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Abstract: Photoperiod and thermo-sensitive genic male sterile (PTGMS) rice is an important resource
for two line hybrid rice production. The SQUAMOSA–promoter binding, such as the (SPL) gene
family, encode the plant specific transcription factors that regulate development and defense re-
sponses in plants. However, the reports about SPLs participating in male fertility regulation are
limited. Here, we identified 19 OsSPL family members and investigated their involvement in the
fertility regulation of the PTGMS rice lines, PA2364S and PA2864S, with different fertility transition
temperatures. The results demonstrated that OsSPL2, OsSPL4, OsSPL16 and OsSPL17 affect male
fertility in response to temperature changes through the MiR156-SPL module. WGCNA (weighted
gene co-expression network analysis) revealed that CHI and APX1 were co-expressed with OsSPL17.
Targeted metabolite and flavonoid biosynthetic gene expression analysis revealed that OsSPL17
regulates the expression of flavonoid biosynthesis genes CHI, and the up regulation of flavanones
(eriodictvol and naringenin) and flavones (apigenin and luteolin) content contributed to plant fertility.
Meanwhile, OsSPL17 negatively regulates APX1 to affect APX (ascorbate peroxidase) activity, thereby
regulating ROS (reactive oxygen species) content in the tapetum, controlling the PCD (programmed
cell death) process and regulating male fertility in rice. Overall, this report highlights the potential
role of OsSPL for the regulation of male fertility in rice and provides a new insight for the further
understanding of fertility molecular mechanisms in PTGMS rice.

Keywords: OsSPL; PTGMS; pollen sterility; temperature change; the flavonoid pathway; tapetum PCD

1. Introduction

Precise coordination of gene expression is essential during plant growth and devel-
opment, and transcriptional regulation is an important mechanism for controlling gene
expression. Transcription factors (TFs) regulate gene expression on the transcriptional
level and control various plant life processes by interacting with proteins. Currently, most
known TFs have been classified according to specific DNA-binding structural domains
and conserved motifs as family classification criteria, and these structural domains are
relatively conserved in terms of family evolution [1]. The SQUAMOSA-promoter binding,
such as the (SPL) genes, encode a class of plant specific TFs, and this family contains a
highly conserved DNA-binding structural domain consisting of 76 amino acids called the
SBP (SQUA promoter-binding proteins) domain. The SPL family plays an important role in
the gene network that regulates plant development and defense responses [2,3].

AmSBP1/P2 were identified from Antirrhinum majus and these two genes could control
flower development by binding to the promoter of the SQUAMOSA gene [4]. To investigate
the role of SBP-box genes in plant growth and development, researchers searched for their
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homologs in the model plant Arabidopsis thaliana at first, and sixteen AtSPL have been
identified [5,6]. The proteins encoded by these genes share a sequence region of high
similarity, which is the SBP structural domain encoded by the SBP-box. Commonly, the
SPL family varies greatly between species. Currently, SPL has been known to regulate a
variety of important biological processes, including plant microspore development [7], male
fertility [8], nutrient organ development [9], flower and fruit development [10], hormone
signaling [11] and abiotic stress regulation [12].

MircoRNA are endogenous noncoding small RNAs with 21–24 nucleotides that bind
to complementary mRNAs to repress the translation process, regulate gene expression
and reduce protein expression levels [13]. Furthermore, miR156 is a relatively conserved
miRNA in the plant kingdom, which eleven OsSPL were found to be targeted by, and
the miR156/SPL module plays an important role in plant tissue development [14,15]. In
terms of rice agronomic traits and yield contribution, OsSPL2, OsSPL16, OsSPL17 and
OsSPL18 were involved in controlling plant height and tiller number at the tillering stage,
while overexpression of miR156 significantly increased the number of tillers and decreased
the number of grains per spike by regulating the targets OsSPL2, OsSPL12, OsSPL13 and
OsSPL14 [15]. However, high expression levels of OsSPL14 at the reproductive stage
promote spike branching and obtain higher seed yield in rice [16,17]. In OsSPL18 knockout
rice mutants, a significant decrease in grain width, thickness, spikelet length and the number
of grains was found, and in contrast an increase in tiller number. Subsequently, the miR156k-
OsSPL18d regulatory module was found to regulate rice grain number by affecting cell
proliferation to regulate spikelet shell development [18]. The miR156-OsSPL3/12 module
was found to directly activate OsMADS50 to regulate crown root development in rice [19].
The role of the miR156/OsSPL module in plant stress responses has attracted the attention
of researchers. Under adverse conditions of biotic stress, the plant immune system is
an important component of balanced growth and development. It has been shown that
the miR156/SPL9 module generates resistance to Pseudomonas syringae, by regulating the
expression of the defense gene FLS2. However, SPL9 binds to specific motifs within the
miR528 promoter region to activate miR528 expression and regulate L-Ascorbate Oxidase
(AO) levels to generate a defense response to rice stripe virus (RSV) [20]. In response to
abiotic stress, miR156 has been shown to target SPL in Arabidopsis in response to heat stress.
The expression of miR156 increases at high temperatures and SPL2/9/11 gene expression
decreases, to counteract the negative effects of heat stress on plant growth [21].

Rice (Oryza sativa L.) is a staple food for nearly half of the world’s population and
is one of the most important food crops [22]. To cope with the food requirements of the
rapid growth of the world population, efficient breeding to improve crop productivity is
essential [23]. Two line hybrid rice uses photoperiod- and thermo-sensitive genic male
sterile (PTGMS) lines to produce hybrid seeds, thus eliminating the limitations of the
restorer–maintainer relationship of three-line hybrids system, and achieving higher effi-
ciency in excellent hybrid configurations and hybrid seed production [24]. Male fertility
in PTGMS rice is controlled by temperature and light conditions, but the mechanism of
fertility regulation is unclear. Recent research found that OsSPL is essential for meiosis
with rice and plays a regulatory role in callus deposition, tapetum development and anther
wall differentiation [25].

