephalosporins such as ceftazidime [50]. P. aeruginosa can also develop resistance to carbapen-
ems through mutations down-regulating the expression of membrane porins, by upregulation
of some efflux systems (e.g., MexAB-OprM) and through the acquisition of transferable genes
encoding carbapenemases, such as MBLs (mostly VIM, IMP and occasionally NDM), KPCs
and Guiana extended-spectrum (GES) enzymes [54,55].

For 2019, data from the European Antimicrobial Resistance Surveillance Network
showed that 31.8% of >20,000 P. aeruginosa isolates from 30 European countries were
resistant to at least one of five antimicrobial groups (piperacillin ± tazobactam, fluoro-
quinolones, ceftazidime, aminoglycosides and carbapenems). Resistance to two or more
antimicrobial groups was found in 17.6% of isolates, and 3.4% were resistant to all five
antimicrobial groups [56]. These data showed encouraging population-weighted mean
trends of declining overall P. aeruginosa resistance across Europe compared with previous
years [56,57]; however, resistance rates vary substantially among countries, with high rates
prevalent in eastern and southern countries.

In the US, the antimicrobial susceptibility of 7452 P. aeruginosa isolates collected from
79 medical centres in 2012–2015 was evaluated as part of the International Network for
Optimal Resistance Monitoring (INFORM) programme [33]. MDR and XDR P. aeruginosa
phenotypes were observed among 15.4% and 9.4% of isolates, respectively [33]. In China,
the percentage of P. aeruginosa strains isolated from patients hospitalized in burn wards
increased annually from 10.2% in 2007 to 26.2% in 2014, with this species becoming the
predominant one among Gram-negative bacteria by 2014 [58]. Over the study period, the
proportion of MDR P. aeruginosa increased from 64.0% in 2007 to 89.9% in 2014 [58].

3. Treatment Guidelines for Management of P. aeruginosa Infections
3.1. Antibiotics for P. aeruginosa Infections

Antimicrobial agents commonly used for the treatment of P. aeruginosa infections in-
clude intravenous (IV) β-lactams (such as anti-pseudomonal cephalosporins, carbapenems
and β-lactam/β-lactamase inhibitor combinations), fluoroquinolones and aminoglyco-
sides, as well as polymyxins (colistin) in cases of last resort. Depending on the site and
severity of infection, as well as the local resistance epidemiology, treatment guidelines
for empiric and definitive antibiotic therapy of suspected or confirmed P. aeruginosa in-
fections recommend various monotherapy or combination regimens using agents from
the above classes (Table 1). Surgical source control is also recommended for patients with
intra-abdominal infection (IAI). Some of the more recently published guidelines include
guidance for use of ceftolozane–tazobactam and/or ceftazidime–avibactam for certain
P. aeruginosa infections [59–63].
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Table 1. Antimicrobial therapy recommendations for common P. aeruginosa infections.

Guideline Clinical
Indication(s) Antimicrobial Agent(s) Recommendation(s)

European Association of Urology
(EAU), 2018 [59]

cUTI, including
pyelonephritis
and urosepsis

Ceftazidime
Cefepime

Piperacillin/tazobactam
Ceftolozane/tazobactam
Ceftazidime/avibactam

Gentamicin *
Amikacin *

Imipenem/cilastatin
Meropenem

Treatment options for empirical antimicrobial
therapy. The choice between these agents

should be based on local resistance data, and
the regimen should be tailored on the basis of

susceptibility results.
Amoxicillin, co-amoxiclav, trimethoprim and

trimethoprim–sulphamethoxazole and
fluoroquinolones should not be used as

empiric treatment for urological patients.

British Society for Antimicrobial
Chemotherapy

(BSAC)/Healthcare Infection
Society (HIS)/British Infection

Association (BIA), 2018 [60]

UTI, IAI

Ceftazidime
Piperacillin/tazobactam
Carbapenems (excluding

ertapenem)
Aminoglycosides
Fluoroquinolones

Ceftolozane/tazobactam

Personalize empirical chemotherapy for each
patient by considering current features of

bacteraemia, risk factors for antibiotic
resistance and past susceptibility testing,

including the presence of MDR GNB in the
patient, hospital unit, nursing home or

community.
Do not use imipenem to treat susceptible

Pseudomonas infections.
Do not use ceftolozane/tazobactam for

infections due to AmpC- or CPE or
MBL/ESBL-producing P. aeruginosa.

World Society for Emergency
Surgery (WSES), 2017 [64] cIAI

Piperacillin/tazobactam
Imipenem/cilastatin

Doripenem
Ciprofloxacin/levofloxacin1

Ceftazidime
Cefepime

Ceftazidime–avibactam
Ceftolozane–tazobactam

Amikacin
Gentamicin

Colistin

In critically ill patients, antimicrobial therapy
should be started as soon as possible.

In these patients, to ensure timely and effective
administration of antibiotics, clinicians should
always consider the pathophysiological status
of the patient as well as the PK properties of

the employed
antibiotics.

Surgical Infection Society (SIS),
2017 [65] cIAI

Ceftolozane–tazobactam
Aminoglycosides

Polymyxin

Empirical treatment options for patients with
risk factors for MDR, XDR or PDR

P. aeruginosa (± coverage for
Staphylococcus aureus).

Spanish Society of Chemotherapy,
2018 [61]

Acute invasive
infections

Ceftolozane–tazobactam
Ceftazidime/avibactam

Meropenem
Ceftazidime

Piperacillin/tazobactam
+

Amikacin, colistin or ciprofloxacin

Include a β-lactam with activity against
P. aeruginosa with (a) the highest

probability to achieve the optimal value of the
adequate pharmacokinetic/pharmacodynamic

index, and (b) the lowest risk of
selection/amplification of the resistant

subpopulation.
For empirical treatment, consider combination
antibiotics during the first 48–72 h to rapidly

decrease the bacterial population, avoid
selection of resistance and

increase the probability of the strain to be
susceptible at least to one of the two

antibiotics.
For directed treatment schedules, consider

combination antibiotics if the infection
presents criteria for severe sepsis or septic

shock, in central nervous system
infections, in endocarditis or neutropenia and

when P. aeruginosa is resistant to
β-lactams.

Whatever antibiotic is chosen, it is essential to
optimize the dose and route of

administration.
Preferred treatment for patients with severe

sepsis/septic shock * and/or with risk factors
for MDR P. aeruginosa infections.
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Table 1. Conts.

