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Abstract: Polylactide (PLA) is among the most common biodegradable polymers, with applications
in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid)
(PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through
racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and
fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a
carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and
physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous
studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs,
proteins, and secondary molecules by various processes including micelle formation, self-assembly,
emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of
hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various
strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical
applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial
activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material
is discussed.

Keywords: polylactide; stereocomplex; biodegradable polymers; drug delivery system; biomedi-
cal applications

1. Introduction

Over the past few decades, polylactide (PLA) has emerged as a common biomaterial
in biomedical applications owing to its favorable properties, such as complete biodegrad-
ability, mechanical properties, biocompatibility, processability, and transparency [1,2]. A
PLA possesses two types of three-dimensional helical structures that twist in clockwise
(D-configured) and counter-clockwise (L-configured) directions. Since Ikada et al. first
reported stereocomplex formation between enantiomeric PLA in 1987 [3], stereocomplexa-
tion between poly(D-lactide) (PDLA) and poly(L-lactide) (PLLA) enantiomers has been
the subject of continuous study. This research has accelerated with the rapid growth of
practical use and the potential worth of PLA as a representative biodegradable polymer.
Stereocomplex crystallites with a 3/1 helical structure in the PLA material can overcome
inferior mechanical and thermal characteristics of homo-crystallites having a 10/3 helical
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structure. The combination of two enantiomeric polymers increases the melting point
(Tm) and crystallinity through the compact orientation of crystals in the material. Ul-
timately, this change in a biodegradable polymer can result in an increase in thermal
stability, mechanical strength, resistance against solvent penetration, and external forces.
Stereocomplex crystals in PLA have commonly been formed by solution blending, melt
blending, emulsion blending, precipitation into non-solvent, and supercritical fluid (SCF)
techniques [4–9]. Each method has different advantages and disadvantages regarding the
yield and stereocomplexation efficiency, processability, solubility, time, and cost.

Recently, numerous studies have reported that stereocomplex polylactide (sc-PLA)
with improved physical characteristics can be used in drug delivery and as molecular
carriers [10–12]. Nanoparticles, such as microspheres and micelles of sc-PLA, have the
advantage of controlling drug uptake and release patterns through their synthesis and
modification, as well as natural adsorption. Despite these advantages, many challenges
remain for the application of sc-PLA as a drug carrier, including inferior encapsulation effi-
ciency, low stability of hydrophilic drugs and proteins, and the burst release phenomenon.
To resolve these issues, various strategies, such as polymerization, self-assembly, surface
modification, and polymer grafting, have been studied [13–17]. This review discusses
various synthesis and processing methods for the application of sc-PLA as a drug and
molecular carrier, and it suggests future directions to stimulate the application of sc-PLA
with therapeutic molecules in drug delivery systems and biomedical applications.

2. Drug Delivery
2.1. Stereocomplexed Micelle System

Micelles exhibiting specific core–shell structures are widely applied in drug delivery
systems, because they can load a variety of drugs owing to their good loading capacity. Fur-
thermore, micelles have a higher thermodynamic stability than colloids under physiological
conditions owing to the lower critical micelle concentration. Therefore, polymeric micelles
induced by the self-assembly of amphiphilic block copolymers have been vigorously re-
searched for their biomedical roles, such as target-specific carriers, nano-bioreactors, and
non-viral gene vectors. However, polymeric micelles have limited applications because of
a short circulation time, due to their rapid excretion via urine after intravenous injection,
and difficulty in accumulation and providing sustainable drug release at the target site [18].
Strategies for chemical cross-linking of hydrophilic poly(ethylene glycol) (PEG) segments
have been proposed since the 1990s to improve the stability of polymeric micelles. Gref
et al. (1994) fabricated nanospheres composed of a core and shell formed by biodegrad-
able polymers, such as poly(lactic co-glycolic acid) (PLGA), polycaprolactone (PCL), and
their copolymers, covalently bonded with PEG [19]. The PEG coating could significantly
increase the blood circulation time of carriers by reducing their detection and opsonization
by macrophages in the reticuloendothelial system and decrease their accumulation in
the liver. In addition, this injectable nanoparticle carrier could encapsulate up to 45% of
its weight in a one-step procedure. Micelles induced by biodegradable polymers enable
the control of drug release kinetics and time, as the degradation period varies with the
molecular weight (Mn) of the polymer. Furthermore, this feature allows higher kinetic
and thermodynamic stabilities than those of a surfactant micelle with a lower molecular
weight [20]. Kang et al. reported that monodisperse stereocomplexed micelles could be
obtained by self-assembly of the PLA-PEG block copolymer [21]. This report was the
first to verify that PLA-based micelles can form stereocomplex configurations in aqueous
conditions. The micelles exhibited improved kinetic stability, as well as both physical and
chemical stabilities. In particular, secondary aggregation, which is known to be the main
problem of conventional polymeric micelles, was reduced. Figure 1a shows an atomic
force microscopy (AFM) image of a stereocomplexed micelle with a spherical shape of
approximately 46 nm diameter and a narrow size distribution. Figure 1b indicates that
the micelle has a normal X-ray diffraction (XRD) pattern and a small crystalline domain
of sc-PLA.
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Figure 1. (a) AFM image of stereocomplexed micelle induced by mixing of PEG-b-PDLA72 and
PEG-b-PLLA73 at equal proportions. (b) XRD patterns of PEG-b-PLA films (i) and stereocomplexed
micelles composed of equimolar amounts of PEG-b-PDLA72 and PEG-b-PLLA73 (ii) [21], Copyright
2005. Reproduced with permission from the American Chemical Society.

2.2. Self-Assembled Nanoparticle

Stereocomplexes can build nanoparticles by self-assembly, apart from micelle for-
mation. Non-covalent interactions, such as electrostatic interactions, hydrogen bonding,
and hydrophobic-hydrophobic interactions are driving forces to induce self-assembly of
amphiphilic block copolymers. The stability of the self-assembly can be influenced by
several environmental factors, including the pH, temperature, polymer concentration,
and ionic strength [22–25]. Bishara et al. synthesized stereocomplex particles composed
of an enantiomeric triblock copolymer (PLA-PEG2000-PLA) by blending in acetonitrile
solutions [26]. Figure 2a shows that the stereocomplex nanoparticles have smooth surfaces
resulting from PEG segments and sizes ranging from the nanometer to micrometer range.
The size of stereocomplex particles increased with increasing concentration of PLA in the
triblock copolymer (Figure 2b). This size of biodegradable particles affects the drug release
rate from a particular carrier. Smaller-sized stereocomplex particles have a faster degrada-
tion rate owing to their larger surface area, as shown in Figure 2c. In the in vitro release
profile test, stereocomplex particles with triblock copolymer could encapsulate 80% of the
water-soluble drug dexamethasone, which was completely released for 30 days (Figure 2d).
Similar to the previous degradation results, particles with a higher PLA concentration
could release drugs at a slower rate. Biodegradable particles were fully degraded during
the two months after complete release of dexamethasone phosphate. The hydrophilic drug
was assumed to accelerate the infiltration of water into the polymer material compared to
the original polymer.