Although members of the SPL gene family have been relatively investigated in plant
development and stress response, whether the SPL gene family, or certain of its mem-
bers, regulates male fertility in PTGMS rice is still unclear. In this study, we performed a
genomewide identification of the SPL gene family members in rice and analyzed phyloge-
netic relationships and collinearity in the genome. Expression analysis of the near isogenic
lines of material PA2364S and PA2864S with different fertility transformation temperatures
was performed. The relationship between OsSPL and male fertility at the same temperature
and the effect of different temperatures induction of OsSPL on the level of fertility were
investigated. The potential regulatory pathway of OsOPL was explored using protein
structure analysis and WGCNA (weighted gene co-expression network analysis). Finally, a
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flavonoid metabolism and TUNEL (transferase mediated dUTP nick end labeling) assay
were used to verify that OsOPL17 might be involved in regulating PTGMS rice fertility by
affecting the biosynthetic process of the flavonoid and tapetum PCD (programmed cell
death) process. The findings provide a new insight to resolve the mechanism of fertility in
PTGMS rice.

2. Results
2.1. Abnormal Development of PA64S Pollen Grains Producing Male Sterile Plants under
High Temperature

First, the temperature experimental system for pollen fertility transformations was
built using one pair of PTGMS rice lines, PA2364S and PA2864S, with different critical
temperatures. We obtained fertile and sterile material for PA2364S and PA2864S, which were
treated by three temperatures, respectively. Differences in male fertility and seed setting
were observed between PA2364S and PA2864S after the 25 ◦C treatment (Figure 1A,B). The
iodine staining and setting rates were zero after the 30 ◦C treatment, and approximately
39.30% and 37.35% for PA2364S and PA2864S, respectively, after the 21 ◦C treatment
(Figure 1B and Table 1). Microscopic observation of the anthers and pollen grains of fertile
and sterile material was performed after obtaining materials with differential male fertility.
Compared to being fully and brightly colored in fertile anthers, abnormalities were found
in the sterile anthers (Figure 1C(I,IV)). From the SEM (scanning electron microscopy) of
pollen grains, it can be revealed that fertile pollen grains are fully rounded and sterile
pollen grains are severely collapsed (Figure 1C(II,V)). In the TEM (transmission electron
microscopy) observation of mature pollen grains (Figure 1C(III,VI)), a lot of intracellular
substances in fertile pollen grains were found, mainly in the form of SG (starch granule),
the exine structure of pollen was clearly visible, and the triple layered structure of Te
(texine), Ba (bacula) and Ne (nexine) was obvious. In contrast, there was no filling of
any content in the sterile pollen grains, Ba intermittently appeared in the exine, and the
structural delamination of Ta and Ne was not clear. In addition, the absence of pollen intine
was found in male sterile pollen. Therefore, we conclude that the absence of the pollen
intine and abnormal pollen exine leads to abnormal starch deposition in the pollen, which
contributes to male sterility.

2.2. The OsSPL Gene Family Is Involved in Male Fertility Regulation in Response to
Temperature Changes
2.2.1. Identification and Phylogenetic Analysis of OsSPL Family in Rice

To identify OsSPL gene family members, we performed HMMER analysis and a blastp
search using the SBP domain and 16 AtSPL members, respectively identified as OsSPLs in
the rice genome [26,27]; as a result, a total of 19 OsSPLs were identified. All of the identified
OsSPL proteins share the SBP domain. Multiple sequence comparison was performed by
the amino acid sequences of the conserved domain of SBP (Figure S1A). To investigate
the sequence structure of the OsSPLs, we analyzed their motif and intron–exon structure.
All the 19 OsSPLs share the Motif 3, Motif 2, Motif 1 and Motif 5 structures, forming
the conserved SPB functional domain (Figure S2A). This revealed the close evolutionary
relationships of the OsSPLs. For example, OsSPL17 and OsSPL14 are identical in motif
structural composition. The exon–intron patterns of the OsSPL revealed that OsSPL9,
OsSPL15, OsSPL1 and OsSPL6 were in one evolutionary branch and contain the same
structure (Figure S2B). The results indicated that the genetic structure of OsSPL from closer
evolutionary relationships was similar. Then, a phylogenetic tree was constructed based on
19 OsSPLs, 16 AtSPLs, 17 HvSPLs and 10 TaSPLs in the database (Figure S1B). The 62 SPLs
were divided into ten groups (I-X). Group IV has the most members, eleven, and the ones
occurring least were only two in groups VI. Group II has ten members, groups III and VII
have nine members, group I has six members, group IX has five members, and groups V,
VIII and X have three members, respectively. Comparison of the SPLs of rice and Arabidopsis
within the same group revealed that OsSPL17 and AtSPL9, OsSPL19 and AtSPL13, and



Int. J. Mol. Sci. 2022, 23, 3744 4 of 25

OsSPL9 and AtSPL7 have similar amino acid sequences and physical properties (Table 2).
This result suggests that SPLs between rice and Arabidopsis may perform similar functions
in plant growth and development, and stress tolerance regulation.
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Figure 1. Characteristics of fertile and sterile plants and pollen phenotypes of PA64S. (A) The
phenotype of PA2364S and PA2864S plants under different temperature treatments. (B) Pollen fertility
of PA2364S and PA2864S under different temperature treatments. (C) Anther phenotypes and electron
microscopic observation of pollen grains in fertile and sterile plants. (I–III) show anther and SEM
and TEM of pollen in fertile plants, respectively. (IV–VI) show anther and SEM and TEM of pollen in
plants, respectively. SG, starch granule; In, intine; Ne, nexine; Ba, bacula; Te, texine; Ub, Ubisch body.
23 ◦C-P23-F. Fertile plants under 23 ◦C treatment in PA2364S.

Table 1. Pollen fertility and seed-setting rate of PA2364S and PA2864S.

Materials Treatments Pollen I2-KI Dyeing Rate
Mean ± SD (%)

Seed Setting Rate
Mean ± SD (%)

PA2364S
30 ◦C 0.00 0.00
25 ◦C 0.00 0.00
21 ◦C 39.30 ± 0.29 * 34.38 ± 3.29 *

PA2864S
30 ◦C 0.00 0.00
25 ◦C 31.26 ± 0.25 * 30.72 ± 2.69 *
21 ◦C 37.35 ± 0.15 * 38.35 ± 1.45 *

Value is expressed as mean ± standard deviation, n > 120; asterisks indicate significant differences revealed by
Student’s t-test at p < 0.05 (*).
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Table 2. Basic information of Oryza sativa and Arabidopsis SPL genes in different evolutionary groups.

