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Long-term exposure to crystalline silica particles leads to silicosis characterized by
persistent inflammation and progressive fibrosis in the lung. So far, there is no specific
treatment to cure the disease other than supportive care. In this study, we examined the
effects of metformin, a prescribed drug for type || diabetes on silicosis and explored the
possible mechanisms in an established rat silicosis model in vivo, and an in vitro co-
cultured model containing human macrophages cells (THP-1) and human bronchial
epithelial cells (HBEC). Our results showed that metformin significantly alleviated the
inflammation and fibrosis of lung tissues of rats exposed to silica particles. Metformin
significantly reduced silica particle-induced inflammatory cytokines including transforming
growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in rat
lung tissue and HBEC culture supernatant. The protein levels of Vimentin and α-smooth
muscle actin (α-SMA) were significantly decreased by metfomin while expression level of
E-cadherin (E-Cad) increased. Besides, metformin increased the expression levels of
phosphorylated adenosine 5′-monophosphate (AMP)-activated protein kinase (p-AMPK),
microtubule-associated protein (MAP) light chain 3B (LC3B) and Beclin1 proteins, and
reduced levels of phosphorylated mammalian target of rapamycin (p-mTOR) and p62
proteins in vivo and in vitro. These results suggest that metformin could inhibit silica-
induced pulmonary fibrosis by activating autophagy through the AMPK-mTOR pathway.
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INTRODUCTION

Silicosis is an important occupational disease and characterized by persistent lung inflammation and
progressive fibrosis, which may eventually cause respiratory failure (Sayan and Mossman, 2016; Li
et al., 2017). Inhaled silica particles can cause injury of lung macrophages and epithelial cells
triggering an inflammatory response. Inflammation is a critical a pathogenic process of silicosis.
Repeated inflammatory reactions lead to the recruitment and accumulation of inflammatory cells
which secrete high levels of proinflammatory and profibrotic cytokines, such as transforming growth
factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) (Fujimura, 2000;
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Dong and Ma, 2016). Higher level of cytokines further induces
epithelial-mesenchymal transition (EMT), a process in which
epithelial cells gradually lose their epithelial characteristics and
acquire the mesenchymal phenotype, such as down-regulation of
E-cadherin (E-Cad) and up-regulation of Vimentin. EMT is one
of the important driving forces behind fibrosis through
promoting the abnormal deposition of extracellular matrix
(ECM) and consequent tissue remodeling and fibrotic scarring
(Camara and Jarai, 2010; Stone et al., 2016; Rout-Pitt et al., 2018;
Sun et al., 2019).

Autophagy is a vital regeneration process to maintain the
balance of the intracellular environment through cleaning the
own damaged cellular components and participating in cell
proliferation and apoptosis (Mizushima et al., 2011).
Autophagy has been found to play a vital role in myocardial,
skin, liver, and renal fibrosis, especially in lung fibrosis (Chen S.
et al., 2015). Recent studies suggested that autophagy can reduce
the expression of fibrogenic factors and inhibit the deposition of
collagen in fibroblasts (Hernandez-Gea et al., 2012). In addition,
autophagy alleviates the silica-induced pulmonary fibrosis by
decreasing apoptosis of alveolar epithelial cells in silicosis
(Chen S. et al., 2015).

Autophagy and mitochondrial homeostasis are modulated by
AMP-activated protein kinase (AMPK) which is a serine/
threonine-protein kinase. It has been found that the AMPK
signaling pathway coordinates the induction of autophagy by
inhibiting mammalian target of rapamycin (mTOR) (Mihaylova
and Shaw, 2011). AMPK inhibits mTORC1-dependent ULK
activity by phosphorylating S317 and S777, leading to the
activation of autophagy (Lawrence and Nho, 2018) and
suppressing mTORC1 via its phosphorylation activates
autophagy indirectly (Tavakol et al., 2019).

AMPK has been recognized as a cellular bioenergy sensor and
metabolic regulator on the various metabolic stresses (Ha et al.,
2015; Herzig and Shaw, 2018; Rangarajan et al., 2018). AMPK has
been found to be a pivotal molecule that modulate the
fibrogenesis by inhibiting inflammatory injury, ECM secretion,
and the induction of effector cells (Jiang et al., 2017).

Drug repurposing or repositioning for different common and
rare diseases is an efficient way for drug discovery because of low
cost in drug development by avoiding clinical trials and de-risked
compounds (Pushpakom et al., 2019). Metformin is a common
biguanide antidiabetic drug for type 2 diabetes treatment.
Mechanistically, metformin elicits pleiotropic effects mainly
via activating AMPK (Tsaknis et al., 2012; Sato et al., 2016).
Evidence has shown that metformin has anti-inflammatory
effects and anti-fibrosis effects. Metformin has been found to
be able to inhibit cardiac fibrosis induced by pressure overload in
vivo and reduce collagen synthesis in cardiac fibrosis probably via
inhibition of the TGF-β/Smad3 signaling pathway (Xiao et al.,
2010). Moreover, metformin prevents airway remodeling in a
mouse model of bronchial asthma, indicating its potential anti-
fibrotic properties (Park et al., 2012). A recent study found that
metformin can effectively reverse bleomycin-induced pulmonary
fibrosis, suggesting that metformin has effects on idiopathic
pulmonary interstitial fibrosis (Gamad et al., 2018). Since
silicosis is characterized mainly by pulmonary fibrosis, we

speculated that metformin may have therapeutic effects on this
disease.

In this study, we explored the effects of metformin on the
silicosis for which we established the rat silicosis model as well as
an in vitro co-culture system harboring a human macrophages
cells and human bronchial epithelial cells treated the with silica
particles and metformin. We then investigated the pathological
changes in silicosis rat and cell co-cultured model with and
without metformin treatment and examined the inflammatory
responses, EMT and particularly the autophagy pathways using
ELISA and Western blotting. Results showed that metformin
regulates autophagy through the AMPK-mTOR pathway to
reduce silica particle-induced fibrosis.

METHODS AND MATERIAL

Reagents and Antibodies
Silica particles (0.5–10 μm) were purchased from Sigma Aldrich
(S5631, Shanghai, China). Standard suspensions of 50 mg/ml
silica particles were prepared in 0.9% normal saline and
autoclaved at 120°C for 2 h. Metformin was purchased from
Sino-US Shanghai Squibb Pharmaceutical Co., Ltd. (Shanghai,
China), and dissolved in 0.9% physiological saline by gavage.
RIPA buffer, PMSF, BCA Protein Assay kit and Ad-GFP-LC3B
were purchased from Beyotime Biotechnology (C3006, Shanghai,
China). Compond C was purchased from Selleck Chemicals
(S7840, Houston, United States). Goat anti-rabbit IgG H&L
(Alexa Fluor® 488) and Goat anti-mouse IgG H&L (Alexa
Fluor® 594) and primary antibodies α-SMA (ab32575),
Beclin1 (ab207612) were purchased from Abcam (Cambridge,
United Kingdom), E-cadherin (14472), Vimentin (5741S), LC3B
(3868), mTOR (2983S), p-mTOR (2971S), AMPK (5831S),
p-AMPK (50081S) were purchased from CST (Beverly, MA,
United States). IRDye 680RD Goat anti rabbit (926-68071)
and IRDye 800RD Goat anti Mouse (926-32210) secondary
antibodies were purchased from Li-COR (Nebraska,
United States).