Liu et al. produced pH-sensitive stereocomplex nanoparticles consisting of methoxy
poly(ethylene glycol)-poly(L-histidine)-polylactide (mPEG45-PH30-PLA82) tri-block copoly-
mer by self-assembly [27] (Figure 3a). In this study, the mPEG45-PH30-PLLA82/mPEG45-
PH30-PDLA82 stereocomplex stably maintained a mean diameter of 90 nm at pH 6.8,
whereas the diameter of mPEG45-PH30-PLA82 increased to the micrometer scale under the
same conditions. The mean diameter of the stereocomplex nanoparticles slightly decreased
when the pH changed from 5.0 to 7.9, as shown in Figure 3b,c. It was considered that lower
pH conditions caused swelling of the nanoparticles with protonation of poly(L-histidine)
in the tri-block copolymer [28]. Transmission electron microscopy (TEM) revealed that the
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stereocomplex particles retained their spherical shape, ranging from pH 5.0 to 7.4, and the
TEM image confirmed a reduction in the particle size at pH 7.9 (Figure 3d,e). Furthermore,
the cell viability of the stereocomplex nanoparticles was 90 % higher than that of homopoly-
mer nanoparticles in co-culture with mouse 3T3 fibroblasts. This was attributed to the
reduction of cytotoxic PDLA segments through stereocomplexation. Numerous studies
have demonstrated that stereocomplex particles are capable of loading not only proteins,
but also drugs.
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Figure 2. (a) Scanning electron microscopy (SEM) images of stereocomplex nanoparticles composed
of PLLAx-PEG2000-PLLAy with D-PLA (x + y = 25, left) and PLLAx-PEG2000-PLLAy with 10%
w/w dexamethasone phosphate with D-PLA, respectively (right). (b) Stereocomplex particle size
at different concentrations. Closed and open squares depict PLLAx-PEG2000-PLLAy with D-PLA
(x + y = 25) and PLLAx-PEG2000-PLLAy with D-PLA (x + y = 50) specimens, respectively. (c) HPLC
analysis for lactic acid release from copolymers and stereocomplexes. Open and closed circles
depict PLLAx-PEG2000-PLLAy (x + y = 25) and PLLAx-PEG2000-PLLAy (x + y = 50), respectively.
Closed squares and triangles depict PLLAx-PEG2000-PLLAy (x + y = 25) with D-PLA specimen
and same material containing 10% w/w dexamethasone phosphate, respectively. (d) HPLA analysis
for in vitro release of dexamethasone from stereocomplexes. Closed and open triangles depict
specimens composed of PLLAx-PEG2000-PLLAy (x + y = 25) with D-PLA and PLLAx-PEG2000-
PLLAy (x + y = 50) with D-PLA, respectively. This experiment was conducted in phosphate buffer
(pH 7.4) at 37 ◦C [26], Copyright 2005. Reproduced with permission from WILEY-VCH Verlag
GmbH & Co.

Lim and Park (2000) synthesized stereocomplex microspheres based on the solvent-
casting method, after polymerization of PLLA-PEG-PLLA and PDLA-PEG-PDLA of a
tri-block ABA copolymer [29]. Then, a bovine serum albumin (BSA) protein could be
encapsulated in the stereocomplex by the double emulsion solvent evaporation method.
Their study reported that stereocomplex microspheres showed a more sustainable and
predictable release pattern of the protein than that of the homopolymer. This can be
attributed to the hydrophilic PEG unit in the tri-block microspheres preventing aggregation
and non-specific adsorption of the protein. In the in vitro release profiles of BSA, PEG
stereocomplex microspheres and PEG tri-block copolymer microspheres exhibited a higher
initial burst effect than that of PLLA microspheres, but the microspheres based on PEG
showed a larger cumulative release (Figure 4). This is attributed to the water uptake
capacity of the microspheres that increased owing to the PEG of the hydrophilic unit. After
the burst release in the initial stage, the microspheres showed a relatively sustained release
by a diffusion-controlled mechanism over 50 days.



Molecules 2021, 26, 2846 5 of 27
Molecules 2021, 26, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 3. (a) Formation process schematic of mPEG45-PH30-PLLA82/mPEG45-PH30-PDLA82 stereo-

complex nanoparticles. Mean diameters of mPEG45-PH30-PLLA82 (b) and mPEG45-PH30-

PLLA82/mPEG45-PH30-PDLA82 stereocomplex nanoparticles (c) with various pH conditions. TEM 

images of the stereocomplex nanoparticles at pH 7.4 (d) and pH 5.0 (e) [27], Copyright 2012. Re-

produced with permission from WILEY-VCH Verlag GmbH & Co. 

Lim and Park (2000) synthesized stereocomplex microspheres based on the solvent-

casting method, after polymerization of PLLA-PEG-PLLA and PDLA-PEG-PDLA of a tri-

block ABA copolymer [29]. Then, a bovine serum albumin (BSA) protein could be encap-

sulated in the stereocomplex by the double emulsion solvent evaporation method. Their 

study reported that stereocomplex microspheres showed a more sustainable and predict-

able release pattern of the protein than that of the homopolymer. This can be attributed to 

the hydrophilic PEG unit in the tri-block microspheres preventing aggregation and non-

specific adsorption of the protein. In the in vitro release profiles of BSA, PEG stereocom-

plex microspheres and PEG tri-block copolymer microspheres exhibited a higher initial 

burst effect than that of PLLA microspheres, but the microspheres based on PEG showed 

a larger cumulative release (Figure 4). This is attributed to the water uptake capacity of 

the microspheres that increased owing to the PEG of the hydrophilic unit. After the burst 

release in the initial stage, the microspheres showed a relatively sustained release by a 

diffusion-controlled mechanism over 50 days. 

 

Figure 4. In vitro BSA release profile from three specimens [29], Copyright 2000. Reproduced with 

permission from John Wiley & Sons, Inc. 

