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Abstract

Motivation: In the past few years, drug discovery processes have been relying more and more on computational
methods to sift out the most promising molecules before time and resources are spent to test them in experimental
settings. Whenever the protein target of a given disease is not known, it becomes fundamental to have accurate
methods for ligand-based virtual screening, which compares known active molecules against vast libraries of candi-
date compounds. Recently, 3D-based similarity methods have been developed that are capable of scaffold hopping
and to superimpose matching molecules.

Results: Here, we present InterLig, a new method for the comparison and superposition of small molecules using
topologically independent alignments of atoms. We test InterLig on a standard benchmark and show that it com-
pares favorably to the best currently available 3D methods.

Availability and implementation: The program is available from http://wallnerlab.org/InterLig.

Contact: bjorn.wallner@liu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Virtual screening (VS) is a computational technique for the discovery of
new, biologically active drug molecules. The idea behind VS is to analyze
vast databases of libraries of untested compounds with in silico methods
that should sift out the most promising leads before these are tested in ex-
perimental settings. Given the costs associated with laboratory experi-
ments, it is no surprise that huge efforts are being put in developing more
accurate methods for VS, so that fewer resources are wasted in pursuing
potential dead ends. The two main approaches to VS are structure-based
VS, where candidate ligands are docked on the structure of a known re-
ceptor, and ligand-based VS (LBVS), where the similarity of an active lig-
and is used to expand the number of potential candidate ligands.

LBVS methods are based on the assumption that structurally
similar compounds have a higher chance of binding to the same re-
ceptor (Eckert and Bajorath, 2007). The structural similarity can be
calculated by comparing 2D fingerprints of compounds or by more
accurate 3D structural alignments (Hu et al., 2018; Roy and
Skolnick, 2015) that also allow scaffold hopping (Hu et al., 2017)
and provide starting points for 3D docking. Most methods using 3D
are shape-based, representing molecules as a mixture of Gaussians
and structure comparisons as overlaps between them (Roy and
Skolnick, 2015), recently more detailed atom-level comparisons
have shown promising results (Hu et al., 2018).

In this study, we present InterLig, an open-source software for 3D-
based LBVS. InterLig uses a simulated annealing-based procedure to
map sets of atoms from two molecules in a topologically independent

fashion, which makes it particularly suited for scaffold hopping. The
simulated annealing procedure allows InterLig to compare tens of
thousands of molecules within minutes (Supplementary Table S8).
Moreover, along with the similarity score, a P-value is calculated to
assess the statistical significance. InterLig is benchmarked against two
state-of-the-art software for 3D LBVS and outperforms both accord-
ing to several standard performance measures.

2 Datasets

InterLig is benchmarked against the Directory of Useful Decoys,
Enhanced (DUD-E) (Mysinger et al., 2012) containing 22 886 active
ligands against 102 protein targets and 50 times more inactive decoys
with similar physico-chemical properties but dissimilar 2D topology.
For each protein target, a co-crystallized ligand is included in the set.
In all tests, the ‘seed ligand’ is compared against active ligands and in-
active decoys, and rank-based similarity to the seed ligand.

To account for the degrees of freedom of molecules, multiple
conformers of DUD-E ligands and decoys are generated using
OMEGA (Hawkins et al., 2010) with the ‘strict’ flag set to false and
minimum RMSD between two conformers set to 2 Å.
Approximately 300k additional ligands and 8 M additional decoys
are generated this way.

In addition, InterLig is also benchmarked against the Maximum
Unbiased Validation (MUV; Rohrer and Baumann, 2009) set, which
has been developed to correct for possible biases affecting the
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validation of LBVS methods. MUV includes 17 targets with 30 ac-
tive ligands and 15 000 inactive decoys. Since no co-crystallized lig-
and is provided, each active is used as seed once and the result is the
average of the metrics extracted for all 30 tests.