In Vivo Experiment
Animals and Teatment
Forty-eight male Wistar rats (200–220 g, 6–8 weeks old) were
purchased from Jinan Pengyue Experimental Animal Breeding
Co., Ltd. (Jinan, China). All animals were housed under specific
pathogen-free (SPF) conditions with free access to water and
food. The ethical committee of Shandong Academy of
Occupational Health and Occupational Medicine and the Frist
Medical University approved the use of the experimental animals.
The animal care and experimental protocol was approved by the
ethical committee of Shandong Academy of Occupational Health
and Occupational Medicine and Shandong First Medical
University. Rats were randomly divided into six groups with
eight rats in each, maintained under 12:12 h light-dark conditions
at 23 ± 2°C and relative humidity 40–70%. Appropriate measures
were taken using pain management protocol to reduce pain in
animals, and the relief of pain and distress received careful
attention during the experiment.
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Based on reported toxicity of metformin in rats (Quaile et al.,
2010) and a previous study (Gamad et al., 2018), all rats were
randomly divided into six groups with eight rats in each
including: negative control group, metformin control group
(400 mg/kg/day), silica modal group and three metformin
treatment groups (100, 200, 400 mg/kg/day). The µm-sized
silica particles were prepared with normal saline as a 50 mg/
ml silica suspension. The silica model group and three metformin
treatment groups were injected with 1 ml (50 mg/kg) silica
suspension into the lung once using a non-exposed tracheal
intubation, and the rats in the negative control group and
metformin control group were injected with the same volume
of normal saline solution. In our previous studies, we found the
treatment regime with dosage of silica particle at 50 mg/kg for
28 days yields clear manifestation of silicosis in rats (Sai et al.,
2019; Pang et al., 2021). After being exposed to silica for 28 days,
the rats in three metformin treatment groups were given a daily
intragastric administration of 100, 200, 400 mg/kg metformin
and metformin control group were given a daily intragastric
administration of 400 mg/kg metformin for another 28 days. The
rats in the negative control and silica model groups were treated
with saline only. After treatment with metformin for 28 days, all
the rats in each group were euthanized with an overdose of
150 mg/kg sodium pentobarbital (Merck and Co., Inc.) via
intraperitoneal injection, and death in all rats was via
observation of the cessation of respiration and palpation of the
heartbeat. The lungs of each rat were harvested and used for the
animal experiment (Supplementary Figure S1A).

Histopathological Observation
The lung tissues of rats in each group were isolated and fixed by
4% formaldehyde embedded in paraffin followed by dehydration,
embedding in paraffin, and slicing onto 5 μm thick sections. Then
the slides were stained with Hematoxylin and Eosin (H&E) and
Masson trichrome. The pathological changes were observed
under an optical microscope to examine the inflammatory
infiltration, the integrity of the alveolar structure and collagen
deposition under an optical microscope. The degree of alveolitis
and pulmonary fibrosis was evaluated according to the scoring
system outlined in Szapiel et al. (1979). Alveolitis was graded
using the following criteria: None (0), no alveolitis; mild (1+),
thickening of the alveolar septum by a mononuclear cell infiltrate;
moderate (2+), a more widespread alveolitis; severe (3+), a diffuse
alveolitis. The extent of fibrosis was graded using the following
criteria: none (0), no fibrosis; mild (1+), focal regions of fibrosis,
alveolar architecture has some distortion; moderate (2+), more
extensive fibrosis and fibrotic still focal; severe (3+), widespread
fibrosis, confluent lesions with extensive derangement of
parenchymal architecture.

Immunohistochemistry of Lung Tissue
The lung tissue sections were deparaffinized, and antigen
retrieved using citrate buffer solution. The sections were
incubated with 3% H2O2 for 20 min at room temperature to
eliminate endogenous peroxidase activity. After blocked with 3%
BSA for 30 min, tissue sections were incubated with primary
antibodies specific to E-Cad, α-SMA, Vimentin and LC3

overnight at 4°C, followed by incubation with horseradish
peroxidase (HRP) labeled secondary antibody for 1 h at room
temperature. After using a DAB kit for color development, the
sections were counterstained with hematoxylin for 3 min, the
image was observed by a fluorescence microscope (Olympus Co.,
Tokyo, Japan). The staining results were analyzed by Image-Pro
Plus software. Integrated optical density summation (IOD SUM)
of Vimentin, E-Cad, α-SMA and LC3 protein were measured by
Image-Pro Plus software.

Enzyme-Linked Immunosorbent Assay
The homogenate samples of rat lung tissue in each group were
centrifuged at 9,000 g at 4°C for 20 min. The supernatant samples
were analyzed for the concentrations of TGF-β1 (ER10-96), TNF-α
(ER02-96) and IL-1β (ER01-96) (Biokits Technologies Inc., Beijing,
China) using rat ELISA assay kits following manufacturer’s
instructions. And the total protein concentration determined
were standardized using the Coomassie blue staining kit (Nanjing
Institute of Biological Engineering, Nanjing, China). The absorbance
was measured at 450 and 570 nm using a spectrophotometer. The
results were expressed in pg/mg protein.

Western Blot Analysis
Total protein was extracted by homogenization in ice-cold RIPA
bufferwith 1mMPMSF.Homogenateswere centrifuged for 15min at
12,000 g. Protein concentrations in the supernatants were calculated
using a BCAProteinAssay kit. The protein extractedwas separated by
SDS-PAGE and then electrotransferred to PVDF membrane (Merck
KGaA, Darmstadt, Germany). The membranes were initially blocked
with 5% non-fat dry milk in phosphate-buffered solution (PBS) for
1 h, and subsequently incubated with primary antibody against,
including α-SMA (1:1,000), E-Cad (1:1,000), Vimentin (1:1,000),
Beclin1(1:1,000), LC3B (1:1,000), mTOR (1:1,000), p-mTOR (1:
1,000), AMPK (1:1,000), p-AMPK (1:1,000) incubated overnight at
4°C. Blots were washed for three times with Tris-Buffered Saline and
0.1% Tween 20 (TBST) and followed by IRDye 680RD (1:5,000) and
IRDye 800RD (1:5,000) secondary antibodies for 1 h at room
temperature. Finally, the densities were scanned by Li-Cor and
quantified using the Image Studio Software.