Guideline Clinical
Indication(s) Antimicrobial Agent(s) Recommendation(s)

Infectious Diseases Society of
America (IDSA), 2020 [63]

cUTI including
pyelonephritis

Ceftolozane–tazobactam
Ceftazidime–avibactam

Imipenem–cilastatin–relebactam
Cefiderocol

Preferred treatment options for pyelonephritis
and cUTI caused by DTR-

P. aeruginosa.

DTR P. aeruginosa
infections outside the

urinary tract

Ceftolozane–tazobactam
Ceftazidime–avibactam

Imipenem–cilastatin–relebactam

Preferred treatment options (as monotherapy)
for the treatment of infections outside of the

urinary tract caused by DTR-
P. aeruginosa.

American Thoracic Society
(ATS)/Infectious Diseases Society

of America (IDSA), 2016 [66]
HAP/VAP

Piperacillin–tazobactam
Cefepime

Ceftazidime
Imipenem

Meropenem
Aztreonam

Fluoroquinolones
Aminoglycosides

Colistin

Empiric regimens should cover for
S. aureus, P. aeruginosa and other

Gram-negative bacilli.
For patients with VAP or HAP with high

mortality risk, include two anti-pseudomonal
antibiotics from different classes.

In units where >10% of Gram-negative
isolates are resistant to an agent being

considered for monotherapy, and patients in
ICUs where local antimicrobial

susceptibility rates are unavailable †.
Treat with two anti-pseudomonal agents of

different classes for patients with risk factors
for P. aeruginosa or other Gram-negative

infection or is at high risk of
mortality ‡.

European Respiratory Society
(ERS)/European Society of

Intensive Care Medicine
(ESICM)/European Society of

Clinical Microbiology and
Infectious Diseases

(ESCMID)/Latin American
Thoracic Association (ALAT),

2017 [67]

HAP/VAP

Cefepime
Ceftazidime

Piperacillin/tazobactam
Imipenem

Meropenem
Levofloxacin

Consider a risk-stratification based approach;
all empiric therapy regimens for HAP/VAP

should include anti-
pseudomonal coverage.

Dual anti-pseudomonal antimicrobial
empiric therapy (± coverage for S. aureus)

recommended for patients with septic shock
and in settings with high MDR pathogen risk.

UK National Institute for Health
and Care Excellence (NICE),

2019 [62]
HAP/VAP

Piperacillin/tazobactam
Anti-pseudomonal

cephalosporins
Meropenem

Ceftazidime–avibactam

Treat with broad-spectrum empiric
Gram-negative coverage (±coverage for

S. aureus).

European Cystic Fibrosis Society
(ECFS), 2018 [68] CF

Tobramycin solution (or dry
powder) for inhalation

Aztreonam inhalation solution
Combination of nebulized colistin

and oral ciprofloxacin

Treatment options for new and chronic
bronchopulmonary P. aeruginosa

infections.

* Severity criteria include criteria of severe sepsis or septic shock, severe immunodepression (especially neutropenia < 500 cells/mm3)
and infections involving high bacterial load, being not surgically controllable, such as extensive pneumonia or pneumonia with cavita-
tions/necrosis. † For empirical antimicrobial therapy for patients with clinically suspected VAP. ‡ For empirical antimicrobial therapy for
patients with clinically suspected HAP. CF, cystic fibrosis; cIAI, complicated intra-abdominal infection; cUTI, complicated urinary tract
infection; DTR, difficult-to-treat resistance; HAP, hospital-acquired pneumonia; IAI, intra-abdominal infection; MDR, multidrug-resistant;
PDR, pandrug-resistant; UTI, urinary tract infection; VAP, ventilator-associated pneumonia; XDR, extensively drug-resistant.

3.2. Complicated Intra-Abdominal Infections

The Surgical Infection Society guidelines for management of IAIs (2017) include strat-
ification of empiric antimicrobial treatment recommendations based on the risk of pseu-
domonal involvement [65]. Third- or fourth-generation cephalosporins (e.g., cefotaxime,
ceftriaxone, ceftizoxime, ceftazidime and cefepime) in combination with metronidazole,
β-lactam/β-lactamase inhibitors (e.g., piperacillin/tazobactam and ticarcillin/clavulanic
acid) and carbapenems (e.g., meropenem and imipenem/cilastatin) are commonly used [69].
For patients with complicated IAI (cIAI) considered at risk for infection with MDR,
XDR or pandrug-resistant P. aeruginosa, combinations of a β-lactam antibiotic, including
ceftolozane–tazobactam, an aminoglycoside and/or a polymyxin are recommended [65].
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The World Society for Emergency Surgery guidelines (2017) provide similar recommenda-
tions and, also recognize ceftolozane–tazobactam and ceftazidime–avibactam as approved
treatments for cIAI caused by P. aeruginosa [64].

3.3. Complicated Urinary Tract Infections

The European Association of Urology (EAU) and the Dutch Working Party on An-
tibiotic Policy recommend antimicrobial treatment options for patients with complicated
urinary tract infection (cUTI) that provide coverage against P. aeruginosa and include amox-
icillin plus an aminoglycoside, a second-generation cephalosporin plus an aminoglycoside
or a third-generation cephalosporin [59,70]. A carbapenem with anti-pseudomonal activity
(imipenem/meropenem) was recommended in 2013 for empiric therapy in patients with
risk factors for ESBL infections [70]. The most recent EAU guidelines (2018) include recom-
mendations for ceftazidime–avibactam and ceftolozane–tazobactam as empiric treatment
options for pyelonephritis (second line) and urosepsis [59].

3.4. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia

In patients with suspected VAP, the American Thoracic Society (ATS)/Infectious
Diseases Society of America (IDSA) guidelines (2016) recommend coverage for Staphylo-
coccus aureus, P. aeruginosa and other Gram-negative bacilli in all empiric regimens [66].
Combination therapy with two anti-pseudomonal antibiotics from two different classes
is recommended in units where >10% of Gram-negative isolates are resistant to an agent
being considered for monotherapy, and patients in ICUs where local antimicrobial sus-
ceptibility rates are not available. For patients with hospital-acquired pneumonia (HAP)
who are being treated empirically, ATS/IDSA guidelines recommend antibiotics with
coverage against P. aeruginosa and other Gram-negative bacilli. If a patient has risk factors
that increase the likelihood of P. aeruginosa or other Gram-negative infection (e.g., prior
antimicrobials within 90 days), or is at high risk of mortality (e.g., need for ventilatory
support due to HAP and septic shock), combination therapy with two anti-pseudomonal
agents of different classes is recommended [66].