Group Gene Name Gene ID Peptide (aa) PI MW (Da)

1

OsSPL14 LOC_Os08g39890 417 9.46 42,378.83
OsSPL17 LOC_Os09g31438 323 8.29 33,967.35
AtSPL9 AT2G42200.1 375 8.40 40,846.64
AtSPL15 AT3G57920.1 354 9.11 39,672.42

2

OsSPL3 LOC_Os02g04680 282 9.44 30,591.48
OsSPL4 LOC_Os02g07780 251 9.35 28,157.85
OsSPL11 LOC_Os06g45310 343 7.61 37,344.28
OsSPL12 LOC_Os06g49010 475 9.03 50,742.73
AtSPL2 AT5G43270.2 419 8.85 46,860.38
AtSPL10 AT1G27370.1 396 7.94 44,159.12
AtSPL11 AT1G27360.1 393 8.35 43,863.97

3

OsSPL2 LOC_Os01g69830 311 9.25 33,328.97
OsSPL16 LOC_Os08g41940 455 7.18 46,578.88
OsSPL18 LOC_Os09g32944 472 7.16 49,646.22
OsSPL19 LOC_Os11g30370 352 8.60 36,657.7
AtSPL13 AT5G50570.1 359 8.03 39,108.44

4

OsSPL1 LOC_Os01g18850 862 6.53 95,876.37
OsSPL6 LOC_Os03g61760 969 5.37 105,603.96
OsSPL15 LOC_Os08g40260 1140 7.54 124,430.64
AtSPL1 AT2G47070.1 881 5.55 98,459.93
AtSPL12 AT3G60030.1 927 5.85 104,142.47

5
OsSPL9 LOC_Os05g33810 842 5.84 92,018.44
AtSPL7 AT5G18830.3 818 6.13 91,550.37

6
AtSPL14 AT1G20980.1 1035 8.71 114,813.64
AtSPL16 AT1G76580.1 1020 8.87 113,394.12

7
OsSPL5 LOC_Os02g08070 486 6.34 49,131.79
OsSPL10 LOC_Os06g44860 426 9.15 44,291.94
AtSPL8 AT1G02065.1 333 9.01 36,827.06

8 OsSPL8 LOC_Os04g56170 416 7.21 45,029.54

9

OsSPL13 LOC_Os07g32170 216 10.19 22,044.27
AtSPL3 AT2G33810.1 131 8.23 15,303.97
AtSPL4 AT1G53160.2 174 9.69 20,119.57
AtSPL5 AT3G15270.1 181 9.82 20,991.54

10 OsSPL7 LOC_Os04g46580 360 9.45 37,387.07
AtSPL6 AT1G69170.1 405 7.60 45,952.84

2.2.2. Spike Specificity Expression Patterns of OsSPLs Showing a Potentiality for
Temperature Induced Fertility Regulation in PA64S

Based on the Rice Genome Annotation Project database, the tissue specific expression
patterns of OsSPLs were investigated by the RNA-seq data of nineteen OsSPLs in shoots,
leaves, seeds, panicle and anthers. As shown, OsSPLs were expressed with higher levels in
the panicle and anther than in other tissues, and all OsSPLs had high expression in the early
spikelet (Figure 2A). In addition, some genes (OsSPL1, OsSPL9, and OsSPL12) in seedlings
and shoots had high expression. This result indicated that the OsSPL gene family is highly
expressed in the developmental stages of rice reproductive organs in general and has an
important regulatory role in the development of young spikelets and anthers, specifically.
We based this conclusion on the standard of the laboratory for many years, and that the
critical stage for male fertility transformation is from the third to seventh stages, according
to the eight stage differentiation of young spikes. Subsequently, we selected PTGMS
rice PA2364S with a fertility transition temperature of 23 ◦C to obtain fertility differential
plants by temperature treatment and performed RNA-seq analysis on spikes at different
developmental stages (Figure 2B). The expression levels of OsSPL differed significantly
among the three young spike differentiation stages of various fertility materials. Among
them, OsSPL2 and OsSPL17 showed a higher level of expression in the fourth stage, while
there were higher expression levels in the sixth and seventh stages. Meanwhile, we found
that there were differences in the expression levels of OsSPL2, OsSPL17 and OsSPL16
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after different temperature treatments. This result indicated that fertility transition can
be induced by temperature and the expression level of OsSPL responds to temperature
changes. Therefore, we hypothesize that the spike specific expression pattern of OsSPL in
rice reveals its potential male fertility regulation ability.
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Figure 2. The gene expression analysis of OsSPL family in rice tissue. (A) Expression profiles of SPL
gene family in different periods and tissues of rice. (B) Expression profiles of SPL gene family in
young spikelets of fertility differential plants treated with different temperatures. 30/21. Treated at
30 ◦C or 21 ◦C. P23/P28. PA2364S/PA2864S. 4S/4F. The 4th stage sterile or fertile plants. For each
treatment, the RNA-seq results show the average of three replicates.

2.2.3. Differential Expressions of OsSPL in Sterile and Fertile Panicles of PA2364S and
PA2864S under 25 ◦C Conditions

The fertile and sterile plants of PA2364S and PA2864S in the fifth and sixth stages
were subjected to expression analysis. The expression profile illustrated that the OsSPL
expression levels were higher in the fifth stage panicles from PA2364S and PA2864S at
21 ◦C, compared with the 30 ◦C treatment. The panicles OsSPL expressions at the sixth
stage were consistent with those at the fifth stage (Figure S3). To investigate the specific
trends of OsSPL genes with temperature treatment, we show their expression in Figure S4.
Interestingly, we found that the expression trends of OsSPL1, OsSPL2, OsSPL4, OsSPL6,
OsSPL7, OsSPL8, OsSPL9 and OsSPL15, at the two stages, showed lower levels of expression
after 30 ◦C treatment compared with 21 ◦C treatment. In contrast, the expression trends of
OsSPL10 and OsSPL16 were opposite, with higher levels under the 30 ◦C treatment than
those at 21 ◦C. The result is a superimposed expression level of the OsSPLs in response to
temperature changes and involvement in fertility regulation. It also suggested that the sixth
stage was a critical stage for the fertility transition, when the OsSPLs might be involved in
rice fertility regulation responding to temperature changes.

