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Abstract: Temperature is a key environmental factor restricting seed germination. Rose (Rosa canina
L.) seeds are characterized by physical/physiological dormancy, which is broken during warm,
followed by cold stratification. Exposing pretreated seeds to 20 ◦C resulted in the induction of
secondary dormancy. The aim of this study was to identify and functionally characterize the proteins
associated with dormancy control of rose seeds. Proteins from primary dormant, after warm and cold
stratification (nondormant), and secondary dormant seeds were analyzed using 2-D electrophoresis.
Proteins that varied in abundance were identified by mass spectrometry. Results showed that cold
stratifications affected the variability of the highest number of spots, and there were more common
spots with secondary dormancy than with warm stratification. The increase of mitochondrial proteins
and actin during dormancy breaking suggests changes in cell functioning and seed preparation to
germination. Secondary dormant seeds were characterized by low levels of legumin, metabolic
enzymes, and actin, suggesting the consumption of storage materials, a decrease in metabolic activity,
and cell elongation. Breaking the dormancy of rose seeds increased the abundance of cellular and
metabolic proteins that promote germination. Induction of secondary dormancy caused a decrease in
these proteins and germination arrest.
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1. Introduction

Temperature has a major influence on seed dormancy and germination, as it is one factor
coordinating plant development with climate variability [1]. Temperature signaling is transduced to
plant physiology and genetics in a multidimensional manner [1]. Seed dormancy is an evolutionary,
environmentally imprinted adaptive trait that prevents germination under unfavorable temperature
conditions. If seeds able to germinate lose this ability due to stressful environmental conditions
(e.g., too high temperatures), secondary dormancy is established [2]. Such seeds revert to dormancy
and overlap until the following spring or longer, which is a beneficial process from a biological
standpoint (seed banks) but undesirable from an economic one, e.g., in a nursery. For their germination,
repeated stratification is needed, but this does not guarantee eventual success. Finch–Savage
and Leubner–Metzger [3] suggested that primary dormancy correlates to slow seasonal change
(temporal sensing), associated with cycling from deep to shallow dormancy to select the climate
space for emergence and time of year. Seasonal temperature patterns regulate the cycle. Secondary
dormancy correlates with a rapid response to the suitability of local conditions for germination
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and plant establishment (spatial sensing). Under natural conditions, such environment-controlled
dormancy is manifested as dormancy cycling between seasons and years [4].

Germination cueing can be a specified form of phenological cueing, since some environmental
conditions must appear to break dormancy, and additional environmental conditions must occur to
enable germination after dormancy is broken [5]. When seeds lose dormancy, the range of environmental
conditions in which they can germinate broadens, and as secondary dormancy appears, that range
narrows again [5]. Thus, the pace of primary dormancy loss, secondary dormancy introduction, and the
attributes of temperature-dependent germination regulate not only the season but the long-term life
history that is expressed.

For seeds of many plant species, the breaking of dormancy is not a quick change between dormant
and nondormant states, but a series of continuous changes in the entire seed to the molecular level,
from complete dormancy to complete nondormancy [6]. How this complicated system is used by
the seed to adjust dormancy cycling in fluctuating environments is still unknown [7]. Information
regarding seed dormancy and annual seasonal changes in the germination capacity of seeds may be
advantageous to researchers in determining the best study pathways.

Physiological, molecular, and genetic analyses have provided insights into the mechanisms of
seed dormancy and germination [8,9]. Plant hormones, including ABA, GA, auxin, or ethylene, are
implicated in the regulation of dormancy status, including secondary dormancy [10–16]. The results
of Footitt et al. [4] indicated that soil temperatures trigger seed-specific temporal sensing via the
accumulation of DOG1 protein to drive changes in germination potential. Dormancy cycling is
regulated by clock genes and the dormancy-related genes DOG1, mother of flowering time (MFT),
CBL-interacting protein kinase 23 (CIPK23), and phytochrome A (PHYA) [17]. DOG1 participates in
the induction of primary dormancy in response to cold maturation temperature acting on maternal
plants and also participates in secondary dormancy in response to warm and cold stratification [5,18].
As DOG1-imposed dormancy alters responses to germination temperatures, DOG1 strongly influences
the environmental responsiveness of germination. Chiang et al. [19] considered the timing of
germination, and particularly DOG1-controlled dormancy, to be associated with life-history alteration.