In Vitro Experiment
Cell Culture
The bronchial epithelial cell line HBEC was presented by the
Centre for Clinical Research of Queensland, Australia. And the
THP-1 cell line was obtained from the American Type Culture
Collection (ATCC) (Manassas, VA, United States), and were
maintained at 37°C with 5% CO2. The HBEC was cultured in
PneumaCult-ExPlus Medium (05401, Stemcell Technologies,
Canada) supplemented 1% Antibiotic-Antimycotic (Gibco,
United States) and 0.1% Hydrocortisone Stock Solution
(Stemcell Technologies, Canada). The THP-1 cell was cultured
in RPMI 1640 (Gibco, United States) supplemented 10% FBS (BI,
Israel) and 1% Antibiotic-Antimycotic.

Cell Counting Kit-8 Assay
4 × 103/well HBEC were seeded in 96-well plates and incubated
overnight, and the medium was changed to the presence of
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various doses of metformin (0, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM) at
various time points (24, 48, and 72 h). The selection of treatment
concentrations was based previous studies (Wang et al., 2015;
Mishra and Dingli, 2019). Cell viability was measured using the
CCK-8 assay kits (CK04, Dojindo Laboratories, Kyushu, Japan)
in accordance with the manufacturer’s instructions. The
absorbance at 450 nm was measured using a microplate reader.

THP-1 Differentiation and Co-Culture
THP-1 cells (1 × 106/well) were plated in transwell inserts
(Corning, Lowell, United States) with a membrane pore size
of 4 μm and were treated with 100 ng/ml phorbol 12-myristate
13-acetate (PMA, Sigma, MO, United States) for 72 h to
differentiate into macrophage-like forms. HBEC (4 × 104/
well) were cultured alone at the bottom of 6-well plate for
2 days. Then, the cell culture inserts containing THP-1
macrophages were transferred to the plates containing
HBEC. To confirm if the metformin regulates the EMT
process of HBECs by AMPK-dependent activation of
autophagy, we added metformin and compound C (CC) an
AMPK Inhibitor. The experiment was divided into six groups:
control group (Control), metformin control group (Met), silica
group (Silica), silica and metformin intervention group (Silica +
Met), silica and CC intervention group (Silica + CC) and silica,
metformin and CC intervention group (Silica + Met + CC).

With macrophages differentiated from THP-1 cells already
seeded, 100 μg/ml of silica solution was introduced into the insert
in the silica particle group, silica and metformin group, silica and
CC group and silica, metformin and compound C group.
Meanwhile, in the metformin control group and silica and
metformin intervention group, 0.5 mM metformin solution
was added to the bottom, silica and CC group was added
1 μM CC, metformin and CC group was added 0.5 mM
metformin and 1 μM CC. The control group had no
intervention. Each sample was cultured in duplicate, and each
co-culture experiment was repeated 3 times (Supplementary
Figure S1B).

Immunofluorescence Staining
Cell slides were placed in the culture chamber. After 72 h of co-
culture treatment, the HBEC were washed three times with
phosphate-buffered saline (PBS), fixed with 4%
paraformaldehyde, and then blocked with blocking buffer
(P0260, Beyotime biotechnology, Shanghai, China) for 1 h at
room temperature. The cells were then incubated with E-Cad,
Vimentin and α-SMA at a dilution of 1:200 overnight at 4°C,
followed by incubation with secondary antibodies (1:500) for 1 h
at room temperature. 4′,6-diamidino-2-phenylindole (DAPI) was
used for nuclear staining. Finally, cells were observed and
photographed by a fluorescence microscope (Olympus, Tokyo,
Japan). The mean fluorescence was detected by the ImageJ
software.

Enzyme-Linked Immunosorbent Assay
After receiving the indicated interventions for 72 h, the levels of
TGF-β1 (EH03-96), TNF-α (EH02-96) and IL-1β (EH18-96,
Biokits Technologies Inc., Beijing, China) in the cell

supernatant of HBEC in each group were determined using
ELISA as per the manufacturer’s instructions. Then the total
protein concentration was determined and standardized using
the Coomassie blue staining kit (Nanjing Institute of Biological
Engineering, Nanjing, China). The absorbance was measured at
450 and 570 nm using a spectrophotometer. The results were
expressed in pg/mg protein.

Ad-GFP-LC3 Transfection
HBECs (4 × 104/well) were cultured alone at the bottom of 6-well
plate for 24 h. After a wash with fresh culture medium, cells were
transfected with Ad-GFP-LC3 adenovirus at aMOI of 100 in 2 ml
culture medium for 48 h at 37°C. And after 72 h intervention by
co-culture system, HBEC cells were observed and photographed
by a fluorescence microscope.

Western Blotting Analysis
After the cell co-culturing, HBEC were washed with cold
phosphate-buffered saline (PBS). The proteins were
extracted using RIPA buffer with 1 mM PMSF. Protein
concentrations were calculated using a BCA Protein Assay
kit. Samples containing equivalent amounts of lysate protein
(30 μg) were separated on SDS-PAGE and transferred to a
PVDF membrane. Western Blotting was used to detect the
effect of the co-culture model of silicosis on the expression of
EMT-related proteins (E-Cad, Vimentin, α-SMA), autophagy-
related proteins (LC3B, Beclin1, p62) and AMPK, p-AMPK,
mTOR and p-mTOR.

Statistical Analysis
Statistical analyses were performed using SPSS 22.0 software
(IBM Corp.). All data are shown as the mean ± SD. And all
data were checked for normality and homoscedasticity,
differences between groups were performed using one-way
ANOVA followed by LSD-test, while Dunnett’s method was
used for variance differences. Non-parametric data was
represented by median and to analyze the data using Kruskal-
Wallis analysis of variance. When statistical significance is
obtained, the rank-based Mann–Whitney U-test be used to
compare the groups. The p values < 0.05 were regarded as
statistically significant.

RESULTS

Metformin Moderates the Effects of Silica
Exposure on Body Weight and Lung Organ
Coefficient
The weight of the rats after exposed to silica particles was
considerably reduced (about 15%) when compared with that
in rats from control group. Compared with the silica group,
the weight of animals in the metformin treatment groups
increased significantly (p < 0.05). The lung organ coefficient of
the silica group was significantly higher than the control group,
while the lung organ coefficient was significantly reduced after
metformin treatment (p < 0.05) (Figure 1).
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Metformin Effectively Alleviates Pulmonary
Inflammation and Fibrosis Mediated by
Silicon Dioxide in Rats
HE staining results showed that the rats in the negative control group
and the metformin control group have an intact lung structure, with
normal alveolar septa and no obvious inflammatory changes
(Figure 2A: a-b). However, the lung tissues of the rats from silica
group (Figure 2A: c) showed a severe inflammatory response
indicated by the thickness of alveolar septal increased considerably,
neutrophils infiltration and monocytes around the alveolar stroma,
mainly macrophages. In contrast, after metformin treatment for
28 days, alveolitis was significantly reduced, the alveolar structure
was significantly improved, and alveolar inflammation was also
significantly relieved (Figure 2A: d-f). Using the Szapiel (Szapiel
et al., 1979) method, we quantified alveolar inflammation and the
results showed that the alveolar score of the silica group was almost
2 times higher than the rats from negative control group. However,
after metformin treatment, even at the concentration of 100mg/kg,
the alveolar inflammation score was about 25% lower than in the silica
group (p < 0.05). The inflammation scores were decreased in a dose-
repose pattern (Figure 2C). Masson staining indicates the degree of
pulmonary fibrosis by staining collagen fibers. Collagen deposition
(blue areas) in the lungs of rats from the silica group was significantly
increased, compared with the control and metformin group
(Figure 2B: c). However, with metformin treatment, inflammatory
cells and the accumulation of collagen fiberswere significantly reduced
(Figure 2B: d-f). Quantitative analysis showed that the pulmonary
fibrosis score of the silica group was significantly higher than the
negative control group. However, the pulmonary fibrosis scores
decreased from 2.8 of the silica group to 2, 1.8, and 1.5 after
treatment with metformin at 100, 200, and 400mg/kg (p < 0.05).
(Figure 2D).