To verify that OsSPL responds to changes in fertility during the critical stage of
fertility transition, and exclude the effect of temperature change on OsSPL expression, we
performed qPCR validation using the two PTGMS rice, PA2364S and PA2864S, selected
from the same genetic background, with different fertility transition temperatures. As
shown in Figure 3, PA2364S showed male sterility while PA2864S showed male fertility
under the same temperature—25 ◦C treatment. At the sixth stage, all the OsSPLs showed
increased expression in sterile plants and decreased expression in fertile plants. Among
them, the transcription level of OsSPL2, OsSPL4, OsSPL6, OsSPL16, OsSPL17 and OsSPL19
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differed significantly between the lines, but the greatest differences were observed for
OsSPL7. This result indicates a regular change in the OsSPL expression level with a change
in fertility after excluding the effect of temperature changes and the high expression levels
in sterile plants. The results further suggest that OsSPL genes are involved in the process of
fertility regulation in rice.
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Figure 3. Expressions of OsSPL gene family in sterile and fertile panicles of PA2364S and PA2864S
under 25 ◦C treatment. Here, 25: treated at 25 ◦C. P23/P28: PA2364S/PA2864S. Here, 5S/5F: fifth
stage sterile or fertile plants. Arrows indicate the trend of gene expression at the sixth stage. For each
treatment, the qPCR results show the average of three replicates. Here, p (*) < 0.05, p (**) < 0.01.

2.2.4. Differential Expressions of miR156-OsSPL Module Genes in Sterile and Fertile
Panicles of PA2364S and PA2864S under Different Temperature Conditions

Some research has found that the OsSPL mediated signaling pathway plays a crucial
role in rice meiotic entry though the miR156-OsSPL module. According to the relationship
network of miRNA and OsSPLs identified by our previous studies (Figure S5), a total of
nine OsSPL genes, including OsSPL2, OsSPL7, OsSPL11, OsSPL12, OsSPL14, OsSPL16,
OsSPL17, OsSPL18 and OsSPL19, were targeted by miR156a, miR156k and miR156l-5p,
respectively. To demonstrate miRNAs-OsSPLs module expression, the relative expression
levels of miR156a, miR156k and miR156l-5p in PA2364S and PA2864S were also verified by
qPCR (Figure 4A). The expression of miR156a, miR156k and miR156l-5p was lower in sterile
plants than in fertile ones, after the same temperature—25 ◦C treatments. The expression
trends of these miRNAs were opposite to those of the OsSPLs. The result indicated that
miR156 negatively regulates OsSPL expression and is involved in the regulation of rice
fertility. Indirectly, the expression pattern of miR156 demonstrated that SPL plays an
important role in the regulation of fertility.
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Figure 4. Expression of miR156/OsSPL module genes in sterile and fertile panicles of PA2364S and
PA2864S at different temperatures. (A) Expression levels of miR156a, miR156k and miR156l-5p
at sixth stages of 25 ◦C treatment in PA2364S and PA2864S. (B) Relative expression folds of the
OsSPL genes targeted by miR156 responding to temperature changes. (C) Venn diagram of OsSPL
genes in response to fertility changes and temperature changes. Here, 25: treated at 25 ◦C. P23/P28:
PA2364S/PA2864S. Here, 6S/6F: sixth stage sterile or fertile plants. The blue bars in Figure 4 indicate
the fold difference in gene expression between 25 ◦C and 30 ◦C treatment in P23 sterile plants, and
the red bars indicate the fold difference in gene expression between 21 ◦C and 25 ◦C treatment in
P28 fertile plants. For each treatment, the qPCR results show the average of three replicates. Here,
p (*) < 0.05, p (**) < 0.01.

After obtaining the above results, we were interested in the response of miR156 and
OsSPL to temperature changes. Therefore, we compared the expression patterns of OsSPL
genes in the fifth stage of plants of PA2364S and PA2864S with temperature changes and
unchanged male fertility (Figure 4B). Interestingly, it was found that all the ten OsSPL genes
(OsSPL2, OsSPL4, OsSPL7, OsSPL11, OsSPL12, OsSPL14, OsSPL16, OsSPL17, OsSPL18 and
OsSPL19) targeted by miR156 showed regular change with temperature. OsSPL expression
was lower at relatively high temperatures and higher at relatively low temperatures, while
the miR156a expression pattern was opposite to them. Among them, OsSPL4, OsSPL11,
OsSPL12, OsSPL16, OsSPL17 and OsSPL18 showed significantly different levels. The
results demonstrated that OsSPL is sensitive to environmental temperature changes, and
miR156/OsSPL might be involved in the regulation of male fertility in a modular form, in
response to temperature changes. Therefore, following the expression analysis of the gene
families, we found that OsSPL4, OsSPL16 and OsSPL17 might be involved in regulating
fertility in response to temperature changes (Figure 4C).



Int. J. Mol. Sci. 2022, 23, 3744 9 of 25

2.3. The OsSPL17 Gene Is Highly Homologous with the AtSPL9 Gene and Has the Potential to
Regulate Male Fertility
2.3.1. Collinearity and Nonredundant Analysis of the OsSPL Family

Gene duplication allows the expansion of new genes with similar or different functions,
which is a special mechanism of species evolution. Completing the basic and evolutionary
analyses of OsSPLs, we analyzed the segmental duplication events in the 19 genes that had
been identified. In total, seven pairs of segmental duplication events (OsSPL2-OsSPL16, Os-
SPL2-OsSPL18, OsSPL4-OsSPL11, OsSPL5-OsSPL10, OsSPL3-OsSPL12, OsSPL14-OsSPL17
and OsSPL16-OsSPL18) were found on the chromosomes 1, 2, 6, 8 and 9, respectively
(Figure S6A). It suggested that half of the OsSPLs were involved in the segmental duplica-
tion events of rice.