Wild rose seeds are characterized by the occurrence of combinational dormancy, which consists of
physiological dormancy of the embryo and physical dormancy associated with seed coat properties [20].
This type of physical/physiological dormancy is broken during warm, followed by cold stratification
(25 ◦C/3 ◦C) lasting several months [21]. A temperature of 20 ◦C used on pretreated seeds caused the
induction of secondary dormancy. Hilhorst [22] characterized secondary dormancy as a phenomenon
that occurs after seed dispersal and the loss of primary dormancy. Edwards et al. [23] suggested that
seeds must have some degree of primary dormancy to be capable of entering secondary dormancy.

In this study, we investigate how temperature affects proteome changes in Rosa canina seeds
during primary dormancy release by warm and cold stratification and secondary dormancy induction
by warm treatment. We hypothesized that there are certain similarities between the regulation of
primary and secondary dormancy of seeds. One goal of the present study is to reveal differentially
abundant proteins to identify those putatively responsible for the breaking of primary dormancy and
induction of secondary dormancy of rose seeds.

2. Results and Discussion

The dormancy cycling phenomenon has been widely studied, but the molecular mechanism
responsible remains largely unknown. Recent transcriptomic studies indicate that seeds vary and
remain active at a molecular level in both primary and secondary dormancy [13,16,24–26]. Despite the
many studies of primary dormancy proteomics, not one has considered secondary dormancy. In the
present research, the main focus was on secondary dormancy to reveal proteins responsible for its
control. We hypothesized, however, that there are certain similarities between the regulation of primary
and secondary dormancy of seeds. Wild rose seeds were chosen as an object of study because of
the practical difficulty in seed germination and emergence in field conditions corresponding to the
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undesirable trait of warm temperature-induced secondary dormancy. We observed that rose seed
combinational dormancy was broken during warm (25 ◦C, 16 weeks) followed by cold stratification
(3 ◦C, 22 weeks). Pretreated seeds were exposed to a temperature of 20 ◦C to induce secondary
dormancy, in contrast to 3 ◦C, which promoted germination (Figure 1). At 20 ◦C, seed germination for
lot No. 1 reached only 3.5%, lot No. 2, 6.0%, and lot No. 3, 18.5%. Germination ability at 3 ◦C reached
58.5%, 80.5%, and 92, 0%, respectively. Seed germination was dependent on individual variability
(seed lot origin from a different shrub).
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Figure 1. Effect of temperature on Rosa canina L. seed germination after dormancy breaking by
warm/cold stratification (16 weeks at 25 ◦C followed by 22 weeks at 3 ◦C). Germination tests were
performed for 8 weeks at 3 and 20 ◦C. Seeds were collected from three different shrubs (1–3). Data with
different letters (lowercase for 20 ◦C and capital for 3 ◦C) are significantly different, p < 0.05 (ANOVA
and a Tukey–Kramer HSD).

For further proteomic investigations, seeds were taken from three seed lots from four time
points: dry seeds (primary dormant), seeds after the warm phase of stratification, seeds after the
cold phase of stratification (nondormant seeds), and seeds after germination testing at 20 ◦C with
induced secondary dormancy (Figure S1). An average of 543 Coomassie blue-stained spots were
detected on each two-dimensional gel representing each sample using the Image Master 7 Platinum
program. A total of 16 spots exhibiting significant changes in abundance for temperature and origin,
representing approximately 3% of the total number of spots on a reference gel (Figure 2) were identified
by MS (Table 1).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 13 
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Table 1. Identification of differentially abundant proteins of Rosa canina L. seeds during primary dormancy release by warm (25 ◦C) and cold (3 ◦C) stratification and
secondary dormancy induction by warm treatment (20 ◦C).