Metformin Reduces Silica Particle-Induced
Inflammation by Inhibiting Inflammatory
Cytokines TGF-β1, TNF-α, and IL-1β in Lung
Tissues
As shown in Figures 3A-C, TGF-β1, TNF-α and IL-1β in lung
tissues of rats from control and metformin group showed a basal
level less than 500 pg/mg protein. Exposure to silica particles
caused significantly increase of these cytokines on the 56th days
(p < 0.05). However, metformin treatment led to a dose-response
reduction of the inflammatory cytokines (p < 0.05). Metformin
treatment at 100 mg/kg led to about 30, 20, and 40% reduction of
TGF-β1, TNF-α, and IL-1β, respectively. Higher concentration of
metformin (400 mg/kg) caused over 50% reduction of these
cytokines. This indicates that metformin inhibits the
expression of inflammatory cytokines in rat lung tissue caused
by silica, thereby reducing alveolar inflammation.

Metformin Reversed Silica-Induced EMT in
the Lung of Rats
E-Cad, α-SMA and Vimentin which are hallmark proteins for EMT
were measured by the Western Blot and Immunohistochemistry.

Rats with Metformin treatment only showed similar level of these
proteins in lung tissues as that in control group. In the lung tissue of
rats from the silica group, the expression level of E-Cad was reduced
about three quarters while α-SMA and Vimentin were increased
about 3 and 4 times, respectively, compared with the rats from
control group. However, in silicosis rats treated with metformin, the
expression level of E-Cad but α-SMA and Vimentin were
significantly recovered in a dose-response relation with the
concentration of metformin compared with the silica group (p <
0.05) (Figures 3D,E). These suggested that metformin could inhibit
the process of EMT.

Metformin Inhibits Pulmonary Fibrosis by
Activating Autophagy via the AMPK-mTOR
Signaling Pathway
Recent studies have suggested the contribution of autophagy to
the benefit of metformin. Therefore, we explored the involvement
of autophagy in the effects of metformin on silicosis by assessing
the expression of p62, Beclin 1 and LC3. The results showed silica
dust treatment almost 30% decrease of p62 and, 30% increase of
Beclin1 and LC3, respectively, in comparison with rats from
control group. Treatment of metformin led to further significant
reduction of p62 and increase of Beclin1 and LC3 (p < 0.05).
These results indicate that silica exposure could induce autophagy
which was promoted further by metformin treatment.

And we then examined the p-AMPK, AMPK and p-mTOR,
mTOR by WB. The results showed that there was no difference
between the rats in control and metformin only group in the
protein level of p-AMPK and p-mTOR. Rats from silica dust
group showed lower level of p-AMPK but higher in p-mTOR
compared with rats from the control and metformin only group
(p < 0.05). However, metformin treatment resulted in one time
increase of the expression level of p-AMPK. And meanwhile
p-mTOR was obviously decreased in a dose-response manner
compared with the silica group (p < 0.05) (Figure 4A).

Metformin Inhibit EMT Process in vitro
To identify suitable dosage levels, we first tested the cytotoxicity
of metformin on HBECs with different concentrations of
metformin (0, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM) for 24, 48, and
72 h. The dosage selection was referred to previous studies (Wang
et al., 2015; Guo et al., 2016), in which the cytotoxicity of
metformin was tested at the concentration 0–50 mM. As
shown in Figure 5A, metformin at 0.1–0.5 mM had no
significant effect on cell growth at all time intervals.
Compared with control group, the viability of HBEC
incubated with 1, 2, 5, and 10 mM of metformin were both
significantly reduced and less than 85% on the 24, 48 and 72 h
(p < 0.05). Therefore, 0.1, 0.25, and 0.5 mM of metformin were
used for following in vitro experiments. After THP-1 cells
differentiated into macrophages, 100 μg/ml of silica solution
was introduced into the insert in the silica group and
metformin group. Meanwhile 0.1, 0.25 and 0.5 mM metformin
was added to the bottom in metformin group. The cells were
cultured for 72 h. E-Cad, α-SMA and Vimentin were measured to
assess the effect of metformin on EMT. TheWB results showed silica
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caused an over 70% decrease of E-Cad which was recovered
significantly by treatment of metformin. Compared with control
cells, the expression of α-SMA and Vimentin was increased more

than 2 times by silica treatment. However, co-treatment of
metformin at 0.1, 0.25 and 0.5 mM led to a significant decrease
of these two proteins in a dose-response manner (Figure 5B).

FIGURE 1 |Metformin moderates the effects of silica exposure on rat body weight and lung organ coefficient. The (A) body weight and (B) lung coefficient of the
rats exposed to silica particles considerably reduced (about 15%) and significantly increased, respectively, when compared with that in rats from control group.
Metformin treatment recovered the body weight and lung coefficient with significant changes. All the data are presented as mean ± SD (n � 8 for each group). *p < 0.05,
compared to the control group; #p < 0.05, compared to silica group.