Figure 3. (a) Formation process schematic of mPEG45-PH30-PLLA82/mPEG45-PH30-PDLA82

stereocomplex nanoparticles. Mean diameters of mPEG45-PH30-PLLA82 (b) and mPEG45-PH30-
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images of the stereocomplex nanoparticles at pH 7.4 (d) and pH 5.0 (e) [27], Copyright 2012. Repro-
duced with permission from WILEY-VCH Verlag GmbH & Co.
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2.3. Emulsion Blending

Generally, sc-PLA is prepared by mixing two enantiomeric polymers in solution or
in a melted state. However, these methods result in low stereocomplexation efficiency,
loss of molecular weights, and original properties. The layer-by-layer (LbL) technique
based on a Pickering emulsion template has been commonly used to fabricate nano- and
microcapsules [30–34]. Despite its facilitated application to various fields, this approach
has several concerns, including the requirement of inorganic solid multi-layer precursors,
linkers, and templates, and inferior integrity and loading efficiency of a capsule [35–37]. To
overcome these limitations, emulsion blending based on the droplet-in-droplet method
has emerged as an alternative method to fabricate polymeric micro-carriers. Brzeziński
proposed a microfluidic approach based on a water-in-oil-in-water (W/O/W) double
emulsion for the synthesis of hollow stereocomplex microcapsules [38]. In this study, 2-
ureido-4[1H]-pyrimidinone (UPy)-functionalized PLA enantiomers formed stereocomplex
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microcapsules at the water-chloroform interface via a one-step microfluidic self-assembly
(Figure 5a). The capsule could reversibly control the assembly and disassembly to the
supramolecular functionality of the interfacial assembly, unlike other microcarriers. This
enables the capsule to freely adjust the stiffness and permeability of its shell and drug
release. Figure 5b shows the morphological and structural reorganization of the sc-PLA
microparticles induced by the W/O/W double emulsion. In this observation, microdroplets
with a mean diameter of approximately 260 µm appear to have a high monodispersity
and narrow size distribution. In particular, microcapsules were divided from the water
phase by spontaneous dewetting after the oil droplets shrank. The inner oil droplet could
maintain hollow stereocomplexed microcapsules induced at the interface between water
and chloroform [39–41]. Finally, the sc-PLA-UPy microcapsules were precipitated with a
mean diameter of approximately 160 µm. Stereocomplex crystallites were assumed to act
as efficient nucleating agents and interfacial enhancers during this reaction [42].
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Figure 5. (a) Schematic illustrations of UPy-PLA-OH chemical structure (i) and microfluidic device
for induction of W/O/W emulsion droplets (ii). Optical microscope observations of monodisperse
stereocomplexed drops (iii,iv), and UPy-PLA-OH unstable drops (v). Scale bars: 200 µm. (b) Change
of structural arrangement of W/O/W double emulsion droplets. (i) sc-PLA-UPy double emulsion
droplet, (ii,iii) separation of microcapsule in water phase, (iv–vi) shell solidification of the microcap-
sule induced by evaporation. Scale bars: 100 µm [38], Copyright 2017. Reproduced with permission
from WILEY-VCH Verlag GmbH & Co.
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Im et al. developed a novel strategy for blending two homopolymers of PLA in an
oil-in-water (O/W) emulsion state [43]. This O/W emulsion blending method facilitated
the rapid combination of solutions of PLLA and PDLA enantiomers with the addition of an
emulsifier and mechanical stirring in a one-pot reactor (Figure 6a) [43]. During blending,
stereocomplex crystals could be formed simultaneously with the diffusion of oil-phased
PLLA and PDLA into water, emulsification induced by an emulsifier, and mechanical
mixing. Unlike other phases, the emulsion phase could induce significantly rapid stereo-
complexation by promoting supramolecular interactions derived from lower interfacial
tension. Moreover, this method can significantly improve the time and cost, availability,
and efficiency compared to conventional methods. As a result, sc-PLA particles fabricated
by emulsion blending showed spherical morphology with an improved stereocomplexation
efficiency of up to 99% (Figure 6b,c). Furthermore, fluorouracil (5-FU), a cancer drug, can be
encapsulated into sc-PLA particles for stereocomplexation during O/W emulsion blending,
as shown in Figure 7a. In the drug release profiling test for 5-FU, sc-PLA particles induced
by emulsion blending loaded 13 wt% of 5-FU, and the drug was slowly released for eight
days after the initial burst of drug release (Figure 7b). To the best of our knowledge, this
is the first report on an O/W emulsion blending method for simultaneously inducing
stereocomplexation and drug encapsulation in an emulsion state.
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Figure 6. (a) Scheme for O/W emulsion blending approach for inducing sc-PLA. Inserted image
exhibits sc-PLA particles prepared by emulsion blending. (b) SEM observations (X10000, left) and
diameters (right) of sc-PLA particles prepared by various O/W emulsion blending named Emulsion
1-5. (c) Comparison of stereocomplexation efficiency (%) of sc-PLA particles prepared Emulsion
1-5. SCF: supercritical fluid technology [43], Copyright 2020. Reproduced with permission from the
American Chemical Society.
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Figure 7. (a) Schematic illustration of O/W emulsion blending for simultaneously inducing stere-
ocomplexation and infiltration of 5-FU drugs. (b) Release profile of 5-FU from washed sc-PLA
particles prepared by O/W emulsion blending over 12 days. Insert presents graph of released 5-FU
concentration from neat, washed, and unwashed sc-PLA/5-FU specimens. Data are plotted as mean
values ± standard deviation (SD) (n = 3) [43], Copyright 2020. Reproduced with permission from the
American Chemical Society.