Spot a Protein b [Species] Accession c Theoretical Experimental Score SC d All/No Repeat e Unic/No Repeat f emPAI g

MW pI MW pI

9 succinyl-CoA ligase beta subunit [Arabidopsis thaliana] AAM65138.1 46 6.1 40 5.3 166 5 3/3 3/3 0.2
10 actin [Lycoris longituba] AFP44112.1 42 5.3 41 5.3 751 29 11/9 0/0 1.72
11 elongation factor E1 [Brassica oleracea var. capitata] AFL69959.1 49 6.1 40 5.3 725 21 10/9 9/8 0.98
28 temperature-induced lipocalin [Solanum tuberosum] ABB02386.1 21 6.0 16 4.9 118 10 2/2 2/2 0.48
41 legumin B-like [Fragaria vesca subsp. vesca] XP_004294115.1 57 6.8 36 5.2 483 16 31/6 16/3 0.56
44 adenosine kinase 2 [Glycine soja] KHN02332.1 38 5.5 37 5 99 3 1/1 1/1 0.12
79 actin-7 [Musa acuminata subsp. malaccensis] XP_009383456.1 42 5.3 41 5.2 350 16 5/5 0/0 0.65
120 cytosolic class I small heat-shock protein HSP17.5 [Rosa hybrid cultivar] ABO84841.1 17 6.0 15 5.8 562 46 16/8 2/2 5.64
152 mitochondrial ADP/ATP translocator [Chlamydomonas incerta] ABA01103.1 34 9.7 37 5.0 357 15 5/5 1/1 0.86
167 legumin B-like [F. vesca subsp. vesca] XP_004294115.1 57 6.3 36 5.5 493 16 40/6 13/3 0.56
196 2-dehydro-3-deoxyphosphooctonate aldolase 1 [F. vesca subsp. vesca] XP_004306551.1 32 6.6 32 6.1 590 33 9/8 9/9 2.24
197 ATPase alpha subunit, partial (mitochondrion) [Chlorokybus atmophyticus] ABI54626.1 38 9.3 24 7 131 5 2/2 2/2 0.12
199 triosephosphate isomerase, cytosolic [Zea mays] ACG24648.1 27 5.5 23 6.6 283 14 3/3 1/1 0.58
200 triosephosphate isomerase, cytosolic [Z. mays] ACG24648.1 27 5.5 25 6.8 374 19 4/4 2/2 0.85
352 glyceraldehyde 3-phosphate dehydrogenase [R. multiflora] AEQ75490.1 37 7.7 27 6.9 562 33 11/10 1/1 1.51
353 oil body-associated protein 1A-like [R. chinensis] XP_024167493.1 27 5.9 26 7.1 408 19 6/5 5/4 1.19
a The spot number is as indicated on the 2-D gels (Figure 2). b The proteins identified in the present study. Protein identification was based on the best hit in a MASCOT search against NCBI
databases. c NCBI accession numbers. d Percentage of sequence coverage. e The number of all nonredundant peptides for each protein spot. f The number of unique to nonredundant
sequences within a unique peptide number. g exponentially modified protein abundance index (emPAI) estimate the absolute protein amount in proteomics by the number of sequenced
peptides per protein [27].
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As listed in Table 1, all 16 spots represented 14 nonredundant proteins. The various spots
identified as the same protein (spots 41 and 167 as well as 199 and 200) could correspond either to
post-translational modification (PTM) of the same protein or to various isoforms. The percentage of
sequence coverage ranged from 5 to 46%, and the number of identified peptides varied from 1 to 40.
Among the 16 spots, four corresponded to the Rosa genus, three to Fragaria vesca (Rosaceae family),
and nine to other plants. Homologous proteins were found for all of the spots.