FIGURE 2 |Metformin reduces the inflammation and collagen accumulation in the lung tissue of silicosis rat caused by silica. (A)HE staining of lung tissues (200 ×mag.) The
red arrows point to the inflammatory cells. The fibroblasts are labeledwith black arrows. (B)Masson trichrome staining of collagen on lung sections (200 ×mag.). The yellow arrow
points to the collagen. (C-D)Quantitative analysis of rat alveolitis and fibrosis score. aControl group; bMetformin treatment group; c Silica group; d Silica+100 mg/kg metformin
group; e Silica+200 mg/kg metformin group; f Silica+400 mg/kg metformin group. *p < 0.05, compared to the control group; #p < 0.05, compared to silica group.
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FIGURE 3 | Metformin reduces the expression level of inflammatory factors and alleviates silicosis fibrosis induced by silica particles in rat lung tissue. The
expression level of (A) TGF-β1, (B) TNF-α and (C) IL-1β detected by ELISA. (D) The expressions of EMT-associated proteins expression level in the lung tissue of rats
were detected by Western blot and (E) Immunohistochemistry (200 × mag.). a Control group; b Metformin treatment group; c Silica group; d Silica+100 mg/kg
metformin group; e Silica + 200 mg/kgmetformin group; f Silica + 400 mg/kgmetformin group. All the data are presented as mean ± SD (n � 8 for each group). *p <
0.05, compared to the negative control group; #p < 0.05, compared to silica group. TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; IL-1β,
interleukin-1β; Pro, protein; EMT, epithelial-mesenchymal transition; E-cad, E-Cadherin; α-SMA, α-Smooth muscle actin; Met, metformin.
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Metformin Reduces Silica Particle-Induced
Inflammation in Human Bronchial Epithelial
Cells by Inhibiting Inflammatory Cytokines
TGF-β1, TNF-α, and IL-1β
The content of TGF-β1, TNF-α, and IL-1β in HBECs of the co-
culture system was measured using ELISA. The levels of TGF-β1,
TNF-α, and IL-1β in the silica group were significantly higher in
silica treatment compared with the control group (p < 0.05). silica
group with metformin treatment led to a 30, 50, and 40%
reduction of TGF-β1, TNF-α, and IL-1β, respectively
compared with that in the silica group (p < 0.05). To explore
the role of AMPK in the effect of metformin, we measured the
level of cytokines in cells treated with silica and CC, or silica,

metformin and CC. The results showed co-treatment of silica and
CC led to a 30% increase of these cytokines with the significant
difference in comparison with that in silica group (p < 0.05). The
increased level of cytokines was reduced significantly by
treatment with metformin (p < 0.05) as shown in Figure 6.

Metformin Regulates the Expression of
EMT-Related Proteins in Human Bronchial
Epithelial Cells of Co-Culture System
Exposed to Silica Particles
To further explore the role of AMPK in silica particle-induced
EMT and the regulation of metformin, we examined the EMT
proteins in cells treated with silica particles, metformin and CC

FIGURE 4 |Metformin activates autophagy via the AMPK-mTOR signaling pathway. (A) The protein levels of AMPK, p-AMPK, mTOR and p-mTOR, p62, Beclin1,
and LC3 in lung tissues of rats by western blot. (B) The protein levels of LC3 was determined by Immunohistochemistry (200 × mag.). a Control group; b Metformin
treatment group; c Silica group; d Silica+100 mg/kg metformin group; e Silica+200 mg/kg metformin group; f Silica+400 mg/kg metformin group. All the data are
presented as mean ± SD (n � 8 for each group). *p < 0.05, compared to the negative control group; #p < 0.05, compared to silica group. AMPK, adenosine5′-
monophosphate (AMP)-activated protein kinase; mTOR, mammalian Target of Rapamyc; LC3, microtubules associated protein 1 light chain 3; Met, metformin.
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usingWestern Blot and Immunofluorescence. The results showed
that in the silica group, the expression level of epithelial marker
E-Cad in HBECs was reduced 30% and co-treatment of silica with

CC reduced 50% of that in control cells. Treatment with CC
promoted about 20% of silica-induced Vimentin and α-SMA,
which was reduced to the similar degree by metformin with

FIGURE 5 | Different concentrations of metformin affect cell viability and inhibit EMT process. (A) The viability of HBEC incubated with different concentrations of
metformin was detected by the CCK-8 assay. (B)Western blotting results for the expressions level of EMT-associated proteins on HBEC after co-culture with different
concentrations of metformin. All the data are presented as mean ± SD (n � 3 for each experimental group). *p < 0.05, compared to the control group; #p < 0.05,
compared to silica group. EMT, epithelial-mesenchymal transition; E-cad, E-Cadherin; α-SMA, α-Smooth muscle actin; Met, metformin.

FIGURE 6 |Metformin reduces the expression level of inflammatory factors by silica particles in HBECs. The expression level of (A) TGF-β1, (B) TNF-α, and (C) IL-
1β detected by ELISA. All the data are presented as mean ± SD (n � 3 for each experimental group). *p < 0.05, compared to the negative control group; #p < 0.05,
compared to silica group; &p < 0.05, compared to Silica + Met group; $p < 0.05, compared to Silica + CC group. TGF-β1, transforming growth factor-β1; TNF-α, tumor
necrosis factor-α; IL-1β, interleukin-1β; Pro, protein; Met, metformin; CC, Compound C.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7195899

Li et al. Metformin Attenuates Pulmonary Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 7 |Metformin regulates the expression of EMT-related proteins induced by silica particles. (A) The expression level of the expressions of EMT-associated
proteins expression level in HBEC cells were detected by Western blot and the E-Cad, Vimentin and α-SMA were detected by (B) Immunofluorescence. Scale bar,
10 μm. All the data are presented as mean ± SD (n � 3 for each experimental group). *p < 0.05, compared to the negative control group; #p < 0.05, compared to silica
group; &p < 0.05, compared to Silica + Met group; $p < 0.05, compared to Silica + CC group. EMT, epithelial-mesenchymal transition; E-cad, E-Cadherin; α-SMA,
α-Smooth muscle actin; Met, metformin; CC, Compound C.
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significant difference (p < 0.05) when compared each other as
shown in Figures 7A,B.

Metformin Activates AMPK-mTOR
Signaling Pathway to Up-Regulate
Autophagy-Related Proteins in the Silicosis
Co-culture Model
To confirm if the regulation of metformin on the silica particle-
induced EMT process is through AMPK-dependent activation of
autophagy, we added metformin and CC, and examined the
autophagy-related proteins p62, Beclin1 and LC3 by WB first.
The results showed there is not much change of these proteins in
HBECs of the co-culture system from control and metformin
groups. Treatment with silica only led to a 30% decrease of p62

and 40% increases of Beclin1 and LC3, which was further reduced
20% for p62 and increased 25% for Beclin1 and LC3, by co-
treatment with metformin. Cells co-treated with silica and CC
showed higher level of p62 than that of silica group but similar to
that in control cells. However, co-treatment with metformin,
silica and CC led to a 25% decrease of p62 but increase in Beclin1
(50% increase) and LC3 (25% increase) in comparison with that
in group of silica and CC as shown in Figure 8A.