To understand the genetic origins and evolution of the SPL gene family, genomewide
collinearity analysis was also performed. Four representative species were selected with two
monocotyledons and two dicotyledons, respectively. The 7 Arabidopsis genes, 12 Hordeum
vulgare genes, 11 Glycine max genes and 30 Zea mays genes were collinearly related to OsSPL
(Figure S6B). Meanwhile, we calculated the nonsynonymous substitution/synonymous
substitution (Ka/Ks) ratio of the orthologous gene pairs (Figure S6C). The Ka/Ks ratios
between rice and Arabidopsis, Hordeum vulgare, Glycine max and Zea mays were calculated
to be 0.25, 0.40, 0.26, and 0.39. This indicated that OsSPLs may have evolved from under
strong purifying selection pressure. Analysis of the orthologous relationships between
rice and Arabidopsis revealed that seven pairs of their SPLs were homologous (Table 3).
Among them, OsSPL2, OsSPL16 and OsSPL19 were homologous to AtSPL13, and OsSPL14
and OsSPL17 were homologous to AtSPL9. By evolutionary analysis, there were seven
syntenic SPL gene pairs found between rice with Hordeum vulgare and Zea mays, but no
pairs simultaneously among the four species (Figure S6D). The results indicated that the
OsSPL gene and AtSPL gene are homologous genes arising from species differentiation and
have similar biological functions.

Table 3. One to one orthologous relationships between the SPL gene members of Oryza sativa and
Arabidopsis thaliana.

OsSPL Gene Name OsSPL Gene ID AtSPL Gene Name AtSPL Gene ID Ka Ks Ka/Ks Selection Pressure

OsSPL1 LOC_Os01g18850 AtSPL1 AT2G47070.1 0.5253 2.3771 0.2210 Purifying selection
OsSPL2 LOC_Os01g69830 AtSPL13 AT5G50570.2 0.6808 2.2521 0.3023 Purifying selection

OsSPL14 LOC_Os08g39890 AtSPL9 AT2G42200.1 0.6658 2.3289 0.2859 Purifying selection
OsSPL15 LOC_Os08g40260 AtSPL16 AT1G76580.1 0.4401 2.3330 0.1886 Purifying selection
OsSPL16 LOC_Os08g41940 AtSPL13 AT5G50570.2 0.6892 2.0674 0.3334 Purifying selection
OsSPL17 LOC_Os09g31438 AtSPL9 AT2G42200.1 0.7400 1.9131 0.3868 Purifying selection
OsSPL19 LOC_Os11g30370 AtSPL13 AT5G50570.2 0.7375 2.0284 0.3636 Purifying selection

2.3.2. OsSPL17 Has a Similar Protein Structure to AtSPL9 and Is a Core Gene in the Male
Fertility Related Module

OsSPL4, OsSPL16 and OsSPL17 were found to have important roles in regulating
male fertility in response to temperature changes, according to the results of expression
analysis. Integrating the homology between rice and Arabidopsis, we explored the protein
structures of OsSPL17 and AtSPL9 to determine whether they have similar biological
functions. Previous studies have found that AtSPL9 can regulate anthocyanin biosynthesis
genes and control anthocyanin and flavonoids content in plants, and the flavonoids are
necessary for the formation of male fertility in rice [28,29]. The comparison revealed that
AtSPL9 and OsSPL17 have similar protein backbones, which have a variation of amino
acids only in the chain (Figure 5A). They have identical α-helix and β-fold structures in
the secondary structure. Hydrogen bonding is the force that maintains the secondary
structure of the protein, and more hydrogen bonding structures were found in AtSPL9 by
comparison (Figure 5A(IV,VIII)). Local structural comparisons revealed that the increase
in hydrogen bonding was due to differences in the amino acids at some positions. For
instance, PRO at position 88 in AtSPL9 and GLY at position 88 in OsSPL17 (Figure 5B(I)).
Similarly, there are amino acid differences in TYR/GLY and MET/VAL at positions 97 and
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98 between AtSPL9 and OsSPL17 (Figure 5B(II)). In addition, they have similar protein
surface structures and surface electrostatic potentials. The results showed that OsSPL17
and AtSPL9 have similar compositions and structures of proteins, and they have a greater
degree of similarity in biological functions.
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Figure 5. Comparative analysis of AtSPL9 and OsSPL17 protein structures. (A) The stick structure
(A(I,V)), secondary structure (A(II,VI)), surface electrostatic potential (A(III,VII)) and hydrogen
bonding structure (A(IV,VIII)) of AtSPL9 and OsSPL17 proteins. (B) Differences in amino acid
composition and protein structure between OsSPL17 and AtSPL9. In (A(II,VI)), the red part indicates
the α-helix and the yellow part indicates the β-fold. In (A(IV,VIII)), the gray dashed lines indicate
hydrogen bonds. In (B), the yellow and blue structures indicate the amino acid arrangement of
AtSPL9 and OsSPL17, respectively. PRO: Proline. GLY: Glycine. TYR: Tyrosine. MET: Methionine.
VAL: Valine.

To investigate the potential role of OsSPL17 in the regulation of male fertility in rice,
we performed WGCNA of the gene expression data from the obtained transcriptome.
We clustered the genes into 30 related modules via association with male fertility traits
(Figure 6A). After further analysis, we correlated the fertility related module with OsSPL17,
which was finally identified in the darkturquoise module (Figure 6B). Several core genes
were identified in the darkturquoise module, including OsSPL17. In particular, CHI and
APX1 were identified among the co-expression genes of OsSPL17, which are critical genes
for flavanone synthesis in the flavonoid pathway and major antioxidant enzymes in the
ROS (reactive oxygen species) scavenging pathway, respectively. Flavonoids are inevitable
for the formation of male fertility in rice. Meanwhile, our previous research found that,
following the abnormal degradation of the tapetum in sterile anthers, ROS are essential for
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the initiation of the PCD process in the tapetum [30]. Therefore, the results indicated that
OsSPL17 has the potential to regulate male fertility.
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2.4. OsSPL17 Is Involved in Flavonoid Metabolic Processes and Regulates Male Fertility in PA64S