Among the 16 identified proteins, 12 showed variability in abundance for temperature (Table 2), six
for origin, and two for both (ANOVA, the Tukey–Kramer HSD test, p < 0.05). The temperature-induced
secondary dormancy of rose seeds had an impact on the variability of six proteins compared to control,
two proteins compared to warm stratification, and one protein compared to cold stratification (Table 2).
Eight proteins were variable for cold stratification compared to dry seeds, and two proteins compared to
warm stratification. Five proteins were variable for warm stratification compared to dry seeds (Table 2).

Table 2. The abundance of identified proteins of Rosa canina L. seed that significantly changed during
primary dormancy release by warm (25 ◦C) and cold (3 ◦C) stratification and secondary dormancy
induction by warm treatment (20 ◦C).

Spot a Protein b Mean % Volume (± s.d.) c

Dry Warm Cold Secondary

28 temperature-induced lipocalin 0.09 ± 0.07 c 0.22 ± 0.08 bc 0.39 ± 0.21 ab 0.46 ± 0.11 a
41 legumin B-like 1.16 ± 0.21 b 1.53 ± 0.30 b 2.25 ± 0.49 a 1.49 ± 0.38 b
79 actin-7 0.06 ± 0.01 b 0.12 ± 0.02 ab 0.20 ± 0.11 a 0.15 ± 0.05 ab
120 cytosolic class I small heat-shock protein HSP17.5 0.09 ± 0.01 b 0.08 ± 0.01 b 0.12 ± 0.06 ab 0.16 ± 0.03 a
152 mitochondrial ADP/ATP translocator 0.63 ± 0.16 b 0.85 ± 0.21 ab 1.15 ± 0.24 a 0.91 ± 0.20 ab
167 legumin B-like 4.96 ± 0.60 a 2.84 ± 0.82 ab 2.38 ± 1.11 b 2.23 ± 1.43 b

196 2-dehydro-3-deoxyphosphooctonate aldolase 1 0.08 ± 0.04 a 0.03 ± 0.04 ab 0
b

0
B

197 ATPase alpha subunit 0
b 0.11 ± 0.10 a 0.07 ± 0.10 ab 0.04 ± 0.06 ab

199 triosephosphate isomerase 0
b 0.05 ± 0.03 a 0.001 ± 0.001 b 0.02 ± 0.02 ab

200 triosephosphate isomerase 0
b 0.07 ± 0.02 a 0.05 ± 0.07 ab 0.06 ± 0.08 ab

352 glyceraldehyde 3-phosphate dehydrogenase 0.05 ± 0.04 a 0
b

0
b

0
B

353 oil body-associated protein 1A-like 0.13 ± 0.21 a 0
b

0
b

0
B

a Spot number, as indicated on the reference gel (Figure 2). b The proteins identified in the present study. c The mean
value with the standard deviation of six spot volumes at each analyzed stage: dry, stratified seeds at 25 (warm), and
3 ◦C (cold) and seeds being under secondary dormancy after germination test at 20 ◦C. Spots were subjected to
ANOVA and Tukey–Kramer HSD test to select spots that significantly varied (p < 0.05) in abundance. Levels not
represented by the same letter are significantly different.

Here, we discuss the role of the proteins (due to the function and their related metabolic pathways)
that can contribute to the dormancy status of the seeds in relation to system biology approaches [28].

Seed dormancy breaking and germination is a multifaceted process, associated with changes in
the gene expression, protein synthesis, and physiology, but also with organelle functioning [29–31].
Numerous mitochondrial proteins have been identified as being involved in respiration, tricarboxylic
acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed
germination [32,33]. Eight rose seed proteins identified in the present study (they are involved
in glycolysis, TCA cycle, ATP synthesis, translation, stress response, cell activity, and transport)
were predicted to be localized in mitochondria. This data confirms the link between mitochondrial
functioning and the regulation of seed germination.