Furthermore, we assessed autophagy by examining the
formation of autophagosomes using HBECs transfected with
GFP-LC3 adenovirus. As shown in Figure 8B-a and b, cells of
control andmetformin treatment only showed basal level of GFP-
LC 3 foci. Cells treated with silica particles showed higher number
of foci. (Figure 8B: c). As shown in Figure 8B: d, much more foci
were found in cells treated with silica and metformin. In addition,

FIGURE 8 |Metformin activates autophagy via the AMPK-mTOR signaling pathway. (A) The protein levels of AMPK, p-AMPK, mTOR and p-mTOR, p62, Beclin1
and LC3 in HBEC were detected by western blot. (B) Fluorescence images of Ad-GFP-LC3 in HBEC cells after co-culture 72 h. GFP fluorescence indicated by green
puncta. a Control group; bMet treatment group; c Silica group; d Silica+0.5 mM Met group; e Silica+0.1 μMCC group; f Silica+0.5 mMMet +0.1 μMCC group. Scale
bars, 30 μm. All the data are presented as mean ± SD (n � 3 for each experimental group). *p < 0.05, compared to the negative control group; #p < 0.05, compared
to silica group; &p < 0.05, compared to Silica + Met group; $p < 0.05, compared to Silica + CC group. AMPK, adenosine5′-monophosphate (AMP)-activated protein
kinase; mTOR, mammalian Target of Rapamyc; LC3, microtubules associated protein 1 light chain 3; Met, metformin; CC, Compound C.
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metformin enhanced LC foci in the cells treated with silica
and CC.

Then, we measured the expression of p-AMPK, AMPK,
p-mTOR and mTOR using WB. The results showed that the
p-AMPK expression was decreased about 50%, while the
p-mTOR expression was increased about 40% of control cells
in the silica group, with statistically significant differences
compared with the control group (p < 0.05). Treatment with
CC with silica particles exacerbated the change of p-AMPK and
p-mTOR expression with significant difference (p < 0.05).
However, co-treatment Metformin with silica or silica and CC
significantly recovered the level of these proteins.

DISCUSSION

Silicosis is one of the important occupational respiratory diseases
caused by inhalation of respirable crystalline silica (Fernandez
Alvarez et al., 2015). As one of the most common occupational
disease, silicosis occurs not only in developing countries because
of poor protection facility and regulations, but also in developed
countries in recent years among the stone masons (Rees and
Murray, 2007). Although great efforts have been made in
prevention and treatment, there has been no effective
therapeutic drugs so far and lung transplantation has been still
the effective option for curing silicosis.

Silicosis is mainly caused by the deposition of silica particles in
the alveoli. Accumulated silica particles in the lung alveoli
stimulate lung microphages and epithelial cells leading to
repeated inflammation and high expression of inflammatory
cytokines such as TNF-α and IL-1, which then cause
fibroblasts producing collagen, leading to fibrosis and silicon
nodules (Pollard, 2016). For in vivo study, we set up the
animal silicosis model by exposing rats to silica particles
according to the method in our previous work (Sai et al.,
2019). Firstly, we examined the effects of metformin on body
weight of the rats treated with silica. Our results showed that after
being exposed to silica for 56 days, the weight of the rats exposed
to silica particles reduced about 15% compared with the rats of
control group (Figure 1A), and the lung coefficient was
significantly increased (Figure 1B). HE staining results showed
that the lung tissues of the rats from silica group exhibited severe
inflammation indicated by the destroyed alveolar structure and a
large number of infiltrating inflammatory cells (Figure 2A).
Masson staining of lung tissue sections showed that a large
amount of collagen deposition and occurrence of silicotic
nodule, indicating pulmonary fibrosis occurred after exposure
to silica particles (Figure 2B). In addition, in order to simulate the
process of silicosis, a modified co-culture cell model in vitro was
established according to our published study (Pang et al., 2021).
Treatment with silica caused an increased level of pro-
inflammatory factors including TGF-β1, TNF-α and IL-1β in
lung tissue of rats and medium of the co-culture system. These
results indicted an obvious inflammatory response induced by
silica particles (Figures 3A–C, Figures 6A–C).

Although the mechanism of silicosis fibrosis remains to be
elusive, EMT is a recognized as a critical process leading to

fibrotic changes. EMT plays an important role in many lung
diseases such as chronic obstructive pulmonary disease and
pulmonary fibrosis (Jolly et al., 2018). During EMT, epithelial
cells undergo morphological changes including cell-cell
adhesions loosed, epithelial markers down-regulated,
mesenchymal markers up-regulated, and an elongated
fibroblast-like morphology acquired (Gabasa et al., 2017; Li
et al., 2018). EMT is complex process mediated by several key
transcription factors and finely regulated through epigenetic and
post-translational modifications (Serrano-Gomez et al., 2016).
Despite the complex and transient nature of EMT, several
hallmarks have been identified for EMT assessment including
epithelial markers such as E-Cad and mesenchymal markers
including Vimentin and α-SMA which were investigated in
this study. The results showed that the expression of E-Cad
decreased and mesenchymal markers Vimentin and α-SMA
increased in rat lung tissues and HBEC cells exposed to silica
(Figure 3D, Figure 7).

The inhaled silica particles are engulfed by alveolar
macrophages and subsequently lead to the death of alveolar
macrophages during which intracellular silica, cytotoxic
oxidants and inflammatory cytokines are released (Davis et al.,
1996; Yang et al., 2016; Barohn et al., 2019). These factors
promote the proliferation of lung fibroblasts, the production of
collagen and eventually lead to the formation of fibrosis (Guo
et al., 2019). Autophagy may play an important role in the lung
fibrosis (Racanelli et al., 2018), but the underlying mechanisms
remain elusive. Autophagy is a fundamental intracellular
catabolic process for recycling damaged organelles and
proteins via the lysosome-mediated degradation pathway
(Zhao et al., 2020). This process is essential for maintaining
cellular homeostasis (Tseng et al., 2019). Beclin 1 is a mammalian
homolog of yeast Atg6, which is the first mammalian autophagy
protein to be described (Liang et al., 1998). Free Beclin 1 is an
initiator of autophagy and thus extensively used as a marker for
monitoring the onset of autophagy (Cao and Klionsky, 2007).
Therefore, as an important regulator of autophagy, the expression
level of Beclin 1 represents autophagy activity to some extent (Xu
G. et al., 2019). LC3 is a mammalian homolog of yeast Atg8 and
has LC3-I and LC3-II two subforms. The conversion of LC3-I
into LC3-II is a key step in autophagosome formation
(Mizushima et al., 2010). Therefore, the ration of LC3-II/LC3-
I is commomly used to assess the autophagy activity. p62 has been
known as one of the selective substrates for LC3. When
autophagy occurs, p62 first binds to the ubiquitinated protein
and then combines with LC3-II localized on the inner membrane
of the autophagic vacuole to form a complex (Komatsu and
Ichimura, 2010). In this study, we analyzed the expression of the
autophagy-associated protein LC3-II/LC3-I, Beclin1 and p62 in
lung tissues of the rats and HBEC cells. Our results showed that
LC3 and Beclin1 in rats and HBECs were significantly increased
and p62 decreased after being exposed to silica (Figure 4,
Figure 8A). This result clearly indicated silica-induced
autophagy activity. Supportively, Jessop et al. (2016) showed
that silica exposure causes increased expression of LC3-II
in vitro and enhanced autophagic activity in alveolar
macrophages isolated from silica-exposed mice. Chen et al.
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(2013) found that silica dust exposure can induce autophagy in
the lung tissue of rats. Duan et al. (2014) demonstrated that
Nano-SiO2 could induce inflammatory response, activate
autophagy, and eventually lead to endothelial dysfunction.
Previous studies indicated that autophagy in the macrophages
can be activated by silica, characterized as the accumulation of
autophagosomes, which may be associated with the silicosis
progression (Chen S. et al., 2015; Liu et al., 2016). (Cheng
et al., 2019) found that SiO2 induces activation of autophagy
in human pulmonary fibroblasts cells. Recently, the activation of
autophagy, a lysosome-dependent cell degradation pathway, by
silica nanoparticles has been identified in alveolar epithelial cells
(AECs) (Zhao et al., 2019). Additionally, Li et al. (2021)
demonstrated that SiO2 exposure can induce pulmonary
fibrosis along with autophagy both in vivo and in vitro, and
autophagy might play a protective role in the progression of
pulmonary fibrosis.