The miR156/SPL9 module can negatively regulate flavonoid biosynthesis in
Arabidopsis [29]. OsSPL17 was found to have a similar protein structure to ATSPL9 and a
gene interaction relationship in regulating the flavonoid pathway from evolutionary analy-
sis, protein structure analysis and co-expression analysis. To investigate the regulatory role
of OsSPL17 in flavonoid metabolism, we performed the metabolomic analysis of flavonoid
substances in the fertility differential material. Significant differences in flavonoid metabo-
lites between fertile and sterile plants were found in the analysis of flavonoid metabolites
of fertile differential plants. Among the significantly different metabolites, 16 flavonoids
were up regulated and 29 were down regulated in sterile plants, respectively, compared
to fertile plants (Figure 7B). The content of several major class II flavonoids was different
in the fertility differential material, such as flavanones, flavonols, flavones, chalcones and
anthocyanidins. The ratio of the content in the fertile compared with the sterile plants
showed that the flavanones and flavonols were higher in the fertile plants and the op-
posite results were obtained in the flavones, chalcones and anthocyanidins (Figure 7C).
From the differentially expressed class II metabolites, we found that two flavanones, 2-
hydroxynaringenin and narirutin, were up regulated in the expression of fertile plants,
and kaempferol-7-O-glucoside and nicotiflorin are expressed as down regulated in fertile
plants. Among the six flavones substances, apigenin-7-O-glucuronide, apigenin-7-O-(6′ ′-p-
Coumaryl) glucoside and Isorhoifolin were up regulated in fertile plants, while the other
three (chrysoeriol-7-O-(6′ ′-feruloyl) glucoside, luteolin-7-O-(6′ ′-eudesmyl) glucoside and
tricin-7-O-(2′ ′-feruloyl) glucoside) were down regulated in fertile plants (Figure 7D). The
results showed that the substance composition of the different class II flavonoid metabolites
was quite different in the fertile differential material, further suggesting that flavonoid
metabolic processes may be regulators of male fertility in rice.

To further investigate the function of flavonoids in rice fertility, we extracted the major
fractions of the different class II flavonoid metabolites in the anthers of fertile differential
plants. Naringenin and eriodictyol substances were mainly extracted from flavanones, and
they were both present in higher levels in fertile plants compared to sterile plants (Figure 8).
Meanwhile, we also detected flavonols (kaempferol and quercetin), flavones (apigenin,
luteolin and tricin) and chalcones. Apart from quercetin and chalcones, all substances were
up regulated in fertile plants. This result indicates that fertile rice anthers have high levels
of flavonoids, which are essential for the formation of male fertility in rice.
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To investigate the process of flavonoid biosynthesis in rice anthers, we presented a
flavonoid metabolic pathway and performed expression analysis of several key enzyme
genes in the biosynthesis of important class II flavonoid (Figure 9). CHS is the first branch
point enzyme encoding the biosynthesis of flavanones and the expression in fertile plants
was slightly higher than that of sterile plants. The expression levels of CHI and FNS2 were
higher in fertile plants than that in sterile plants at three stages (fifth, sixth and seventh),
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and CHI showed significantly up regulated expression in the sixth and seventh stages.
This result demonstrated that there was a vigorous flavonoid biosynthesis process in the
rice anthers of fertile plants. Interestingly, a higher expression of CHI and FNS2 genes
was observed in the later stages of young spike development; these results indicate that
flavonoid substances start efficiently synthesized at the sixth stage. F3H is a gene encoding
the synthase of flavonols and its expression is higher in the early stages of young spike
development. However, the contents of kaempferol and qurerrtin were inconsistently
expressed in fertile plants. Therefore, the results speculated that the flavonoids involved in
fertility regulation are mainly flavonols and flavones. OsSPL17 negatively regulate CHI to
increase the biosynthetic process of flavonols and flavones, which provide more flavonoid
substances for fertile plant fertility formation.
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Figure 9. Rice flavonoid biosynthesis pathways and expression of genes encoding key enzymes.
(A) Rice flavonoid biosynthesis pathway. (B) The relative expression level of genes encoding key en-
zymes in PA2364S. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase;
FLS, flavonol synthase; FNSII, flavone synthase II; A3′H/C5′H, apigenin 3′-hydroxylase/chrysoeriol
5′-hydroxylase; FOMT, flavonoid O-methyltransferase. Sterisks indicate significant differences re-
vealed by Student’s t-test at p < 0.05 (*).

2.5. Regulated by OsSPL17, Delayed ROS Accumulation Causes Delayed PCD of the Tapetum
in PA64S

ROS homeostasis is critical for cell survival and growth during anther development,
especially for timely PCD in the tapetum [31,32]. APX (Ascorbate peroxidase) is a major
scavenger of ROS, which converts H2O2 to H2O and balances the ROS level. To investigate
how the OsSPL17 regulates OsAPX1 expression and regulates the male sterility process, we
measured the H2O2 content and APX enzyme activity in rice anthers. The results showed
that H2O2 was higher in fertile plants at the sixth stage and higher in sterile plants at the
seventh stage among PA2364S and PA2864S (Figure 10A). It was found that the anthers
stained darker at stage six in fertile plants and at stage seven in sterile plants with DAB
staining, and this result is consistent with the measured value of H2O2 content (Figure 10C).
To further investigate whether the ROS content in the tapetum is consistent with the
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anther phenotype, we performed a TUNEL assay on anther sections. There was a clear
fluorescence signal in the tapetum region in the sixth stage of the PA2364S fertile anthers
(Figure 10C(III)), compared with a weaker fluorescence signal in the tapetum of sterile
anthers (Figure 10C(VII)), which suggested that there were strong ROS accumulation and
PCD processes in the tapetum of fertile anthers. In contrast, the opposite phenomenon was
observed in the seventh stage, and a stronger fluorescence signal appeared in the tapetum
of sterile anthers (Figure 10C(IV,VIII)). This variation pattern was also demonstrated in
PA2864S (Figure 10D). The results indicated that the ROS accumulated earlier and induced
the PCD process in the tapetum of fertile anthers during anther development. The ROS
accumulated later in the tapetum of sterile anthers and delayed the PCD process. To
determine the relationship between ROS changes and APX, we measured APX activity
in anthers (Figure 10B). The results showed that APX activity was higher in fertile plants
at stage six than in sterile plants, and the opposite result was obtained at stage seven.
Meanwhile, the expression pattern of APX1 gene in PA2364S and PA2864S was consistent
with the trend of enzyme activity (Figure 10C). Therefore, we concluded that OsSPL17
interacts with APX1 to affect APX activity in the anther, thereby regulating ROS content in
anthers and the tapetum, then controlling the PCD process in the tapetum at last regulating
male fertility in rice.
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Figure 10. Effect of ROS and APX on the PCD process in the anther tapetum. (A) The content of H2O2