Legumin B-like protein (spots 167 and 41, decreased during secondary dormancy in comparison to
dry seeds and cold stratification, respectively) is a plant seed storage protein, whose dominant function
appears to be as a major nitrogen source for the developing plant [34]. Legumins accumulate gradually
throughout maturation concomitantly with ABA [35]. They are present in dry seeds, essentially in
cotyledons and hypocotyls, but disappear during their germination [36,37]. The decrease of this
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protein observed in the present study indicates the consumption of storage materials necessary for seed
dormancy breaking and germination and also for the initiation of secondary dormancy. Consumption
of storage materials can cause difficulty in the breaking of rose seed secondary dormancy.

Actin-7 (spot 79, increased during primary dormancy breaking in comparison to dry seeds) is
associated with the regulation of hormone-induced plant cell proliferation and callus formation [38].
Accumulation of actin-7, as well as legumin, corresponded with the reserve deposition phase in
Medicago truncatula seeds [39]. Actins, including actin-7, play an essential role in germination and root
growth [40–44]. Actin-depolymerizing factor 2 (ADF2) proteins involved in a dynamic change in the
cytoskeleton necessary for embryo cell elongation increased in abundance in germinated seeds but not
in ungerminated thermoinhibited seeds [45]. The increase in abundance of actin-7 was observed in
rose seeds after warm and cold stratification, proving its role in germination. Entrance into secondary
dormancy decreased actin-7 abundance, likely suggesting its depolymerization and inhibition of
cell elongation.

Mitochondrial ADP/ATP translocator (ADP/ATP carrier 3, AAC3 Arabidopsis homolog, spot 152,
increased during primary dormancy breaking in comparison to dry seeds) catalyzes the exchange of
cytosolic ADP with matrix ATP across the mitochondrial membrane and, thus, enables the mitochondria
to supply energy to the cytosol, and subsequently to other organelles [46]. Adenine nucleotide
transporters were indicated to be crucial for growth, as well as for photorespiratory metabolism,
and accumulation of proteins and storage lipids [47–49]. The in silico analysis of the expression
of adenine nucleotide carriers showed that they are variable under various stress conditions [47].
The AAC3 expression under stress conditions corresponds to genes associated with processes that
rely on ATP-dependent enzymes of protein degradation pathways, such as ubiquitin-associated
proteins [47]. A decrease in AAC3 expression was indicated after seed imbibition; however, it reached
a higher level in germinated seeds and seedlings [47,50,51]. The role of ADP/ATP carriers in seed
germination can be associated with the change of quiescent mitochondria into active forms by providing
ATP for actin activity [52].

The ATPase alpha subunit (ATPA, spot 197) forms a catalytic core of ATP synthase, which
synthesizes ATP from ADP [53]. Energy in the form of ATP is needed for seed germination because
germinating seeds lack both mineral uptake and photosynthetic systems [54]. The expression trend
of the ATP synthase beta subunit showed an up-regulated pattern and demonstrated that energy
metabolism continuously bolstered the process of germination [55]. The increase in activity of ATPases
was observed during dormancy breaking of several tree seeds caused by cold stratification [40,56–58].
The present study demonstrated that the ATPase alpha subunit was up-accumulated during dormancy
release of rose seeds, but this was observed only during warm stratification. Similarly, accumulation of
triosephosphate isomerase (spots 199 and 200), a key enzyme in glycolysis, was shown to increase only
during the warm phase of primary dormancy breaking. It seems that these enzymes are crucial for the
warm phase of dormancy breaking because they provide adequate cellular ATP and carbohydrate
metabolism levels.