Similarly, international guidelines for management of patients with HAP/VAP (2017)
published by the European Respiratory Society, European Society of Clinical Microbiology and
Infectious Diseases, European Society of Intensive Care Medicine and Latin American Thoracic
Association recommend a risk-stratification based approach, with dual anti-pseudomonal
antimicrobial empiric therapy (±coverage for S. aureus) for high-risk patients including
those with septic shock and in settings with high MDR pathogen risk [67]. For patients
with HAP/VAP and severe signs or symptoms, or those at higher risk of resistance, the
UK National Institute for Health and Care Excellence guidelines (2019) do not specify dual-
antipseudomonal treatment but include broad-spectrum empiric Gram-negative coverage
(±coverage for S. aureus) with recommended agents including piperacillin/tazobactam,
antipseudomonal cephalosporins, meropenem and ceftazidime–avibactam [62].

3.5. Cystic Fibrosis

The impaired mucociliary clearance in patients with CF provides a microenvironment
in which pathogenic bacteria, including P. aeruginosa, can become the source of chronic
pulmonary infections. The incidence of chronic P. aeruginosa infection in people with CF
patients increases with age, and such individuals have worse health status and experience
more rapid disease progression than age-matched controls [71]. The European Cystic
Fibrosis Society recommendations for the management of new and chronic P. aeruginosa
infections in patients with CF (2018) include tobramycin solution or dry powder for
inhalation, aztreonam inhalation solution or a combination of nebulized colistimethate and
oral ciprofloxacin; the aim of treatment should be eradication (documented by follow-up
cultures) [68]. Acute exacerbations of pulmonary infections in patients with CF can result
in hospitalization and require IV antibiotic treatment [68].
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4. Role of Ceftazidime–Avibactam in the Treatment of P. aeruginosa Infections
4.1. Approved Indications

In Europe and the US, ceftazidime–avibactam is approved for the treatment of adults
cUTI (including pyelonephritis), cIAI (in combination with metronidazole) and HAP (in-
cluding VAP), including bacteraemia associated with these infections caused by susceptible
P. aeruginosa and Enterobacterales. In Europe, it is also approved for infections caused by
aerobic Gram-negative organisms in adult patients with limited treatment options. Euro-
pean and US approvals were recently extended to include paediatric patients ≥3 months
old (cUTI and cIAI indications only in the US) [72,73].

4.2. Mechanism of Action

β-lactams, including ceftazidime, exert antimicrobial effects through binding to peni-
cillin binding proteins in bacterial cell walls, thereby disrupting cell wall synthesis and
bacterial growth. As noted above, numerous antimicrobial resistance mechanisms can be
expressed by MDR P. aeruginosa. Anti-pseudomonal cephalosporins such as ceftazidime,
cefepime and ceftolozane have lower affinity for AmpC cephalosporinases (commonly
expressed by P. aeruginosa) and additional stability against enzymatic hydrolysis than
other cephalosporins [74,75]. However, susceptibility to these agents can be reduced by
hyperexpression of AmpC. The addition of avibactam to ceftazidime overcomes AmpC
cephalosporinase-mediated ceftazidime resistance among P. aeruginosa isolates in vitro
(including those co-expressing EBSLs), but the combination is unable to overcome resis-
tance mediated by porin mutations, efflux pumps or MBLs [76–79]. Moreover, alterations
in AmpC-encoding and control genes conferring reduced susceptibility to ceftazidime–
avibactam, ceftolozane/tazobactam and carbapenems have been reported in laboratory
studies and/or identified in P. aeruginosa clinical isolates from patients undergoing an-
timicrobial therapy [50,80–83]. These findings are a salient reminder of the propensity
of P. aeruginosa to undergo rapid evolution to develop novel resistance phenotypes and
highlight the vital importance of microbiological cultures, susceptibility testing (as well
as local and regional susceptibility patterns) and use of molecular diagnostics wherever
possible to guide treatment of P. aeruginosa infections. In vitro data suggest that combining
ceftazidime–avibactam with other antibiotics such as aminoglycosides or colistin may be
synergistic against MDR P. aeruginosa [84–86].

4.3. In Vitro Activity

Numerous international and regional antimicrobial surveillance studies have reported
on the in vitro activity of ceftazidime–avibactam using Clinical and Laboratory Standards
Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EU-
CAST) interpretative criteria (also referred to as minimum inhibitory concentration (MIC)
breakpoints), which define isolates of P. aeruginosa and Enterobacterales with ceftazidime–
avibactam MICs ≤8 mg/L as susceptible [87,88]. Key susceptibility data for P. aeruginosa
are summarized in Table 2.

Antimicrobial susceptibility testing was performed for ceftazidime–avibactam and
comparator agents against 7062 clinical isolates of P. aeruginosa collected during 2012–
2014 in four geographic regions (Europe, Asia/South Pacific, Latin America and Middle
East/Africa) as part of the INFORM global surveillance study. The majority of isolates were
susceptible (88.7–93.2%) to ceftazidime–avibactam across the four regions (MIC90 values of
8–16 mg/L), in contrast to lower susceptibilities among comparator β-lactams: ceftazidime
(MIC90, 32–64 mg/L; 71.5–80.8% susceptible), meropenem (MIC90, >8 mg/L; 64.9–77.4%
susceptible) and piperacillin–tazobactam (MIC90, >128 mg/L; 62.3–71.3% susceptible) [89].
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Table 2. Overview of key in vitro studies of ceftazidime–avibactam activity against clinical isolates of P. aeruginosa.

Study Number of Isolates, Region and Study Dates Isolate Source(s) Agent MIC Range,
mg/L

MIC50,
mg/L

MIC90,
mg/L

Percentage
Susceptible,

%

Ceftazidime–Avibactam Resistance
Mechanisms

Nichols
et al.

(2016) [89]

7062
Asia/South Pacific, Europe, Latin America, Middle East/Africa

(2012–2014)
NR

Ceftazidime–
avibactam ≤0.5 to >128 4 8 92.0 MBLs (VIM, IMP, NDM), serine

carbapenemases (KPC-2, GES) and ESBLs
(SHV-5, VEB, PER, GES ESBL-like, TEM-OSBL)Ceftazidime ≤0.5 to >128 2 64 77.0

Kazmierczak
et al.

(2016) [90]

8010
Asia Pacific,

Europe, Latin/North America, Middle East/Africa 2012–2014)

Intra-abdominal, urinary tract, skin
and soft tissue, lower respiratory tract

and bloodstream infections

Ceftazidime–
avibactam 0.06 to >128 2 8 92.4 KPC-2, VIM-2, AmpC

Ceftazidime 0.06 to >128 2 64 77.4

Kazmierczak
et al.