AMPK is a key energy sensor and regulates cellular
metabolism to maintain energy homeostasis and restore
energy balance at the cellular and physiological levels during
metabolic stress (Garcia and Shaw, 2017). mTOR is one of the
downstream targets of AMPK, and activation of AMPK can result
in inhibition of mTOR signaling (Xu et al., 2012). Studies had
shown that AMPK activation could inhibit TNF-α, IL-1β, and IL-
6 synthesis in macrophage (Sag et al., 2008; Yang et al., 2010;
Galic et al., 2011). AMPK exerts a significant anti-inflammatory
effect via suppression of the NF-κB signaling pathway (Salminen
et al., 2011). In addition, emerging evidence indicated that AMPK
plays an important role in autophagy (Bujak et al., 2015;
Tamargo-Gomez and Marino, 2018) through the AMPK/
mTOR signaling pathway (Kim et al., 2011; Wang et al.,
2019). Recent studies found that AMPK functions are strongly
associated with fibrogenesis (Jiang et al., 2017). Increasing
evidence has revealed that AMPK protects against fibrosis in
the heart (Zhang et al., 2011), liver (Yang et al., 2015), lung (King
et al., 2012), kidney (Cavaglieri et al., 2015), and skin (Takata
et al., 2014). In this respect, loss or reduction of AMPK has been
implicated in diabetes mellitus, obesity and aging (Burkewitz
et al., 2014; Southern et al., 2017; Rana et al., 2020). To explore the
possible role of AMPK in silicosis, we investigated the expression
of AMPK and mTOR. Our study showed that the p-AMPK
expression was decreased, and then the autophagy regulatory
protein p-mTOR was activated in silica group (Figure 4A,
Figure 8A). Up to now, the role of AMPK in silicosis has not
been reported. However, in IPF, within the regions of active
fibrosis, a significant decrease in AMPK activity was observed
together with reduced activation of the Thr172 (Rangarajan et al.,
2018). It is noted that AMPK is a positive regulator of autophagy
while in our study silica exposure caused an augment of the
autophagy activity. The observed autophagy activity induced by
silica may be attributed to several factors including engulfment of
pre-autophagosomal structure, impaired autophagic degradation
by silica. In addition, pro-fibrogenic factors BCL-binding
component 3 (BBC3) and monocyte chemoattractant protein-
1-induced protein 1 (MCP1P1) during fibrotic process may also
contribute to the silica-induced autophagy (Liu et al., 2016; Liu
et al., 2017). These factors may override the regulatory effects of

AMPK and promote autophagy activity by silica. However, this
speculation need to be confirmed by more research work.

Drug design and development are extremely expensive and
time consuming. Recent studies showed that a drug may have
effects on different diseases. Therefore, identification of new use
or repurposing of an approved drug is becoming more attractive
approach in disease treatment (Pushpakom et al., 2019). Derived
from galegine, a natural product from the plant Galega officinalis,
metformin is a commonly prescribed drug to treat type 2 diabetes
globally. Interestingly, recent studies have found that metformin
can effectively reverse bleomycin-induced pulmonary fibrosis
(Gamad et al., 2018). Although the causes of silicosis and
idiopathic pulmonary fibrosis are different, they share
similarities in the pathological changes of lung tissue and
common mechanism of pulmonary fibrosis. We speculated
that metformin may have beneficial effects on silicosis.
Therefore, in this study we investigated the effects of
metformin on silicosis using in vivo and in vitro models.

As a unique anti-diabetic drug, metformin usually does not
cause hypoglycemia (Nasri and Rafieian-Kopaei, 2014). Cassano
et al. (Cassano et al., 2020) demonstrated that compared with the
control group receiving a normal diet of rats, there was no
statistical difference in the effect of metformin on blood
glucose levels. And Luo et al. (2021) reported that after a daily
intragastric administration of 500 mg/kg metformin for 35 days,
there was no changes in blood glucose in rats, compared with the
control group. We treated the rats with metformin at 100, 200,
and 400 mg/kg/day for another 28 days. The dosage selection of
metformin was based on reported toxicity of metformin in rats
(Quaile et al., 2010) and a previous study (Gamad et al., 2018).
The dosage range equals to human effective dose of 16, 32, and
64 mg/kg/day, respectively, according to the published
conversion method (Nair and Jacob, 2016). We then examined
the various parameters associated with inflammatory responses
and fibrosis and compared them with those among the rats with
different treatment. After treatment with different doses of
metformin, the weight of the rats markedly increased, and the
lung coefficient decreased to varying degrees. Metformin
treatment only did not show any effects on body weight and
lung coefficient. These results suggested that metformin
recovered the general adverse health effects induced by silica
particles. After metformin treatment, inflammatory cells and
nodules and collagen fibers in the lung tissues were
significantly reduced (Figures 2A,B). Quantitative analysis
indicated metformin induced a 20–25% reduction of
inflammation infiltration and fibrosis and the effects showed a
dose-response manner among the rats received metformin at
different concentration. The result suggested that metformin may
have a positive therapeutic effect on silicosis (Figures 2C,D)
through alleviating the inflammation and fibrosis, the hallmark
processes leading to silicosis. We then examined the pathways
involved in these processed to explore the mechanisms
underlying the effects of metformin.