Elongation factor E1 (EF E1, spot 11) participates in the process of mitochondrial biogenesis and
has been stress-induced by salinity in lupine embryos [59]. Alterations in the accumulation level of
mitochondrial elongation factor Tu (homolog of EF E1) were observed in Glycine max seeds during
imbibition [60]. The changes in the abundance of elongation factors were indicated prior to seed
germination and were associated with the beginning of mitotic activity [61]. High expression of EF
is necessary for the preservation of rapid protein synthesis and cell division in meristematic tissues,
which is fundamental for seed dormancy breaking and germination [61]. EF E1 accumulated in rose
seeds during primary dormancy breaking and induction of secondary dormancy on a similar level,
suggesting its general engagement in protein synthesis.
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3. Materials and Methods

3.1. Plant Material

Fully maturated seeds in nuts of the wild rose (Rosa canina L.) were collected in November 2015
from two proveniences: in Kobylepole near Poznań (lots no. 1 and 2 from two different shrubs, Poland,
52◦23′ N and 17◦01′ E) and in Pokrzywno (lot no. 3 from one shrub, Poland, 52◦21′ N and 16◦58′ E).
The seeds were separated from the fruit and dried for 10 days at room temperature to 9% moisture
content. For further experiments, intact seeds were collected.

3.2. Seed Germination

Seed stratification was started in November 2015 (Figure S1). The stratification substrate was
composed of quartz sand and peat (pH 5.5–6.5). During stratification, the water content of seeds and
substrate was controlled every week to aerate the seeds and replenish water losses. After 16 weeks of
the warm phase (25 ◦C), seeds were transferred to the cold phase (3 ◦C) for 22 weeks. Those treatments
break dormancy and promote seed germination. Subsequently, one portion of stratified seeds was
subjected to the germination test at 3 ◦C temperature, which promotes seed germination. For the
second portion the germination test was performed at 20 ◦C, a temperature which induces secondary
dormancy. Germination tests were performed in 4 replicates of 50 seeds each for 8 weeks. Analysis of
variance (ANOVA) and a Tukey–Kramer HSD were used to assess the influence of temperature on the
level of seed germination, at p < 0.05 (JMP software, SAS Institute, Cary, NC, USA).

For further proteomic investigations, seeds were collected from three seed lots from four time
points: dry seeds (primary dormant), seeds after the warm phase of stratification, seeds after the cold
phase of stratification (nondormant seeds), and seeds after germination testing at 20 ◦C with induced
secondary dormancy.

3.3. Proteome Analysis

The seeds were mechanically crushed and ground into powder in a mortar cooled with liquid
nitrogen. Proteins of powdered seeds were precipitated for 1 hour at −20 ◦C in a 10% (w/v) solution of
trichloroacetic acid (TCA) in acetone containing 20 mM dithiothreitol (DTT) [57]. After centrifugation
and vacuum drying, the resulting pellets were resuspended in lysis buffer (7 M urea, 2 M thiourea, 2%
(w/v) 3-([3-cholamidopropyl] dimethylammonio)-1-propanesulfonate (CHAPS), 1.5% (w/v) DTT, 0.5%
(v/v) immobiline polyacrylamide gel (IPG) buffer pH 3–10), supplemented with a protease inhibitor
cocktail (Roche, Basel, Switzerland). Protein concentrations were determined using the Bradford
assay [62]. Three replicates of 60 seeds were analyzed for each time point and seed lot.