(2016) [90]

29 (KPC-
positive)

Asia Pacific, Latin America (2012–2014)

Intra-abdominal, urinary tract, skin
and soft tissue, lower respiratory tract

and bloodstream infections

Ceftazidime–
avibactam 4 to 64 8 32 75.9 KPC-2, VIM-2, AmpC

Ceftazidime 64 to 128 64 >128 0.0

Sader et al.
(2017) [79]

7868
North America (2013–2016)

Intrabdominal, urinary tract, skin and
skin structure, pneumonia,

bloodstream and other infection types

Ceftazidime–
avibactam 0.25 to >32 2 4 97.1

NR

Ceftazidime NR 2 32 84.7

Sader et al.
(2017) [79]

1562 (MDR)
North America (2013–2016)

Intra-abdominal, urinary tract, skin
and skin structure, pneumonia,

bloodstream and other infection types

Ceftazidime–
avibactam 0.25 to >32 4 16 86.5

NR

Ceftazidime NR 16 >32 43.6

Sader et al.
(2017) [91]

3402
North America (2011–2015) Pneumonia

Ceftazidime–
avibactam 0.25 to >32 2 4 96.6

NR

Ceftazidime NR 2 32 82.4

Atkin
2018 [92]

32
North America (2015)

Cystic fibrosis
Ceftazidime–
avibactam 0.5 to >128 4 64 71.9 OprD protein loss, AmpC, MexC MexX MexA

Ceftazidime 16 to >128 64 >128 0.0

Sader et al.
(2019) [93]

2215
North America (2017–2018) Pneumonia

Ceftazidime–
avibactam ≤0.015 to >32 2 8 96.0

NR

Ceftazidime NR 2 32 79.8

Sader et al.
(2019) [93]

526 (MDR)
North America (2017–2018) Pneumonia

Ceftazidime–
avibactam 0.06 to >32 4 16 83.5

NR

Ceftazidime NR 32 >32 32.3

Sid Ahmed
et al.

(2019) [94]

205 (MDR)
Middle East (2014–2016)

Respiratory tract, skin and soft tissue,
urinary tract, bloodstream, sterile
body fluids and vascular line tips

Ceftazidime–
avibactam ≤0.75 to >256 4 64 68.8

MBLs (VIM-2 type) and ESBLs (VEB-1a,
OXA-4, OXA-10, OXA-50, TEM-116, PDC-2,

PDC-3, PDC-5 and PDC-7)

ESBL, extended-spectrum β-lactamase; GES, Guiana extended-spectrum; IMP, imipenemase; KPC, Klebsiella pneumoniae carbapenemase; MIC, minimum inhibitory concentration; MBL, metallo-β-lactamase;
MDR, multidrug-resistant; MexA, Mex C, MexX, Mex-family efflux pumps; NDM, New Delhi metallo-β-lactamase; NR, not reported; OSBL, original spectrum β-lactamase; OXA, oxacillinase; PDC,
Pseudomonas-derived cephalosporinase; SHV, sulfhydryl variable; TEM, Timoniera; VEB, Vietnamese extended-spectrum β-lactamase; VIM, Verona integron-encoded metallo-β-lactamase.
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In an analysis of 11,185 Gram-negative isolates from hospitalized patients with pneu-
monia (including VAP) in 76 US medical centres between 2011 and 2015, ceftazidime–
avibactam displayed good in vitro activity against 3402 P. aeruginosa isolates (MIC50/MIC90,
2 and 4 mg/L; 96.6% susceptible), including isolates non-susceptible to meropenem (86.3%
susceptible to ceftazidime–avibactam), piperacillin–tazobactam (85.6% susceptible) or cef-
tazidime (80.6% susceptible). Other agents that were active against P. aeruginosa included
colistin (MIC50/MIC90, 1 and 2 mg/L; 99.6% susceptible) and amikacin (MIC50/MIC90, 4
and 16 mg/L; 95.3% susceptible) [91].

Bacterial pathogens expressing KPC are clinically significant, as they frequently co-
express multiple other resistance mechanisms [90]. The gene encoding KPC (blaKPC)
has been observed in multiple Enterobacterales species and some non-fermentative Gram-
negative pathogens, including P. aeruginosa [90]. Among 8010 P. aeruginosa isolates col-
lected in 40 countries as part of the INFORM global surveillance study (2012–2014),
29 carbapenem-non-susceptible isolates carried blaKPC (K. pneumoniae was the most com-
monly isolated KPC-producing species). The majority of antimicrobial agents tested were
inactive against 29 KPC-positive P. aeruginosa isolates (susceptibilities of <4%). However,
75.9% of these isolates were susceptible to ceftazidime–avibactam (MIC90, 32 mg/L). Other
agents that were active against KPC-positive P. aeruginosa included colistin (MIC90, 2 mg/L;
96.6% susceptible) and amikacin (MIC90, >32 mg/L; 75.9% susceptible) [90].

Similarly, against 7868 P. aeruginosa isolates from 94 US hospitals (2013–2016), ceftazidime–
avibactam showed good in vitro activity (MIC90, 4 mg/L; 97.1% susceptible), including against
MDR isolates (MIC90, 16 mg/L; 86.5% susceptible) and inhibited (MIC <8 mg/L) 71.8% of 628
isolates that were non-susceptible to meropenem, piperacillin–tazobactam and ceftazidime [79].

Resistance mechanisms identified among P. aeruginosa isolates in the studies in Table 2
were predominantly enzymatic and included MBLs, serine carbapenemases (e.g., KPC-2
and GES) and ESBLs (e.g., SHV-5, VEB, PER and GES; Table 2); of note, non-enzymatic
mechanisms, such as overexpression of efflux pumps and porin mutations, were not
assessed in some studies [89,90,94]. In the 2012–2014 analysis, 563 of 7062 (8%) P. aeruginosa
isolates were resistant to ceftazidime–avibactam, of which 291 (51.7%) were MBL-positive,
21 carried genes for serine carbapenemases (KPC-2 or GES type) ±ESBLs, one isolate
carried a GES of undefined activity, and 51 isolates harboured only ESBLs (SHV-5, VEB
type, PER type or GES type); no acquired β-lactamase gene was identified in the remaining
199 ceftazidime–avibactam-resistant isolates [89]. Thus, approximately 271 non-MBL-
expressing isolates expressed other unidentified resistance mechanisms that were not
detected by PCR amplification and gene sequencing [89].