2.4. Inkjet Printing

Recently, inkjet printing technology has been used in various industrial areas, includ-
ing tissue engineering and organic or inorganic electronics. This technique can rapidly and
exquisitely deposit printing materials, such as polymers, metals, nano- and micro-particles,
and proteins and cells with highly controlled volume and patterning of link-droplets. Con-
sequently, polymeric biomaterials can be LbL-assembled on substrates. Akagi et al. (2012)
devised a fast printing method for sc-PLA based on LbL deposition using an inkjet printer
without a redundant rinsing step [44]. Each PLLA and PDLA solution was separately
printed at the same point, and stereocomplex crystals were then formed with enantiomeric
homocrystallites during solvent evaporation. Figure 8 shows the schematics of the inkjet
printing process for the LbL formation of sc-PLA. The first LbL-assembly method, em-
ployed by the authors for formation of the stereocomplex, involved the dissolution of
PLLA and PDLA in chloroform, followed by the PLLA solution being sprayed onto a glass
substrate. Then, the PDLA solution was printed over the substrate after drying the PLLA
droplets (Figure 8a). One cycle indicates that PLLA and PDLA solutions were printed
once on the substrate in turn. In the second LbL-assembly method, PLLA and PDLA
were dissolved in chloroform, and the blended solution was printed on the substrate in
the first step. Subsequently, the blended solution was printed over dried mixed droplets
once again in the second step (Figure 8b). This method holds potential to provide rapid
fabrication, as 1 × 105 droplets were sprayed, and the processing time was approximately
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100 s in each step. As shown in Figure 9a, the X-ray diffraction (XRD) patterns of PLA
composites fabricated by the second method showed peaks at 12◦, 21◦, and 24◦ of 2θ
degrees. This indicates that the specimens had an orthorhombic or pseudo-orthorhombic
unit cell with a 103 helical conformation, indicating an α-form crystal. The peak intensities
of the sc-PLA for both XRD and FTIR results were amplified by increasing the number of
printing steps with no observation of any peak indicating homopolymers. Furthermore, the
thicknesses of the PLA composites increased with the increasing number of steps (220, 600,
and 980 nm for 2, 5, and 10 steps, respectively). As shown in Figure 9b, the XRD patterns
analyzed the effect of the number of printing cycles on the structural sc-PLA fabricated by
inkjet printing. The L-D LbL-1 specimen, which was fabricated with one cycle of printing,
showed two peaks at 12◦ and 17◦, indicating stereocomplex crystals and α-form crystals,
respectively. In contrast, homocrystallite formation was no longer observed with increasing
cycle numbers for the printed specimens. The intensity of the peaks corresponding to
β-form stereocomplex crystals was higher at 2θ = 12◦, 21◦, and 24◦ with an increasing
cycle number, instead of the appearance of a peak at 2θ = 17◦. Consequently, the higher
cycle of inkjet printing could render sc-PLA of higher purity and increase its crystallinity.
The right graph in Figure 9b shows the XRD patterns of the PLA specimens prepared using
PLLA/PDLA mixed solutions. All specimens prepared by inkjet printing using a PLLA
and PDLA mixed solution showed no significant increase in the peak intensity despite
increasing the number of printing cycles. Furthermore, it only exhibited peaks with no
homocrystallites at 12◦, 21◦, and 24◦.
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Figure 8. Schematic illustration for sc-PLA formation using the inkjet printing based on LbL de-
position. (a) First LbL-assembly method; alternately printing of PLLA and PDLA solution onto a
substrate in sequence (2 steps = 1 cycle), (b) Second LbL-assembly method; simultaneous printing of
PLLA/PDLA mixed solution onto a substrate at one time [44], Copyright 2012. Reproduced with
permission from WILEY-VCH Verlag GmbH & Co.
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Figure 9. (a) XRD patterns (left) and FTIR spectra (right) of sc-PLA fabricated by inkjet printing of the
second LbL-assembly method. The steps of three specimens indicate the number of repeated times
of the printing. (b) Influence of the number of printing cycle on crystal formation of inkjet-printed
sc-PLA. XRD patterns of sc-PLA product prepared by first (left) and second (right) LbL-assembly
method [44], Copyright 2012. Reproduced with permission from WILEY-VCH Verlag GmbH & Co.

Akashi et al. (2014) reported an advanced method that models drugs such as an 8-mer
peptide, ovalbumin (OVA), where proteins could be loaded onto the sc-PLA substrate
based on inkjet printing technology [45]. The sc-PLA composites could encapsulate drugs
through alternate overprinting of PLLA, PDLA, and drugs on one substrate (Figure 10a).
PLLA and PDLA were dissolved in chloroform at a concentration of 0.5 mg/mL. Each
polymer solution was alternately printed onto the same substrate. First, the PLLA solution
was printed onto a glass substrate and dried at room temperature, and then the PDLA
solution was printed onto the substrate. Finally, 0.1 mg/mL of the drug, like OVA-protein,
OVA-NPs, or peptide was printed onto the printed sc-PLA composite. A single cycle for
the entire inkjet-printing process comprised these three steps. This process was conducted
for up to a maximum of 10 cycles. As shown in Figure 10b, 25% of the peptide in the
sc-PLA carrier was released in the initial 1 h, and 50% of the peptide was released after
1 day. Then, 90% of the peptide was released for 5 days via diffusion. In contrast, 40% of
ovalbumin in the sc-PLA carrier was released for 1 day, and the remainder of the loaded
protein failed to be released. This was assumed to be due to the aggregation of ovalbumin
proteins in the sc-PLA matrix. In contrast, the sc-PLA with OVA-NPs group, which was
printed by ovalbumin encapsulated nanoparticles (OVA-NPs), released 30% of the protein
for the initial 1 day, and subsequently the remainder of the contents could be sustainably
released during the following 30 days. It was considered that denaturation and aggregation
of protein could occur to a lesser extent in the sc-PLA composite, because encapsulation of
ovalbumin in the nanoparticle could offer resistance to protein denaturation and stability
to the carrier. As shown in Figure 10c, the in vitro release profile of sc-PLA with ovalbu-
min encapsulated nanoparticles and homopolymer (PLLA and PDLA) with ovalbumin
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encapsulated nanoparticles was analyzed. All groups exhibited burst release kinetics of
the protein for 24 h, and their release rates gradually decreased. The sc-PLA composite
group showed a lower cumulative release of ovalbumin than the homopolymers after
24 h (28 vs. 35 vs. 41% for sc-PLA-OVA-NPs, PLLA-OVA-NPs, and PDLA-OVA-NPs,
respectively). Furthermore, the sc-PLA-OVA-NPs had a lower release rate with sustainable
release compared to the other groups. It was supposed that sc-PLA had superior hydrolysis
resistance and carrier stability owing to its higher crystallinity compared to homopolymers.
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Figure 10. (a) Schematic illustration for sc-PLA with drugs composites fabricated by inkjet printing
based on LbL-assembly. (b) Drug release profiles of the sc-PLA with drug (peptide or OVA) compos-
ites in phosphate-buffered saline (PBS). The data were plotted as mean values ± SD (n = 3). (c) OVA
release behaviors from sc-PLA-OVA-NPs (named PLAs-OVA-NPs) and PLLA or PDLA-OVA-NPs
in PBS. Results were plotted as mean values ± SD (n = 3) [45], Copyright 2014. Reproduced with
permission from the American Chemical Society.