Proteins were first separated electrophoretically on immobiline dry strips (24 cm, pH 3–10) using
an Ettan IPGphor 3 IEF System (GE Healthcare, Little Chalfont, UK) according to the manufacturer’s
instructions. The strips were then equilibrated with solution I (6 M urea, 1.5 M Tris–HCl, pH
8.8, 30% (v/v) glycerol, 2% (w/v) SDS, 1% (w/v) DTT) and solution II (solution I without DTT,
supplemented with 2.5% (w/v) iodoacetamide). EttanDALT12.5% (w/v) polyacrylamide precast gels
and Ettan DALT Six electrophoretic chamber (GE Healthcare, Little Chalfont, UK) were used for
second-dimension electrophoresis (SDS–PAGE). Triplicate gels were run for every sample (biological
replicates). After electrophoresis, the gels were stained with colloidal Coomassie blue [63], scanned, and
analyzed using 2D Image Master 7 Platinum software (GE Healthcare, Little Chalfont, UK). After spot
detection, 2D gels were aligned and matched, and normalized spot volumes were determined
quantitatively. For each matched spot, the percent volume (abundance) was calculated as the volume
divided by the total volume of matched spots. The spots showing variations in abundance were
subjected to ANOVA and a Tukey–Kramer HSD test (JMP software, SAS Institute, Cary, NC, USA)
to select spots significantly variable in abundance during maturation (p < 0.05). These proteins were
identified by mass spectrometry (MS).
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Proteins were subjected to a standard “in-gel digestion” procedure [64]. Peptide mixtures were
separated by liquid chromatography (LC) before molecular mass measurements (LC coupled to an
LTQ-FTICR mass spectrometer) on an Orbitrap Velos mass spectrometer (Thermo Electron Corp., San
Jose, CA, USA) at the Mass Spectrometry Laboratory (Institute of Biochemistry and Biophysics, Polish
Academy of Sciences, Warsaw, Poland). A peptide mixture was applied to an RP-18 pre-column,
then transferred to a nano-HPLC RP-18 column (Waters, Milford, MA, USA). The column outlet was
directly coupled to the electrospray ionization (ESI) ion source of an Orbitrap Velos mass spectrometer
(Thermo Electron Corp., San Jose, CA, USA), working in the regime of the data-dependent MS to
MS/MS switch. An electrospray voltage of 1.5 kV was used.

Acquired data were pre-processed with Mascot Distiller software (ver. 2.3.2.0, Matrix Science,
London, UK), followed by a database search using the Mascot Search engine (Matrix Science, London,
UK) against the NCBInr (National Centre for Biotechnology Information, Bethesda, MD, USA) database
(ver. 20120224) with a Viridiplantae filter. The search parameters for precursor and product ion mass
tolerance were 40 ppm and 0.6 Da, respectively. Protein identification was performed using the Mascot
search probability-based molecular weight search (MOWSE) score. The ion score was -10 x log(P), in
which P was the probability that the observed match was a random event. Peptides with a Mascot
Score exceeding the threshold value corresponding to a < 5% false-positive rate were considered to be
positively identified.

4. Conclusions

Proteomic analysis showed that the cold temperature-induced dormancy breaking of rose seeds
had an impact on the variability of the highest number of spots, and had more common spots
with secondary dormancy then with the warm stratification. We found that the proteins generally
were up-accumulated during dormancy breaking, but they were down-regulated during secondary
dormancy induction. Functional analysis of identified proteins showed that induction of secondary
dormancy caused storage protein consumption and a decrease in abundance of actin and metabolism
enzymes. This can cause difficulty in the breaking of rose seed secondary dormancy. Results of the
present study provide valuable information, revealing the general regulation of significant proteins
following the varying temperatures of seed primary dormancy breaking and secondary dormancy
induction. Overall, this data should enhance understanding of the processes associated with seed
dormancy. The highlighting of potentially important proteins by proteomics provides researchers with
starting points for further studies where the next step will be to examine the expression and regulation
of the gene encoding the protein of interest, to incorporate it into the seed dormancy level testing.
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(16 weeks at 25 ◦C followed by 22 weeks at 3 ◦C) and germination tests (8 weeks at 3 ◦C and 20 ◦C). P1-4 terms of
sample collections.

Author Contributions: Conceptualization, T.A.P., B.B.-B. and T.T.; methodology, T.A.P., B.B.-B. and T.T.; validation,
T.A.P. and B.B.-B.; formal analysis, T.A.P., B.B.-B., P.C. and T.T.; investigation, T.A.P., B.B.-B., J.S., E.A.K.
and A.M.S.; resources, T.A.P., B.B.-B., P.C. and T.T.; data curation, T.A.P.; writing—original draft preparation,
T.A.P.; writing—review and editing, B.B.-B., J.S., P.C., T.T., E.A.K., and A.M.S.; visualization, T.A.P. and B.B.-B.;
supervision, T.A.P. and T.T.; project administration, T.A.P. and T.T.; funding acquisition, T.A.P., P.C. and T.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland.