Analogous to ceftazidime–avibactam, ceftolozane-tazobactam, a β-lactam–β-lactamase
inhibitor with in vitro activity against P. aeruginosa (including MDR isolates), is approved
in Europe and the US for the treatment of adults with cUTI, cIAI and HAP/VAP [95,96].
Both ceftazidime–avibactam and ceftolozane–tazobactam have similar good activity against
P. aeruginosa [93,94,97]. Other recently developed agents with activity against MDR P. aerugi-
nosa (including some isolates resistant to ceftazidime–avibactam and ceftolozane–tazobactam)
include cefiderocol, imipenem/cilastatin–relebactam and cefepime–zidebactam [98–100].

4.4. Pharmacokinetics and Pharmacodynamics

Population pharmacokinetic (PK) and pharmacodynamic (PD) analyses and probability
of target attainment (PTA) simulations using an iterative modelling approach encompassing
additional data at various points during clinical development supported the selection of doses
for Phase 2 and 3 evaluation (including adjustments for renal impairment) and the determina-
tion of MIC susceptibility breakpoints for target pathogens, including P. aeruginosa [101–104].

For β-lactam antibiotics, the primary driver of PD is the amount of time free drug
concentrations are maintained above the MIC of the target pathogen (%f T > MIC). For
ceftazidime, the β-lactam component of ceftazidime–avibactam, 50% f T > MIC is the es-
tablished PK/PD target based on neutropenic mouse infection models and is associated
with microbiological eradication in patients with Gram-negative infections [101]. In global
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surveillance studies, ceftazidime–avibactam MIC90 values of ≤8 mg/L were reported for
phenotypically and genotypically unselected clinical isolates of P. aeruginosa [101]. There-
fore, a target plasma concentration of 8 mg/L (i.e., matching the upper MIC90 value for
target pathogens from contemporary surveillance studies) was selected for the ceftazidime
component of the joint PK/PD target [101].

Based on in vitro hollow fibre and in vivo data, a PK/PD index for avibactam in combi-
nation with ceftazidime defined as percentage of time that free drug concentrations exceed
a threshold concentration (CT) of 1 mg/L over a dose interval (%f T > CT) (in combination
with ceftazidime) was associated with bacteriostasis in a P. aeruginosa neutropenic mouse
thigh infection model and 2-log10 killing in a P. aeruginosa neutropenic mouse lung infection
model [101,105,106]. Accordingly, joint attainment of 50% f T > 8 mg/L for ceftazidime
and 50% f T > 1 mg/L for avibactam, to be achieved simultaneously, was considered as the
main PK/PD target for the PTA analyses.

The final population PK models, which included ceftazidime and avibactam PK data
from eighteen Phase 1–3 clinical trials, were used to predict steady-state exposures and
joint target attainment in the Phase 3 patient population and to conduct PTA analyses
in simulated patients with cIAI, cUTI, nosocomial pneumonia and VAP, using the joint
PK/PD target described above [102]. Ceftazidime and avibactam steady-state PK exposure
parameters and joint target attainment rates were compared across a range of clinical
scenarios, including the presence/absence of systemic inflammatory response syndrome,
bacteraemia or fever, white blood cell count (≤12,000/mm3 or >12,000/mm3) and various
patient subgroups such as obesity, age, Acute Physiology and Chronic Health Evaluation
II score and renal function categories (based on estimated creatinine clearance). With the
exception of the 8–15 mL/min renal function group (which was limited by a small sample
size of four patients), high joint target attainment rates (>93%) were attained for each
indication in different clinical scenarios across patient subgroups [102].

PTA simulations using the final ceftazidime and avibactam population PK models
were used to validate the approved ceftazidime–avibactam dosage regimen (2000 mg
ceftazidime plus 500 mg avibactam 2-h IV infusions every 8 h), including adjustments
for renal impairment. In these analyses, PTA values for target pathogens, including
P. aeruginosa at MICs ≤8 mg/L, were 95–100% across indications and renal function groups;
lower PTA values were associated with MICs of 16 and ≥32 mg/L [102]. These analyses
also supported the current EUCAST and CLSI susceptible MIC breakpoints of ≤8 mg/L for
ceftazidime–avibactam against P. aeruginosa [87,88,104]. Separate analyses evaluating the
lung penetration of ceftazidime–avibactam have demonstrated linear PK in epithelial lining
fluid in mice and humans, with approved doses achieving clinically-relevant exposures
against diverse P. aeruginosa isolates in an infection murine model [107–109].

4.5. Ceftazidime–Avibactam in Clinical Trials

Two Phase 2 and five Phase 3, randomized, multicentre active-comparator trials have
evaluated the efficacy and safety of ceftazidime–avibactam against carbapenems/best avail-
able therapy in adults hospitalized with serious Gram-negative infections (Table 3). Each
trial, which enrolled patients with cIAI, cUTI or HAP including VAP, included a treatment
period (5–21 days) and primary efficacy evaluations at a protocol-defined test-of-cure (TOC)
visit [110–116]. Apart from REPRISE, which did not use formal statistical comparisons, non-
inferiority of ceftazidime–avibactam versus the comparator treatment was demonstrated in
the other four Phase III trials for their respective primary efficacy endpoints [112–116].
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Table 3. Clinical cure and favourable microbiological response rates at TOC in Phase 2–3 clinical trials of ceftazidime–
avibactam: patients with P. aeruginosa isolated at baseline.

Clinical Cure, n/N (%) Favourable Microbiological
Response, n/N (%)

Ceftazidime–
Avibactam Comparator * Ceftazidime–

Avibactam Comparator *

Phase 2 cIAI [110]

ME population NR NR 5/5 (100) 5/5 (100)

Phase 2 cUTI [111]

ME population NR NR 0/2 (0) 0/0

Phase 3 RECLAIM 1 and 2: cIAI [112]

mMITT population 30/35 (85.7) 34/36 (94.4) NR NR

Phase 3 RECLAIM 3: cIAI [114]

eME population 11/11 (100) 12/14 (85.7) NR NR

Phase 3 REPRISE: cIAI and cUTI [113]

mMITT population: cIAI 1/1 (100) 1/1 (100) NR NR

mMITT population: cUTI 12/14 (86.0) 5/5 (100) 11/14 (79.0) 3/5 (60.0)

Phase 3 RECAPTURE 1 and 2: cUTI [115]

mMITT population NR NR 12/18 (66.7) 15/20 (75.0)

Phase 3 REPROVE: HAP/VAP [116]

mMITT population 22/39 (56.4) 19/26 (73.1) 22/58 (37.9) 18/47 (38.3)