in PA2364S and PA2864S. (B) The APX activity in PA2364S and PA2864S. (C) The relative expression
level of APX1 in PA2364S and PA2864S. (D) DAB staining and transferase mediated dUTP nick
end labeling (TUNEL) assay of PA2364S (D) and PA2864S (E) anthers. Sterisks indicate significant
differences revealed by Student’s t-test at p < 0.05 (*).

3. Discussion
3.1. Function of SPL Family Genes in Rice

SPL transcription factors are a family of proteins with a highly conserved SBP struc-
tural domain unique to photosynthetic plants [5]. Up to now, the SPL gene family members
have been identified in various plants, including Arabidopsis, Oryza sativa, Triticum aestivum
and strawberry (Fragaria vesca) [2,15,33–37]. The number of SPL gene family members
varies widely among species [38,39]. In this research, there were 27 alternative splicing
OsSPLs sequences identified during the initial process, mainly in the OsSPL1, OsSPL4,
OsSPL12 and OsSPL16 sequences. We selected the maximum length alternative splicing
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sequences for subsequent gene family identification and sequence alignment, and a total of
19 OsSPLs were identified in rice. Multiple segmental duplications, tandem duplication
and transposition events are major drivers of genome and genetic system evolution [40,41].
In the evolutionary relationships of SPL genes, five homologous gene pairs of Oryza sativa
were identified to locate within segmental duplication region, and this result was also
reported in the research of Zhong et al. [42]. Meanwhile, the number of collinear genes was
lower in rice with Arabidopsis and Glycine max (7 and 12). Notably, we found seven shared
OsSPL genes with collinearity in three species other than Arabidopsis, and the results suggest
that the orthologous correlations between these species are relatively conserved during
evolution, and these OsSPL genes might present before species divergence [43]. The Ka/Ks
of collinear gene pairs were lower than 1 between rice and the four species, and the results
suggest that there might have been a stronger purifying selection pressure of the SPL gene
family in species evolution. Previous studies indicated that the SPL gene family is widely
involved in plant growth and development and stress responses [44,45]. AtSPL3, AtSPL4
and AtSPL5 could promote flowering in Arabidopsis by directly activating the expression
of AP1, LFY, and FUL [46]. The reports in the literature indicate that SPL is involved in
the reproductive growth process and is essential for fertility determination [47,48]. The
loss of function spl8 mutant showed reduced fertility, which was mainly characterized by
abnormal pollen sacs and reduced pollen production [49]. In addition, SPL could act as a
regulatory center in response to environmental temperature. The miR156-SPL3 module
could respond to environmental temperature changes by controlling FT expression to
regulate the flowering process. In addition, the miR156-SPL9-SOC1 regulatory module also
has the ability to control plant flowering in response to temperature changes [50,51]. In
the homologous gene relationship analysis, OsSPL17 and OsSPL14 were orthologous to
AtSPL9, and they constituted selected pressure for purifying selection. Similarly, OsSPL2,
OsSPL16 and OsSPL19 were orthologous to AtSPL13. However, we observed that AtSPL9
has a key role in regulating flavonoid metabolism and plant immune response, and we
hypothesized that OsSPL17 and OsSPL14 have similar functional roles with AtSPL9 in plant
development, focused on the gene function of OsSPL17 in the study.

3.2. OsSPL Responds to Temperature Changes and Is Involved in the Regulation of Male Fertility
in PTGMS Rice

In general, the function of genes depends on their expression levels in plants [52].
The expression level of SPL genes are regulated by miRNA targeting, in general, and
plays a key role in plant embryo, tissue, hormone response and stress response [53]. In
this study, we selected two rice varieties (PA2364S and PA2864S) with the same genetic
background and different fertility transition temperatures bred by our research team [54],
and the expression levels of the identified OsSPL genes in PA2364S and PA2864S were
analyzed. It was found that the expression level is a superimposed expression of the gene in
response to fertility and temperature treatment. PA2364S was male sterile and PA2864S was
male fertile under 25 ◦C treatment. Therefore, we could obtain the OsSPL gene expression
levels of differentially fertile plants under 25 ◦C treatment. At the critical stage of fertility
transition (the sixth stage), the expression levels of OsSPL in differentially fertile plants were
significantly different (OsSPL2, OsSPL4, OsSPL6, OsSPL7, OsSPL16, OsSPL17 and OsSPL19),
and the expression levels of OsSPL in sterile plants were higher than those in fertile plants.
The results indicated that the OsSPL gene is involved in regulating male fertility in rice.
A significant reduction in setting rate was observed in OsSPL2, OsSPL7, OsSPL16 and
OsSPL17 by knocking out 19 SPL family genes in rice [55]. Ren et al. revealed that OsSPL
may act upstream of MIL1 (MICROSPORELESS1) and MIL2 (MICROSPORELESS2) to
regulate meiotic entry and parietal cell differentiation in rice [25]. It is well known that
genes are regulated by miRNA targeting, and the expression of most BpSPL in terminal
buds and male inflorescences was also observed to be negatively correlated with miR156
expression in Betula (Betula platyphylla Suk) [56]. We found that miR156 (miR156a, miR156k,
miR156l-5p, miR156j-3p and miR156f-3p) targets 10 OsSPL genes in our material, after
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analyzing the target relationships of miRNAs by sequencing (Figure S5). The expression
analysis of miR156 in plants treated at 25 ◦C revealed a low relative expression in sterile
plants, and this result contrasted with the expression trend of OsSPL. Fifty-seven percent of
miR156 targeted SPL in Zea mays was inhibited by salt and drought stresses, and the results
suggest that miR165/SPL modules might be jointly involved in regulating growth and
development in response to environmental changes [36,57]. Regulatory modules consisting
of miRNAs and target genes have been reported in response to disease resistance and
abiotic stresses in plants. Some common targeting OsSPL genes exist in miR156/529 that
have important roles in regulating inflorescence structure and seed yield in rice [58]. For
instance, panicle architecture and grain size were controlled by miR529a through altering
the expression of all five target genes OsSPL2, OsSPL7, OsSPL14, OsSPL16, OsSPL17 and
OsSPL18 [59]. Overexpression of miR156k resulted in the down regulation of SPL3, SPL14
and SPL17, which reduced tolerance to cold stress in rice [60]. To explore whether OsSPL
genes have a unique pattern in response to temperature changes, we compared OsSPL
expression levels in the fifth stage plants of two varieties treated with different temperatures.
Interestingly, all 10 OsSPL genes targeted by miR156 showed a lower expression level in
the relatively high temperature treatment (30/25 ◦C) and a higher expression level in
the relatively low temperature treatment (25/21 ◦C), while the opposite trend of miR156
expression was observed in fifth stage plants, among them, OsSPL4, OsSPL11, OsSPL12,
OsSPL16, OsSPL17 and OsSPL18 were significantly different levels. The results indicate
that miR156 is an miRNA that responds to environmental temperature changes, which is
consistent with the previous research that miR156 is upregulated in expression by high
temperature conditions [61]. Temperature changes were not high temperature stress or low
temperature stress in this study, and the results illustrated that the miR156/SPL module
is more sensitive in response to temperature changes. OsSPL4, OsSPL16 and OsSPL17
were revealed to be significantly differentially expressed in response to both temperature
and fertility changes; they might be more important in responding to temperature and
regulating male fertility. We speculated that the difference in fertility critical temperatures,
between PA2364S and PA2864S, might be a change in the expression level of OsSPLs in
response to temperature, and, thus, the change in male fertility in rice.