Acknowledgments: The authors would like to thank Michał Dadlez’s group from the Mass Spectrometry
Laboratory, IBB PAS, Warsaw, Poland, for the MS analyses. The datasets generated and/or analyzed during
the current study are available from the corresponding author upon reasonable request compliance with
ethical standards.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/1422-0067/21/19/7008/s1
http://www.mdpi.com/1422-0067/21/19/7008/s1


Int. J. Mol. Sci. 2020, 21, 7008 9 of 12

References

1. Kendall, S.; Penfield, S. Maternal and zygotic temperature signalling in the control of seed dormancy and
germination. Seed Sci. Res. 2012, 22, S23–S29. [CrossRef]

2. Hilhorst, H.W.M. The regulation of secondary dormancy. The membrane hypothesis revisite. Seed Sci. Res.
1998, 8, 77–90. [CrossRef]

3. Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. N. Phytol. 2006,
171, 501–523. [CrossRef] [PubMed]

4. Footitt, S.; Huang, Z.; Clay, H.A.; Mead, A.; Finch-Savage, W.E. Temperature, light and nitrate sensing
coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant. J.
2013, 74, 1003–1015. [CrossRef] [PubMed]

5. Murphey, M.; Kovach, K.; Elnacash, T.; He, H.; Bentsink, L.; Donohue, K. DOG1-imposed dormancy mediates
germination responses to temperature cues. Environ. Exp. Bot. 2015, 112, 33–43. [CrossRef]

6. Soltani, E.; Baskin, J.M.; Baskin, C.C. A review of the relationship between primary and secondary dormancy,
with reference to the volunteer crop weed oilseed rape (Brassica napus). Weed Res. 2019, 59, 5–14. [CrossRef]

7. Footitt, S.; Douterelo-Soler, I.; Clay, H.; Finch-Savage, W.E. Dormancy cycling in Arabidopsis seeds is
controlled by seasonally distinct hormone-signaling pathways. Proc. Natl. Acad. Sci. USA 2011, 108,
20236–20241. [CrossRef]

8. Holdsworth, M.J.; Bentsink, L.; Soppe, W.J.J. Molecular networks regulating Arabidopsis seed maturation,
after-ripening, dormancy and germination. N. Phytol. 2008, 179, 33–54. [CrossRef]

9. Staszak, A.M.; Rewers, M.; Sliwinska, E.; Klupczynska, E.A.; Pawlowski, T. DNA synthesis pattern, proteome,
and ABA and GA signalling in developing seeds of Norway maple (Acer platanoides). Funct. Plant Biol. 2019,
46, 152–164. [CrossRef]

10. Basbouss-Serhal, I.; Leymarie, J.; Bailly, C. Fluctuation of Arabidopsis seed dormancy with relative humidity
and temperature during dry storage. J. Exp. Bot. 2016, 67, 119–130. [CrossRef]

11. Chang, G.; Wang, C.; Kong, X.-X.; Chen, Q.; Yang, Y.; Hu, X. AFP2 as the novel regulator breaks
high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.
Biochem. Biophys. Res. Commun. 2018, 501, 232–238. [CrossRef] [PubMed]

12. Chiu, R.S.; Saleh, Y.; Gazzarrini, S. Inhibition of FUSCA3 degradation at high temperature is dependent
on ABA signaling and is regulated by the ABA/GA ratio. Plant Signal. Behav. 2016, 11, e1247137.
[CrossRef] [PubMed]

13. Ibarra, S.E.; Tognacca, R.S.; Dave, A.; Graham, I.A.; Sánchez, R.A.; Botto, J.F. Molecular mechanisms
underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant Cell Environ. 2015, 39, 213–221.
[CrossRef] [PubMed]
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