ME population 16/24 (66.7) 14/18 (77.8) 13/31 (41.9) 12/28 (42.9)

eME population NR NR 18/42 (42.9) 14/35 (40.0)

CE population 27/42 (64.3) 27/35 (77.1) NR NR

Pooled Phase 3 (all indications)—MDR
P. aeruginosa [117]

mMITT population NR NR 32/56 (57.1) 21/39 (53.8)

Pooled Phase 3 (all
indications)—P. aeruginosa bacteraemia [118]

mMITT population 11/15 (73.3) 9/11 (81.8) 10/15 (66.7) 7/11 (63.6)

* Comparator agents were meropenem for Phase 2 cIAI; REPROVE and RECLAIM and imipenem–cilastatin for Phase 2 cUTI; doripenem
for RECAPTURE; and the best available therapy for REPRISE. CE, clinically evaluable; cIAI, complicated intra-abdominal infection; cUTI,
complicated urinary tract infection; eME, extended microbiologically evaluable; HAP, hospital-acquired pneumonia; ME, microbiologically
evaluable; mMITT, microbiologically modified intention-to-treat population; NR, not reported; TOC, test-of-cure visit; VAP, ventilator-
associated pneumonia. Clinical cure was defined as complete resolution or significant improvement of signs and symptoms of the index
infection, with no further treatment required. Favourable microbiological response was defined as eradication/presumed eradication of
original baseline pathogen(s).

Clinical and microbiological efficacy outcomes at TOC for the cohorts of patients
with P. aeruginosa isolated at baseline in the Phase 2 and 3 adult trials are summarized
in Table 3. Across the trials, ceftazidime–avibactam was generally effective in treating
hospitalized adults with cUTI, cIAI and HAP/VAP caused by P. aeruginosa, as assessed
by clinical cure and favourable microbiological response rates at the TOC visit [112–116].
In a pooled analysis of outcomes for patients with MDR Gram-negative isolates from
the adult Phase 3 clinical trials, ceftazidime–avibactam demonstrated similar efficacy to
comparators against MDR P. aeruginosa [117]. In the pooled microbiologically modified
intention-to-treat (mMITT) population, a total of 56 patients in the ceftazidime–avibactam
arm had MDR P. aeruginosa isolated at baseline. The ceftazidime–avibactam MIC range,
MIC50 and MIC90 were 1 to >256, 8 and 64 mg/L, respectively, with 66.1% of isolates
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susceptible (MIC ≤ 8 mg/L). Favourable microbiological responses at TOC (pooled mMITT
population) were observed in 32 of 56 (57.1%) patients in the ceftazidime–avibactam group
and 21 of 39 patients (53.8%) in the comparator group [117]. For patients with bacteraemia
due to P. aeruginosa, a pooled analysis of the five Phase 3 trials found that clinical and
microbiological responses were similar to those in the overall set; among bacteraemic
patients with P. aeruginosa, the response rates were somewhat lower, but similar between
treatment groups [118]. Across the Phase 3 trials, 28-day mortality rates were between 0%
and 9.6% (per-pathogen mortality rates have not been reported). Decreased susceptibility
of some microbiological isolates to study treatments was reported in the REPROVE trial;
however, for P. aeruginosa, 10 patients in the meropenem group and none in the ceftazidime–
avibactam group had isolates with decreased susceptibility [116].

4.6. Real-World Experience

A growing body of literature reporting on real-world use of ceftazidime–avibactam
infections is available and has recently been reviewed [119]; available publications (as
of August 2021) reporting outcomes of P. aeruginosa infections treated with ceftazidime–
avibactam are summarized in Table 4 [120–131]. Several other publications report aggre-
gated outcomes for cohorts of patients with infections caused by other pathogens as well
as P. aeruginosa or Pseudomonas species [132–134]. Most of these studies are limited by
generally small samples and retrospective, non-comparative, observational designs. How-
ever, these data provide important insights into the real-world therapeutic effectiveness of
ceftazidime–avibactam in the treatment of often severely ill patients with complicated and
difficult-to-treat infections.

In the largest real-world study with specific data for P. aeruginosa, Jorgensen et al.
(2019) evaluated 203 patients treated with ceftazidime–avibactam for ≥72 h at six US
hospitals (2015–2019) for various MDR Gram-negative infections [122]. P. aeruginosa were
isolated from 63 (31.0%) patients, and carbapenem-resistant Enterobacterales (CRE) from 117
(57.6%). The most common infection sources for P. aeruginosa were respiratory tract (60.3%),
urinary tract (11.1%), osteoarticular (9.5%) and skin and soft tissue (9.5%). Among patients
with P. aeruginosa infections, clinical failure, 30-day mortality and 30-day recurrence were
reported in 19 (30.2%), 11 (17.5%) and 4 (6.3%) patients, respectively.

Vena et al. (2020) reported on the outcomes of ceftazidime–avibactam treatment for 41 pa-
tients admitted to 13 Italian hospitals with infections caused by non-CRE MDR Gram-negative
bacteria, most commonly HAP (48.8%), primary bacteraemia (17.1%), IAI (9.8%) and bone in-
fections (9.8%) [130]. Thirty-three patients (80.5%) had monomicrobial P. aeruginosa infections
and four patients (9.8%) had polymicrobial infections with P. aeruginosa and ESBL-positive
Enterobacterales or Acinetobacter baumannii. Patients started ceftazidime–avibactam therapy
subsequent to development of antimicrobial resistance to prior antibiotic therapy (61.0%) or
failure of prior antibiotic therapy (34.1%) and median treatment duration was 13 days. Most
patients (80.5%) received ceftazidime–avibactam as combination therapy. Clinical cure was
achieved in 29/33 (87.9%) and 4/4 (100%) of patients with monomicrobial and polymicrobial
P. aeruginosa infections, respectively, and in 4/4 (100%) of patients with monomicrobial ESBL-
producing Enterobacterales infections. Development of resistance to ceftazidime–avibactam
was not detected in any of 61 patients with repeat testing data available.

In another example of the efficacy of ceftazidime–avibactam in polymicrobial P. aerug-
inosa and Enterobacterales infections, Gofman et al. (2018) reported on a patient with
polymicrobial ventriculitis caused by P. aeruginosa and carbapenem-resistant K. pneumoniae,
who was successfully treated with ceftazidime–avibactam and intrathecal amikacin [121].