Recently, Akashi et al. (2017) reported that sc-PLA composites could be conjugated to
benzyl alcohol and 3,4-diacetoxycinnamic acid (DACA) of bio-based aromatic compounds
at the hydroxyl groups of both terminals using inkjet printing [46]. This DACA conjuga-
tion enhanced the thermal stability of sc-PLA by increasing the thermal decomposition
temperature by 10% to above 90 ◦C. Consequently, inkjet printing can be considered as an
innovative technology for fabricating sc-PLA scaffolds rapidly and easily based on LbL
deposition and assembly. Furthermore, it has the advantage of versatile control of the
shape, thickness, and amount of printed scaffolds composed of sc-PLA. Therefore, this
technology has the potential to bring innovation to some fields, such as tissue engineering
and biomaterials, if it can be converged with 3D printing for freely customized fabrication
of scaffolds and substrates.

2.5. Stereocomplex Hydrogel

A hydrogel is a network of cross-linked polymer chains. Hydrogels have been fre-
quently used as scaffolds in tissue engineering and drug carriers and are known as the first
biomaterials to be used in the human body. S.J. de Jong et al. reported that a stereocomplex
hydrogel could be synthesized by mixing dextran-grafted L-lactate and D-lactate in an aque-
ous solution [47]. The stereocomplex hydrogel could encapsulate the IgG and lysozyme
of the model protein, and the loaded contents were released by Fickian diffusion for six
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days. Even after the release of sensitive proteins from the gel, the stereocomplex hydrogel
played the role of a stable protein carrier as well as the maintenance of enzymatic activity.
Subsequently, Hennink et al. fabricated a stereocomplex hydrogel by mixing dextran-L or
D-lactate without organic solvents or crosslinking agents in an aqueous environment, as
shown in Figure 11a [48]. Enantiomeric PLA oligomers grafted to dextran did not require
artificial agents, because they were already crosslinked by stereocomplexation. Moreover,
this stereocomplex hydrogel has the advantage of full biodegradability and clinical safety,
because dextran is a non-toxic water-soluble polymer. Figure 11b shows the rheological
properties of dex-(L)lactate and a mixture of dex-(L)lactate and dex-(D)lactate. A mixture of
enantiomers exhibited a growth in the storage modulus (G’) and a reduction of tan δ with
time, whereas dex-(L)lactate showed no change in G’ and tan δ with time. These results
indicate that the hydrogel network was formed, and that the polymer had a more elastic
property. This was presumed to be due to self-assembly between the chains of L-lactate and
D-lactate via stereocomplexation. As shown in Figure 11c, the lysozyme was released from
the dex-lactate hydrogel faster than IgG in the same carrier during the initial stage. The
hydrogel with higher polydispersity (PDI) of the lactate graft showed faster release of the
two model proteins compared to those with lower PDI. The results showed that all groups
exhibited complete release of the loaded contents from the hydrogel after eight days and
retained enzymatic activity. Hence, the sc-PLA hydrogel could encapsulate proteins and
control release. It is potentially applicable to drug carriers with good biocompatibility and
gelation behavior.
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Figure 11. (a) Formation of stereocomplex hydrogel schematic via blending dextran-L or D-lactate
without organic solvents or crosslinking agents. (b) Measurements of rheological properties of
dex-(L)lactate and a mixture of dex-(L)lactate and dex-(D)lactate. Open circles and lines in the graph
depict G’ and tan δ, respectively [45], Copyright 2003. Reproduced with permission from Elsevier
B.V. (c) Protein release profiles of lysozyme (indicated by dotted line in the graph) and IgG (indicated
by solid line in the graph) from dex-lactate hydrogel exhibiting high (open symbols) and low (filled
symbols) PDI. The measurement environment was at pH 7.0 and 37 ◦C. The data were plotted as
mean values ±SD (n = 4) [47], Copyright 2001. Reproduced with permission from Elsevier Science B.V.
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A strategy using in situ gelling systems has been used for the transformation of
drug/polymer precursor complexes from solution after injection into the human body to
gel form by physiological conditions of target tissues or artificial stimuli, such as pH or
temperature change, UV irradiation, solvent exchange, catalytic ions, or molecules [49–51].
Generally, an in situ gelling hydrogel can be synthesized by various chemical reactions,
including enzyme-catalyzed cross-linking, Schiff-base reaction, photo-induced polymeriza-
tion, and Michael-type addition [52–55]. This drug delivery system can prevent adverse
events in non-target tissues with improved availability of administration. Based on this
strategy, sc-PLA-based hydrogels have the potential to improve the mechanical strength
and durability and delay the degradation rate of the carrier induced by stereocomplexation
in the future.

3. Biomedical Applications
3.1. Anti-Cancer Therapy

Recently, numerous studies have reported that biodegradable polymeric nanocarriers
possess a superior stealth function for the detection of the reticuloendothelial system in
the human body and exhibit an enhanced permeability and retention effect [56–61]. In
particular, these polymeric nanoparticles are capable of having several beneficial properties,
such as biomimetics, stimuli-sensitivity, easy modification, and exquisite target specificity
compared to carriers composed of other materials. These advantages support the possibility
that stereocomplex nanoparticles can be used as a promising approach in the field of anti-
cancer therapy.