3 Results and discussion

InterLig is based on the InterComp algorithm that we recently developed
and successfully applied to the comparison of protein interfaces
(Mirabello and Wallner, 2018). It is capable of performing topologically
independent alignments of sets of atoms in a 3D space while taking into
account both the relative position and the chemical similarity of the
aligned atoms. The core of algorithm in InterLig is identical to
InterComp, the only difference is two parameters involving a cutoff dis-
tance, and the tradeoff between structural and chemical similarity. These
parameters were decided on a set not used for testing the method (see
Supplementary Material). The similarity measure used by InterLig
depends on the size of the compounds, and smaller ligands have a higher
probability to obtaining a high score by chance, the significance (P-value)
of a score is calculated by fitting an extreme value distribution to scores
for non-related ligands of different sizes (Supplementary Fig. S3).

InterLig is benchmarked using standard performance measures
for VS (see Supplementary Material) against LS-align (Hu et al.,
2018) and LIGSIFT (Roy and Skolnick, 2015), two state-of-the-art
software for 3D LBVS. LS-align has the best reported performance
on the DUD-E benchmark, while LIGSIFT performs best on the
older DUD set. To ensure a fair comparison each software was run
using the default parameters on both the regular and the multiple
conformer DUD-E benchmark. LS-align has a ‘flexible’ option to
generate its own set of conformers, however when benchmarked it
showed better performance in ‘rigid’ mode with the multiple con-
formers generated as above (Supplementary Table S7).

In the test on the regular DUD-E dataset, InterLig has signifi-
cantly (P < 0.05) larger area under the curve (AUC) and enrichment
factors (EFs) across all top rank percentages compared with both
LIGSIFT and LS-align (Table 1). The performance metrics for LS-
align are actually slightly better than those reported in the original
publication (Hu et al., 2018), most likely because how multiple
compounds with the same ID are treated. Looking per target,
InterLig has a higher AUC compared with LS-align for 60 and
LIGSIFT for 76 (out of 102) targets (Supplementary Fig. S4a).

In the test on the regular MUV dataset, InterLig is significantly
(P < 0.05) better than both LIGSIFT and LS-align on both EF and
AUC (Table 1). Furthermore, we compare InterLig to other software
that have been benchmarked on MUV set in another work
(Tiikkainen et al., 2009) and show that it outperforms them all
(Supplementary Table S6). For the multiple conformers set, InterLig
is significantly better compared with LIGSIFT and LS-align on most
EF metrics but not on AUC, where it does perform better, but not
significantly. Overall, InterLig seems to work slightly better when
no conformers are considered. Detailed target-by-target results are

available for regular (Supplementary Table S2) and multiple con-
formers (Supplementary Table S3). The results for multiple con-
formers are overall slightly better compared single conformers,
indicating that it might be worth spending some additional time gen-
erating conformers to achieve optimal performance (Supplementary
Fig. S5). However, the difference is not huge and if speed is of es-
sence it is almost as good to not generate the conformers.

It was further noted that the per target performance for InterLig
and LS-align were quite different (Supplementary Fig. S4). Thus,
there should be potential to combine the two approaches to achieve
even higher performance. To test this hypothesis, a combination of
InterLig and LS-align was constructed by using the product of the
reported p-values. Indeed, InterLig þ LS-align is superior to both in-
dividual methods (Table 1), demonstrating that the results from the
two methods are complementary.
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Table 1. Average enrichment factors (EFs) for different percentage of top hits and average area under the curve (AUC) for different sets

Set Software EF1% EF5% EF10% AUC

DUD-E LIGSIFT 16.88* 6.16* 3.95* 0.71*

LS-align 20.70* 7.19* 4.44* 0.75*

InterLig 24.75 8.37 5.11 0.78

DUD-E conformers LIGSIFT 22.18* 7.48* 4.63 (0.07) 0.75 (0.12)

LS-align 22.77 (0.07) 7.50* 4.63* 0.75 (0.07)

InterLig 23.79 8.03 4.88 0.77

InterLig þ LS 26.39 8.82 5.28 0.78

MUV LIGSIFT 4.31* 2.19* 1.75* 0.56*

LS-align 3.15* 1.57* 1.27* 0.44*

InterLig 6.06 2.82 2.13 0.64

Note: The highest values for each column are highlighted in bold.

*InterLig significantly (P< 0.05) better.
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