Santevecchi et al. (2018) evaluated 10 patients treated with ceftazidime–avibactam at
a US hospital for non-K. pneumoniae infections during 2015–2016 [128]. Primary infections
included pneumonia (6/13; 46%), skin/soft tissue (3/13; 23%), bacteraemia (2/13; 15%)
and IAI (2/13; 15%); three patients were classified as having more than one infection.
P. aeruginosa was the most commonly isolated organism (8 of 21 isolates). Five patients
(50%) received ceftazidime–avibactam monotherapy. Microbiological cure was achieved
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in 6/9 evaluable patients (67%) and clinical success in 7/10 patients (70%). Resistance
emergence to ceftazidime–avibactam was reported in 2/10 patients (20%), one of whom
was infected with P. aeruginosa.

Rodriguez-Nunez et al. (2018) evaluated outcomes for eight patients with infections
caused by MDR or XDR P. aeruginosa admitted to a teaching hospital in Spain (2016–
2017) treated with ceftazidime–avibactam for ≥72 h [127]. Infection sources were HAP
in four patients (50.0%) and tracheobronchitis, osteomyelitis, meningitis and catheter-
related bacteraemia in one patient each. The clinical cure rate was 50%; 30-day and
90-day mortality rates were 13% and 38%, respectively; no cases of ceftazidime–avibactam
resistance emergence were reported.

Metafuni et al. (2019) and Xipell et al. (2017) have reported positive outcomes in indi-
vidual patients with severe drug-resistant P. aeruginosa infections treated with ceftazidime–
avibactam without documented emergence of resistance [126,131].

Spoletini et al. (2019) reported on eight adults with CF who received a total of 15 courses
of ceftazidime–avibactam for pulmonary exacerbations not responding to conventional antibi-
otic treatment [129]. Four patients were colonized with P. aeruginosa, two with Burkholderia
cepacia complex and two with both pathogens; and five were on the active waiting list for
lung transplantation. Treatment with ceftazidime–avibactam was associated with an effective
clinical response in 13 of 15 (86.7%) treatment courses. Four of six patients with P. aeruginosa
infections who had been suspended from the active transplant list were reactivated following
clinical stabilization; one patient received a successful transplant while on treatment, and
one who was on the transplant list died whilst on ceftazidime–avibactam due to respiratory
failure. No cases of ceftazidime–avibactam resistance emergence were reported.

5. Conclusions

P. aeruginosa infections can be challenging to treat, as the species has limited intrinsic
susceptibility to many antibiotics as well as great propensity to express further multiple
resistance mechanisms through mutation and horizonal gene acquisition [41,42]. P. aeruginosa
is relatively common in infections in healthcare settings, causing around 10–20% of skin,
lower respiratory and urinary tract infections in hospitalized patients, and is particularly
associated with severe and critical illness, such as in ICU and haematological patients. Patients
with acute P. aeruginosa infections are at significantly greater risk of 30-day mortality when
receiving inappropriate initial antimicrobial therapy (IAT) vs. those receiving appropriate IAT;
however, selection of appropriate IAT in some settings and regions is challenged by increasing
antimicrobial resistance, including MDR and DTR P. aeruginosa [135,136].

Ceftazidime–avibactam demonstrates good in vitro activity against P. aeruginosa relative
to comparator β-lactam agents, aminoglycosides and fluoroquinolones [79,89–92,97], with
susceptibility rates comparable to amikacin and ceftolozane–tazobactam [79,90,91,94,97].
Ceftazidime–avibactam is not active against MBL-producing pathogens, and P. aeruginosa is
capable of expressing multiple resistance mechanisms (including MBLs) that render some
isolates, particularly MDR strains, non-susceptible to ceftazidime–avibactam. Accordingly, as
with all antimicrobials, ceftazidime–avibactam usage should be guided by local susceptibility
patterns and microbiological/antibiogram data whenever possible.
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Table 4. Real-world experience with ceftazidime–avibactam in patients with P. aeruginosa infections.

Study Patient
Characteristics

Baseline
Pathogens

(Resistance Mechanisms)

Ceftazidime–
Avibactam Dose

and Duration

Concomitant Antibiotics,
n/N (%) Reported Outcomes

Algwizani (2018) [120]

6 male patients,
age 15–87 years

2/6 (33%) patients had
bacteraemia

CRPA (n = 3)
CRKP (n = 3; 2 with OXA-48,
1 with NDM and OXA-48)

2.5 g q8h, adjusted for renal
function

Range 9–30 days
3/6 (50%)

5/6 (83%) patients achieved
clinical and/or microbiological
cure, including 3/3 (100%) with

CRPA infections.
1 patient (17%) died 9 days after
starting ceftazidime–avibactam
treatment (NDM and OXA-48 K.
pneumoniae CLABSI and VAP).

Gofman (2018) [121]

32-year-old male with
intracranial haemorrhage due

to traumatic injury;
ventriculitis and sepsis

P. aeruginosa
CRKP

Streptococcus
viridans

2.5 g q8h, 6 weeks 1/1 (100%)

CSF cultures were sterile after
3 days’ treatment with

ceftazidime–avibactam +
intrathecal amikacin, with

treatment continued for 4 and 6
weeks, respectively. The patient

did not experience any seizures or
neurological deficits and was

transferred to a long-term care
facility for rehabilitation.

Jorgensen (2019) [122]

203 patients who received
ceftazidime–avibactam for
>72 h, median age 62 years,

62% male
22/203 (11%) patients had

bacteraemia

CRE (58%); Pseudomonas spp.
(31%); others (23%)

92/203 patients (45%)
required

renal dose adjustments;
median duration 9 days

68/203 (34%) overall
20/63 (30%) in patients with
Pseudomonas spp. infection

Clinical failure occurred in 59/203
(29%) patients overall and 19/63

(30%) in patients with Pseudomonas
spp. Infection.

30-day recurrence occurred in
12/203 (6%) patients overall and

19/63 (6%) in patients with
Pseudomonas spp. Infection.

King (2016) [123]

10 patients, mean age 73
years, 70% male,

median CCI 6
1/10 (10%) patients had

bacteraemia

P. aeruginosa (MDR and XDR) NR 5/10 (50%)

Microbiological cure achieved in
9/10 (90%) patients.

Clinical success achieved in 8/10
(80%) patients.
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Table 4. Conts.