Goldberg proposed that oligomers of PDLA were used for the formation of stereo-
complex crystals with L-lactate in the human body to induce lactate deficiency in cancer
cells [62]. This study suggested that tumor growth could be inhibited and terminated by
stereocomplexation through lactate deficiency to retain the electrical neutrality of tumors.
In preliminary experiments, it was demonstrated that high concentrations of PDLA could
induce stereocomplexation with lactate in the body, which exhibited cytotoxic effects on the
tumor. Li et al. (2016) fabricated sc-PLA-coated nanoparticles with multiple functionalities
for a highly tunable drug delivery system via simple LbL self-assembly [14]. TEM images
show that the nanoparticles had a spherical shape with a core–shell structure and a diame-
ter of approximately 190 nm (Figure 12b). The in vitro drug release profiles of doxorubicin
(DOX)-loaded nanoparticles were analyzed at different pH and temperature conditions
to demonstrate the ability to adjust the drug delivery of the sc-PLA-coated nanoparticles.
As shown in Figure 12c, the drug release rate was significantly reduced with increasing
pH from 3.5 to 7.4. The cumulative release of DOX was 73.1 vs. 55.6% at pH 3.5 and 7.4
after 12 h, respectively. This is because acidic conditions could stimulate protonation of the
tertiary amine groups in the outermost layer of the sc-PLA-coated nanoparticles, resulting
in the swelling of nanoparticles. Furthermore, a lower pH yields the nanoparticles pH-
responsive properties through an increase in the solubility of DOX, which retains phenols
and amines. In addition to pH, the cumulative release of DOX was 39.8 vs. 60% at 37 and
20 ◦C after 12 h, respectively. A lower temperature condition could facilitate a more rapid
release via swelling of the outer layer of sc-PLA-coated nanoparticles. Consequently, the
nanoparticles based on sc-PLA could tune the rate and amount of drug release, depending
on the physiological conditions. To identify the cytotoxicity of DOX-loaded sc-PLA-coated
nanoparticles to breast cancer cells, MCF-7 cells were incubated with free DOX and two
types of DOX-loaded sc-PLA nanoparticles (Figure 12d). During the incubation of cancer
cells with free DOX, most of the DOXs were localized in the cell nuclei, instead of the
cytoplasm. In contrast, the DOXs released from all sc-PLA particles infiltrated the cells,
and their accumulation was significantly increased. These results indicated that sc-PLA-
coated nanoparticles could effectively act as anti-cancer drug carriers by improving the cell
uptake efficiency.
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Figure 12. (a) Schematic representation for highly tunable sc-PLA coated nanoparticles and drug delivery. (b) TEM image
of Fe3O4@SiO2@SC-N nanoparticles. Scale bar: 200 nm. (c) In vitro drug release profiles of DOX-loaded Fe3O4@SiO2@SC-D
nanoparticles in acidic condition of pH 3.5 (A), physiological condition of pH 7.4 (B), and Fe3O4@SiO2@SC-N nanoparticles
at 20 ◦C (C) and 37 ◦C (D). (d) Confocal laser scanning microscope observations of MCF-7 cells incubated with free DOX
(i), DOX-loaded Fe3O4@SiO2@SC-N (ii), and Fe3O4@SiO2@SC-D (iii) nanoparticles. Each panel named DIC, DAPI, Dox,
and Merged depicts a differential interference contrast (DIC) image, cell nuclei staining by DAPI, DOX fluorescence in
cells, and overlay of the all images, respectively. (iv) Comparison of fluorescence intensity in three specimens calculated by
ImageJ [14], Copyright 2015. Reproduced with permission from the American Chemical Society.

Brzeziński et al. synthesized DOX-loaded stereocomplexed microspheres using spon-
taneous precipitation after the polymerization of L-proline-functionalized PLLA and PDLA
via coordination polymerization (Figure 13a) [63]. Therein, the size of the microparticles
was dependent on whether the L-proline end groups were blocked or unblocked in the
microspheres. Based on this correlation, they obtained spherical microspheres with various
sizes ranging from 0.5 to 10 µm through adjusting the solvent and functionalization. In
the in vitro release profiles of DOX, stereocomplexed microspheres with Boc-protected
L-proline exhibited cumulative release within 10% of loaded contents for 100 h, while
microspheres with unblocked L-proline showed a faster cumulative release of 41–81%
of loaded contents for the same duration (Figure 13b). This can be attributed to the low
surface area of the Boc-protected group, which delayed hydrolysis. In contrast, the un-
blocked group could easily release DOX due to the localization of DOX on the surface of
the microsphere, resulting in an initial burst release. To evaluate the cytotoxicity of the
DOX-loaded stereocomplexed microspheres, A549 lung cancer cells were incubated with
medium extracts of the two types of microspheres. Figure 13b shows a very slow reduction
in the cell viability of cancer cells cultured with Boc-protected microspheres after 24 h,
whereas the cell viability of the cancer cells cultured with unblocked microspheres was
dramatically decreased after incubation for 2 h and decreased to below 25% after 24 h. This
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can be attributed to the difference in drug release rate between the blocked and unblocked
microspheres. In particular, the microspheres prepared in tetrahydrofuran (THF) showed a
significantly high anti-proliferative effect.
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Figure 13. (a) Synthesis process of Boc-L-proline functionalized PLLA and PDLA, unblocking of
L-proline end groups (top). Schematic illustration for fabrication of sc-PLA microspheres using
spontaneous precipitation from mixture of enantiomeric PLAs (bottom). (b) In vitro release profiles
of DOX from sc-PLA microspheres functionalized with (i) Boc-L-proline and (ii) L-proline. In vitro
cytotoxicity test on A459 cells incubated with medium extracts of the sc-PLA microspheres function-
alized with (iii) Boc-L-proline and (iv) L-proline at incubation times of 2, 6, and 24 h [63], Copyright
2019. Reproduced with permission from Elsevier B.V.

In addition, Brzeziński et al. successfully fabricated stereocomplexed micelles with
β-cyclodextrin (β-CD) core as an intracellular drug carrier [64]. Hence, micelles stability
can be improved, and in vitro release rate of DOX from supramolecular nanocarriers can be
controlled. The stereocomplexed micelles with DOX efficiently inhibited the proliferation
of HeLa (cervical cancer) and K562 (chronic myelogenous leukemia). This study suggested
that the supramolecular interactions facilitate effective establishment of drug delivery
system as an anti-cancer therapy.
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3.2. Tissue Engineering

Tissue engineering is an increasingly popular next-generation biomedical technology
to treat defects and malfunctions in human organs. This technology has the potential to
expand medical coverage and resolve problems, such as a lack of organ donation and
transplant rejection [65–69]. Scaffolds that are suitable for tissue engineering require high
biocompatibility, biodegradability, good processability, mechanical properties similar to
those of native tissue, and proper flexibility [70–77]. sc-PLA has been extensively applied in
tissue engineering owing to its excellent biocompatibility, full biodegradability, improved
mechanical properties, and thermal stability. In particular, it is suitable for scaffolds that
require robust properties for bone, cartilage, and orthopedic implants. V. Katiyar et al.
(2017) fabricated orthopedic implants based on nano-hydroxyapatite (n-HAP)-grafted
sc-PLA composites using 3D printing [78]. As shown in Figure 14a, n-HAP-grafted PDLA
was polymerized by in situ ring-opening polymerization, and the sc-PLA/n-HAP filament
with a diameter of approximately 1.6 mm for 3D printing was fabricated by melt mixing
with PLLA in a twin-screw extruder. A middle phalanx bone composed of filaments was
successfully manufactured using 3D printing. As shown in FE-SEM images, the fractured
Sc-PLA/n-HAP nanocomposites exhibited a smooth surface and uniform dispersion of
n-HAP of 60 nm size (Figure 14b). The n-HAP provided a reinforcement effect and
expansion of the surface area as a filler in the sc-PLA matrix. As shown in Figure 14c,
sc-PLA/n-HAP of 2.5% increased the ultimate tensile strength up to a maximum of 16%
above that of neat sc-PLA (40.2 vs. 33.8%, respectively). This is because an increase
in intermolecular bonding and cross-linking in stereocomplex crystals, together with
strong interfacial bonding between the polymer matrix and the filler, could increase its
crystallinities. Furthermore, the ductility of sc-PLA increased by the addition of n-HAP
fillers, which increased the elongation at the break of sc-PLA/n-HAP up to a maximum of
131.6 %. Improving ductility could enhance the durability of biocomposites resulting from
the prevention of fracture and abruption, thus expanding its application for implants that
require robust resistance for high loads.