Macrophages ingestion of silica and release inflammatory
cytokines, such as TNF-α, IL-1, and TGF-β. These in turn
provoke recruitment of inflammatory cells into the alveolar
wall and alveolar epithelial surface, initiating alveolitis and
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inducing epithelial to mesenchymal transition (Mossman and
Churg, 1998; Robledo and Mossman, 1999). Studies found that
metformin attenuates PM2.5-induced inflammation (Gao et al.,
2020) and inhibits TGF-β1-induced EMT (Yoshida et al., 2020).
Our experimental results showed that after metformin treatment,
the expression of pro-inflammatory factors TGF-β1, TNF-α, and
IL-1β were significantly decreased (Figures 3A–C, Figure 6).
This suggests that metformin alleviates the inflammatory
response of silicosis through its anti-inflammatory effects.
However, after metformin treatment, the protein expression of
Vimentin and α-SMAwas significantly down-regulated, while the
E-Cad expression was up-regulated (Figures 3D,E, Figure 7).
These results suggest that metformin may inhibit silica-mediated
pulmonary fibrosis by inhibiting cellular pathways leading to
EMT. In addition to fibrotic process, EMT has been implicated in
cancer progression and metastasis. It is known that invasive
properties and metastasis are controlled by EMT (Pearson,
2019). Cell invasion and metastasis are hallmarks of cancer
development (Jiang et al., 2015). The inhibitive effect of
metformin on EMT observed in this study suggest that
metformin may have beneficial effect on cancer treatment.
Indeed, metformin has been found to be able to inhibit the
invasion and migration of various cancer cells (Chen X. et al.,
2015; Chen et al., 2020).

Some evidence demonstrated that enhancing autophagy
reduces silica-induced pulmonary fibrosis. MiR-326 inhibits
inflammation and promotes autophagy activity to alleviate
silica-induced pulmonary fibrosis (Xu T. et al., 2019). A study
suggested that dioscin reduced silica-induced apoptosis and
cytokine production by promoting autophagy, thereby exerted
anti-fibrosis effects in silica-induced pulmonary fibrosis (Du
et al., 2019). Rapamycin protects alveolar epithelial cells from
apoptosis and attenuates silica-induced pulmonary fibrosis

through the enhancement of autophagy in the mouse model
(Zhao et al., 2019). Emerging evidence indicated that autophagy
plays an import role in the beneficial effects of metformin
(Bharath et al., 2020; Ren et al., 2020).Metformin attenuates
lipopolysaccharide-induced epithelial cell senescence by
activating autophagy (Wang et al., 2021). Bharath et al. (2020)
showed that metformin enhances autophagy and normalizes
mitochondrial function to alleviate aging-associated
inflammation. Metformin alleviates oxidative stress and
enhances autophagy in diabetic kidney disease (Ren et al.,
2020). Metformin enhanced the autophagy as indicated by the
up-regulated Beclin1 and LC3 and down-regulated the expression
of p62 (Figure 4A). Immunohistochemistry results confirmed the
increased expression of LC3 after treated with metformin
(Figure 4B). The results from in vitro experiments in co-
culture system also confirmed that the expression levels of
LC3 and Beclin1 increased, and the expression of p62
decreased in HBECs (Figure 8A). In addition, we used GFP-
LC3 cells to detect the accumulation of mature LC3 by which the
GFP-LC3 signal becomes punctate (Bravo-San Pedro et al., 2017).
The results from Ad-GFP-LC3 transfected cells demonstrated
that metformin increased the number of GFP-LC3-foci
(Figure 8B). Thus, the in vivo and in vitro studies confirmed
the promoted autophagy by metformin.

Metformin was reported to activate AMPK. AMPK is a
heterotrimeric complex consisting of an α catalytic subunit,
scaffold protein β subunit, and regulatory c non-catalytic
subunit (Hardie et al., 2012). Metformin activates AMPK by
increasing the phosphorylation of the catalytic a subunit at T172
(Shaw et al., 2005). Our results showed that after treatment with
metformin, p-AMPK expression was significantly increased and
p-mTOR expression decreased in silica stimulated rat lung tissues
(Figure 4A). In vitro results showed that after 72 h of co-

FIGURE 9 | The mechanism of action of metformin against silica-induced pulmonary fibrosis. Uptake of silica by alveolar macrophages release high level of
inflammatory cytokines, and induced EMT which epithelial cells gradually lose their epithelial characteristics and acquire the mesenchymal phenotype. Metformin can
activate AMPK and inhibit mTOR, leading to autophagy induction, thereby reducing the EMT process in silicosis.
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cultivation with metformin, it was also showed that the increased
expression of p-AMPK and decreased p-mTOR compared with
silica group. On the contrary, after the intervention of CC, the
expression of p-AMPK protein was significantly down-regulated
and the expression of p-mTOR was up-regulated in HBEC cells
(Figure 8A). To confirm the involvement of AMPK/mTOR
pathway, we treated cells with CC, an AMPK inhibitor,
together with silica particles or silica plus metformin. So far,
CC remains the only small molecule that has been widely used to
study AMPK signaling and various aspects of cell physiology,
including cell proliferation, survival, and migration (Liu et al.,
2020). Yan et al. (Yan et al., 2010) found that inhibition of
AMPKα activity either by CC or by RNA interference markedly
reduced the accumulation of LC3-II. Chiou et al. (2020) indicated
that compound C treatments reduced AMPKα1 mRNA levels,
which resulted in suppressed AMPKα protein expression and
AMPKα phosphorylation in CC-treated cells. It should be noted
that although CC has been used as AMPK inhibitor for over a
decade, its inhibitive effect of CC is not specific to AMPK (Liu
et al., 2014) which means others kinase may be affected. The non-
specific effects generally occur at relatively high concentration
(over 5 µM) (Dasgupta and Seibel, 2018) and in this study we
used 1 µM to minimize the non-specific effects. Treatment of CC
led to 50% decrease of p-AMPK and about 10% increase of
p-mTOR. As expected, CC caused a depression of autophagy by
up regulating p62 and down regulating Beclin1 and LC3B.
Meanwhile immunofluorescent staining showed that CC
decreased the number of GFP-LC3-containing puncta and the
protein LC3B levels in HBEC cells (Figure 8B:e). However, GFP-
LC3 foci regained after application of metformin (Figure 8B:e).
Thus, all in vivo and in vitro data indicated that metformin exert
its anti-silicotic effects through AMPK/mTOR medicated
autophagy.

Drug repurposing has gained more and more attractions in
identifying new therapeutic way. Metformin as a threptic drug for
type 2 diabetics has been used for 60 years. Recent studies found
that metformin have benefits for other diseases including liver,
heart and renal diseases as well as cancer, obesity and even aging
(Lv and Guo, 2020). The findings in this study will undoubtedly
has clinical utility as an additional therapeutic option for patients
with silicosis especially for those co-existing with type 2 diabetes
or diseases mentioned above.

CONCLUSION

This study demonstrated that metformin has anti-silicotic
potency in rats and in vitro cultured human cells. The effects
of metformin may be due to its ability to alleviate the degree of
alveolitis and pulmonary fibrosis, inhibit epithelial-
mesenchymal transformation and alleviate the process of
silica-induced pulmonary fibrosis. In addition, we showed
that metformin can regulating autophagy through activating
AMPK and inhibiting mTOR. Based on the results of our and
others, we proposed the mechanism of action of metformin
against silica particle-induced fibrosis as shown in Figure 9.
The results from this study provide evidence that metformin

may be potential therapeutic drug for effective treatment of
silicosis.
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