Study Patient
Characteristics

Baseline
Pathogens

(Resistance Mechanisms)

Ceftazidime–
Avibactam Dose

and Duration

Concomitant Antibiotics,
n/N (%) Reported Outcomes

Kuang (2020) [124]

20 patients, mean age 55
years, 70% male, mean CCI 4

7/20 (35%) patients had
bacteraemia

K. pneumoniae (n = 18;
12 CRKP)

P. aeruginosa
(n = 3;

2 carbapenem-resistant)
Escherichia coli (n = 3; all
ESBL-producing strains)

Others (n = 9)

Standard dose, adjusted for
renal function, duration NR 10/20 (50%)

Clinical cure and failure at 30 days
were achieved in 9 and 11 cases,

respectively, including 2/3 (66%) of
the patients with P. aeruginosa

infection and 1/3 (33%) of the P.
aeruginosa patients with HAP and
cIAI and septic shock; co-infected
with CRKP and E. coli (ESBL); and

treated with
ceftazidime–avibactam, tigecycline

and aztreonam died after
3 days of treatment.

Adverse effects reported in 3/20
(15%) of patients.

Meschiari (2020) [125]

3 patients (age 29–66 years, 2
male) with neurosurgical

infections
Patients 1 and 3 (both male)

were treated with
ceftazidime–avibactam

(patient 1 after switching
from

ceftolozane–tazobactam)

XDR P. aeruginosa (n = 3)
KPC-KP (n = 1)

Patient 1: 2.5 g q6h extended
infusion (off-label dose)

Patient 3: 2.5 g q8h

Patient 1: az-treonam 2 g q6h
for 6 weeks

Patient 3: col-istin then
switch to az-treonam 2 g q6h

for 8 weeks

Both patients treated with
ceftazidime–avibactam achieved
complete resolution of vertebral
osteomyelitis by CT/MRI after

60 days.
Rectal swab performed for routine
screening at the end of treatment

(Patient 3) yielded XDR
P. aeruginosa with acquired

resistance to
ceftazidime–avibactam

(MIC = 16 mg/L).

Metafuni (2019) [126]

3 haematological patients
with neu-tropenia and

Gram-negative bac-teraemia,
ages 52–69 years, all male,

CCI = 3

KPC-KP (n = 2)
MDR P. aeruginosa (n = 1)

2.5 g q8h, add-ed to current
antibiotics combination

Median (range)
15 (12–16) days

3/3 (100%)
Clinical success: 2/3 (67%) of
patients, including 1/1 (100%)

patient with P. aeruginosa in-fection.
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Table 4. Conts.

Study Patient
Characteristics

Baseline
Pathogens

(Resistance Mechanisms)

Ceftazidime–
Avibactam Dose

and Duration

Concomitant Antibiotics,
n/N (%) Reported Outcomes

Rodríguez-Núñez
(2018) [127]

8 patients, ages 51–71 years,
88% male

1/8 (13%) patients had
bacteraemia

P. aeruginosa (MDR and XDR) Dose NR, range 7–34 days 6/8 (75%)

Clinical cure achieved in 4/8 (50%)
of patients.

30-day mortality: 1/8 (13%).
90-day mortality: 3/8 (38%).

1/8 (13%) of patients developed
encephalopathy that improved

with drug discontinuation.

Santevecchi (2018) [128]

10 patients, ages 32–74 years,
50% male

8 patients had renal
impairment, including 4

undergoing CRRT

MDR P. aeruginosa (n = 8)
CRE (n = 9)

Other (n = 4)

Doses NR, ad-justed for
renal function

Median (range)
16 (4–50) days

5/10 (50%)

Clinical success: 7/10 (70%)
patients, including 7/8 (88%)

patients with P. aeruginosa infection.
Microbiological cure: 6/9 (67%)

patients, including 6/8 (75%)
patients with P. aeruginosa infection.

2/10 patients (20%) developed
emergence of resistance while on

therapy with
ceftazidime–avibactam.

Spoletini (2019) [129]

8 patients with CF (63%
female, ages 22–41 years)

re-ceived 15 courses of
ceftazidime–avibactam
(1–4 courses/patient)

MDR P. aeruginosa (n = 6)
Other (n = 4)

Doses NR
Range 12–145 days 8/8 (100%)

Effective clinical response seen in
13/15 courses (87%), in-cluding
10/11 where P. aeruginosa was

identified in spu-tum.
2/8 (25%) of patients with a very

poor prognosis died ow-ing to
complex underlying

lung pathology.

CCI, Charlson Comorbidity Index score; CRE, carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CRRT, continuous renal replacement therapy; CT, computed tomography;
KPC-KP, K. pneumoniae carbapenemase-producing K. pneumoniae; MDR, multidrug-resistant; MIC, minimum inhibitory concentration; NR, not reported; q8h, every 8 h; UTI, urinary tract infection; XDR,
extensively drug-resistant.
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In Phase 3 clinical trials, ceftazidime–avibactam was associated with generally sim-
ilar clinical and microbiological outcomes to comparators (carbapenems/best available
therapy) in adult patients with cIAI, cUTI or HAP/VAP caused by P. aeruginosa, including
ceftazidime non-susceptible and MDR strains [112–117]. In population PK modelling and
exposure simulations of patients with cIAI, cUTI or HAP/VAP, >95% PTA was predicted
for approved ceftazidime–avibactam dosage regimens (2000 mg ceftazidime plus 500 mg
avibactam 2-h IV infusions every 8 h, adjusted for renal function) against P. aeruginosa
with MICs ≤ 8 mg/L [104]. While there are relatively few published real-world data for
ceftazidime–avibactam treatment of serious P. aeruginosa infections, favourable outcomes
with ceftazidime–avibactam treatment have been reported in some patients with infections
caused by MDR and XDR P. aeruginosa, without documented resistance emergence (albeit
from a small sample of anecdotal reports) [121,122,126–131]. The efficacy and safety of
ceftazidime–avibactam in patients with CF have not been evaluated in randomized con-
trolled trials; however, available in vitro and real-world data suggest a potential role for
this agent in managing acute P. aeruginosa infections in cases where other antibiotics have
failed [92,129], subject to local/institutional formularies and national product labelling.

As the risk factors for infections with different MDR bacteria, including P. aerugi-
nosa and Enterobacterales, are often the same, ceftazidime–avibactam offers a good em-
piric treatment option for patients considered at risk of MDR Gram-negative infections,
including those caused by non MBL-producing MDR and DTR P. aeruginosa, and its po-
tential role in such settings is recognized in various national and international treatment
guidelines [59,62–64]. Appropriate use of all antibiotics, including ceftazidime–avibactam,
guided by diagnostic susceptibility data (where available) and knowledge of local resis-
tance patterns, are vital to support antimicrobial stewardship and limit the emergence and
spread of resistance.
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