Subsequently, V. Katiyar et al. (2019) focused on the synthesis of linear block copoly-
mers composed of hard and soft segments of PLLA/PDLA and PCL [79]. Diblock and
stereotriblock copolymers were successfully polymerized with PCL as a macroinitiator
using sequential ring-opening polymerization, as shown in Figure 15a. Values of the tensile
strength and elongation at the break for diblock copolymers were improved from 14.8
to 28.9 MPa and from 6.4 to 17.8%, respectively, with an increase of the block length of
PDLA (Figure 15b). The synthesized materials were thermally processed based on injection
molding to manufacture cancellous and cortical bone screws, which are considered as
orthopedic fixation devices, as shown in Figure 16a. In a study on thermo-mechanical
stability, cancellous bone screws consisting of sc-PLA/PCL blends could stably maintain
their shape and structure at 121 ◦C for 60 min, more than those of commercial homo PLA
(Figure 16b). This is because the stereocomplex crystallites of the hard segment in the
blend copolymer improved the thermal resistance of the scaffold. Consequently, the sc-PLA
and PCL in the sc-PLA block copolymer enabled the scaffold to increase mechanical and
thermal stability, and to reduce brittleness of PLA by its plasticization effect; thus, scaffolds
composed of these biomaterials are considered suitable for biomedical implants with good
clinical outcomes.
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Figure 14. (a) A schematic representation for synthesis, processing, and application of sc-PLA/n-
HAP. (b) Field emission scanning electron microscopy (FESEM) images of fractured surface of
(i) a neat sc-PLA and (ii) a sc-PLA/n-HAP biocomposite. Pointed arrows depict n-HAP particles
of approximately 60 nm diameter. (c) (i) Load–elongation curves of sc-PLA and sc-PLA/n-HAP.
(ii) Comparison of ultimate tensile strength and elongation at break of sc-PLA and sc-PLA/n-HAP
with diverse HAP contents [78], Copyright 2017. Reproduced with permission from the American
Chemical Society.
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Figure 16. (a) Schematic illustration for thermal processing of diblock copolymer and enantiomeric
diblock blend for fabrication of cortical and cancellous bone screws as orthopedic fixation devices.
(b) Comparison of thermo-mechanical stability of cancellous bone screw comprising commercial PLA
2003D (Natureworks) and enantiomeric blend at 121 ◦C at intervals up to 60 min [79], Copyright
2019. Reproduced with permission from the American Chemical Society.

Enhancing mechanical properties of biodegradable polymers is critical to biomedical
fields, such as bone fixation. Numerous processing methods have been developed to
improve the strength of the polymers. Many studies have demonstrated that solid-state
drawing (SSD) can induce self-reinforcement through the maximization of macromolecular
chain orientation in polymeric materials [80–82]. Im et al. (2016, 2017) determined that the
tensile strengths of PLLA monofilaments and films could be increased up to two- and nine-
fold, respectively, by increasing the draw ratio using a directly designed processing machine
for the SSD method (Figure 17a) [83,84]. Furthermore, this study showed that solid-state
drawn PLLA enhanced blood compatibility and cell adhesion. Recently, Li et al. (2021)
successfully oriented shish-kebab crystals in sc-PLA using the SSD method, as shown
in Figure 17b [85]. The oriented sc-PLA scaffold had a tensile strength of 373 MPa and
an elongation of 9%. This processing could lead to fibrous crystals of shish and kebabs
with parallel lamellar microstructures along the direction of the drawing. This shish-
kebab microstructure with a specific topography could provide a self-reinforcing effect and
prevent cracking and collapse of aligned kebabs into biomaterials based on sc-PLA.
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Figure 17. (a) Schematic of processing machine for SSD method with PLLA films or filaments [83],
Copyright 2016. Reproduced with permission from IOP Publishing, Ltd. (b) Schematic representation
for preparation process of oriented sc-PLA using SSD method [85], Copyright 2021. Reproduced
with permission from the American Chemical Society.

C. Wang et al. (2019) synthesized injectable thermogels based on the sterocomplex
4-arm poly(ethylene glycol)-polylactide (PEG-PLA) and cholesterol-modified 4-arm PEG-
PLA for optimized cartilage regeneration (Figure 18) [86]. The cholesterol-modified sc-
PLA gels exhibited improved mechanical strength, lower critical gelation temperature,
higher chondrocyte proliferation, and slower degradation than unmodified specimens.
Moreover, cholesterol-modified sc-PLA gel-loaded chondrocytes showed considerably
more cartilage-like tissues than fibrous- and bone-like tissues. This is attributed to the
improved mechanical properties and microstructure induced by cholesterol modification
of the sc-PLA gel.
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3.3. Anti-Microbial Effect

Biomaterials and surgical implants based on the sc-PLA material are increasingly
being applied for the above-mentioned biomedical applications, including tumor treatment
and tissue engineering. However, preventing contamination from foreign microorganisms,
such as bacteria and viruses is essential for the application of sc-PLA as a biomaterial in the
human body [87–89]. Sterilization is necessary to prevent contamination before medical
surgery, albeit it has been shown that contamination from bacteria such as Staphylococcus
aureus (S. aureus) most frequently occurs during surgery [90–92]. Therefore, biomateri-
als based on sc-PLA are critical for securing anti-microbial effects to prevent bacterial
proliferation to decrease adverse events and maximize clinical efficacy. Normally, bio-
materials are sterilized by ethylene oxide gas, gamma ray irradiation, dry-heat sterilizer,
microwave, autoclave, and supercritical carbon dioxide (CO2) [93–97]. Unfortunately, these
methods have remaining concerns not only regarding changes in the inherent properties
of the material during the sterilization process, but also the difficulty in preventing sec-
ondary contamination. Thus, biomaterials must possess sustained anti-microbial effects
to inhibit external microorganisms before and after implantation in the body. Spasova
et al. (2010) fabricated electrospun sc-PLA fibers with antibacterial and hemostatic effects
using diblock copolymers composed of poly(N,N-dimethylamino-2-ehtylmethacrylate)
(PDMAEMA) [98]. After the incubation of mats composed of these fibers with S. aureus
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and Escherichia coli, the adhesion of these bacteria was observed. Consequently, sc-PLA
mats containing PDMAEMA significantly inhibited bacterial adhesion and proliferation on
the surface and exhibited effective antibacterial effects, while the control group showed
bacterial adhesion and biofilm formation on the surface. This was attributed to the surface
of tertiary amino groups from PDMAEMA blocks [99–101]. This surface modification
strategy for antibacterial effects could remove concerns about contamination in surgical
procedures and sustain its efficacy in the human body. Ajiro et al. (2016) polymerized
PLLA and PDLA using catechin (CT) as an initiator precursor, which is an antibacterial
compound [102]. Figure 19a shows the polymerization of CT-conjugated PLLA and PDLA
at the chain end groups. Lactide was polymerized with benzyl catechin (BnCT), and then
CT was chemically combined with PLAs to protect the phenolic hydroxyl groups. To
assess antibacterial properties of the polymerized products, the ratio of total viable bacteria
was calculated after 24 h according to the JIS Z 2801 test, as shown in Figure 19b. The
CT-absorbed substrate reduced the ratio of total viable counts by 20% compared to the
control. In contrast, both PLLA-CT and PLA-CT-SC substrates had approximately 50% sig-
nificantly lower values than those of the control group. As shown in Figure 19c, the counts
of killed bacteria per CT unit were compared with those of the CT-absorbed substrate,
PLLA-CT, and PLA-CT-SC. Both PLLA-CT and PLA-CT-SC groups showed antibacterial
properties mainly induced by the phenolic hydroxyl groups of CT. The antibacterial effect
was dependent on the amount of CT, and it could be maintained for long-term use.
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Figure 19. (a) Synthesis process schematic of chain-end modified PLLA and PDLA. (b) Comparison
of antibacterial properties through ratio of live bacteria counts of (i) control, (ii) PLLA-Bn, (iii) CT,
(iv) PLLA-CT, and (v) PLA-CT-SC against the control group. Top scheme indicates a method for
measurement of antibacterial properties. The graphs were represented as mean values ± SD (n = 3).
(c) Comparison of the counts of killed bacteria per CT unit of (i) CT, (ii) PLLA-CT, and (iii) PLA-CT-
SC. The graphs were represented as mean values ± SD (n = 3) [102], Copyright 2016. Reproduced
with permission from WILEY-VCH Verlag GmbH & Co.



Molecules 2021, 26, 2846 22 of 27

Y. Li et al. (2013) suggested a novel approach for synthesizing charged hydrogels based
on non-covalent interactions for disrupting biofilms and microbes [103]. They fabricated
the antimicrobial gel by stereocomplexation between PLLA-PEG-PLLA and a charged
PDLA-polycarbonate-PDLA (PDLA-CPC-PDLA) triblock polymer in aqueous solution. At
physiological temperature (37 ◦C), the physical properties of the stereocomplex hydrogel
were transformed into shear thinning behavior with supramolecular fiber and ribbon-like
structures. This improved antimicrobial activity of the cationic hydrogel against diverse
pathogenic microorganisms, such as fungi and both Gram-positive and Gram-negative
bacteria. Up to 60% film biomass of S. aureus, E. coli, Candida albicans (C. albicans), and
Methicillin-resistant S. aureus (MRSA) were eliminated after hydrogel treatment. In the
safety test for skin sensitization, acute dermal toxicity, and skin irritation, the stereocomplex
hydrogels appeared to provoke no adverse events in animal models of rats, guinea pigs,
and rabbits. L. Mei et al. (2018) fabricated hybrid nanofibers by electrospinning in addition
to PLA stereoisomers for inducing stereocomplexation between the stereoisomer chains
and addition of chlorogenic acid (CA) of an antibacterial agent [104]. To prevent damage of
the agent, the stereocomplex nanofibers were electrospun at relatively lower temperature
(65 ◦C). The antibacterial fibers could effectively remove both gram-positive and gram-
negative bacteria by quickly released CA within a few hours. The fibers based on sc-PLA
have a potential to be applied in various fields such as filter, masks, and packages, owing
to enhanced mechanical and thermal properties as well as full biodegradability. Recently,
Y. Ren et al. (2019) reported successful fabrication of a novel eco-friendly sc-PLA nanofiber
by electrospinning, with both functions of adsorption of heavy metal ions and inhibition of
bacterial growth [105]. In the fabrication process, an antibacterial agent called HTA, which
could be synthesized from tannic acid and hexamethylenediamine, was loaded into the
products to provide an antibacterial effect. Furthermore, the electrospun nanofibers had
improved tensile strength and Young’s modulus, as well as thermal resistance owing to
the formation of stereocomplex crystallites. The nanofiber mats based on sc-PLA exhibited
excellent abilities for adsorption of Cr(VI) and capture of E. coli and S. aureus. Cr(VI) was
converted to less toxic Cr(III) after its adsorption. This indicates that the heavy metal
pollutant can be changed into eco-friendly and stable compounds in nature.

4. Conclusions

This review focuses on the research on sc-PLA with biodegradability and superior
mechanical and thermal properties. sc-PLA can be used to produce therapeutic carriers
in various forms, as it can be processed by micelles, self-assembly, emulsion, and 3D
printing. In particular, 3D printing technology has commonly used PLA as filament ma-
terial; however, sc-PLA has not been used in industrial practice to date. Because of these
application fields and the extensive potential of 3D printing, inkjet printing using sc-PLA
with improved characteristics must be a versatile technology for simultaneously inducing
both stereocomplexation and fabrication in the future, if inkjet printing can be suitably con-
verged with 3D printing techniques. In biomedical applications, sc-PLA nanoparticles are
potentially promising carriers for anti-cancer therapy and scaffolds for tissue engineering,
as numerous studies have demonstrated that they could be improved by diverse methods,
including surface modification and co-polymerization, and attain additional functions,
such as anti-microbial effects and immune stealth. sc-PLA nanoparticles effectively encap-
sulate therapeutic anti-tumor agents, such as DOX, and specifically transfer the agents to
target lesions. This review suggests the fields for potential sc-PLA material applications by
presenting current research trends. sc-PLA, as an advanced material from commonly used
PLA, is expected to become a next-generation polymeric material owing to its excellent
biocompatibility, biodegradability, and mechanical and thermal properties.
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