3.3. OsSPL17 Is Involved in Male Fertility Regulation by Impacting Flavonoid Metabolic and
Tapetum PCD Processes

Flavonoids are a common class of plant secondary metabolites with a variety of regula-
tory roles in plant physiological responses, growth and development [62]. They are mainly
classified into six class II flavonoids: flavanones, flavonols, flavones, chalcones, antho-
cyanidins and proanthocyanidins, and more than 6000 flavonoids have been identified [63].
Studies have demonstrated that flavonoids play a regulatory role in biotic and abiotic
stresses; in addition, the functional role of flavonoids in male fertility has been demon-
strated in several plants [64–67]. Flavonoids are essential for the formation of male fertility
in rice [68]. The miR156-SPL9 module was reported to regulate the flavonoid biosynthetic
pathway in Arabidopsis, and SPL9 upregulation affected flavonol biosynthesis and inhib-
ited flavonol accumulation [29]. In our study, we found that rice OsSPL17, which responds
to temperature changes and regulates the fertility process, and AtSPL9 in Arabidopsis are
proteins of the same subfamily, with some structural and functional similarities. In addition,
the CHI genes interacting with OsSPL17 were found to be involved in the regulation of the
flavonoid synthesis pathway in WGCNA analysis. The analysis of flavonoid metabolites
revealed that the composition of the different class II flavonoids differed significantly in
the fertile differential material. Flavonols showed a significant up-regulation of the main
substance, kaempferol, in fertile plants, although the total amount was low in compar-
ison with sterile plants. In addition, we found that flavanones and flavones were also
significantly upregulated in fertile plants, which indicated that flavonoid substances were
at higher levels in fertile plants. Interestingly, we detected that the upstream metabo-
lites of flavonoids, chalcone was significantly down-regulated in fertile plants, and the
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change in phenylalanine was the opposite. Phenylalanine is an important substance in the
phenylpropanoid metabolic pathway, and its content changes directly affect the metabolic
processes of downstream flavonoids and lignin. However, the process of lignin metabolism
is indispensable for sporopollenin synthesis during male fertility development [28]. Anal-
ysis of the expression of genes encoding key enzymes in the flavanones, flavonols and
flavones biosynthetic pathway revealed that the expression of CHI and FNS2 were at a high
level in fertile plants, especially at the early stage of anther development. Active flavonoid
biosynthesis processes are present in fertile plants, which were directly responsible for the
high content of flavanones and flavones. Some studies found that MYB (MYB11, MYB12
and MYB111) regulates the expression of several early flavonoid biosynthetic genes, in-
cluding CHS, CHI, F3H and FLS1, while SPL may have an indirect effect on MYB12 and
MYB111 via a feedback loop [69–71]. Therefore, it was hypothesized that OsSPL17 might
affect rice male fertility by regulating the accumulation process of flavonoid substances
(Figure 11).
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Figure 11. A model for OsSPL response to temperature change and involvement in the regulation of
rice fertility. Under low temperature conditions, the miR156-OsSPL module regulated CHI expression
in response to temperature changes, resulting in a strong synthesis of flavonols and flavones in the
flavonoid pathway, providing sufficient flavonoid substances for the formation of fertile pollen. In
addition, the miR156-OsSPL module regulates APX1 gene expression and controls the PCD process
in the tapetum by affecting the APX-ROS balance, providing the material basis for the formation of
fertile pollen.

The development and maturation of male gametes play an important role in the fertility
and reproduction of rice. Pollen development is a multisystem coordinated and complicated
physiological process [72]. The anther is an important site for pollen development, which
is composed of four layers of sporophytic cells (epidermis, endothecium, middle layer and
tapetum) from outside to inside [73]. The tapetum is the innermost structure of the anther
and contributes to microspore release, nutrient accumulation, pollen wall synthesis, and
sporopollenin deposition [74,75]. Controlled degradation of the tapetum is essential, and
changes in this process can directly reduce fertility [76]. It has been found that the delayed
degradation of the tapetum causes male sterility in rice [72,77,78]. In this study, we found
that the PCD process normally starts at an early stage in the tapetum cells of fertile plants,
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whereas that process in the tapetum of sterile plants starts at a later stage of development
(Figure 10D,E). Similarly, the accumulation pattern of ROS in anthers was also consistent
with its variation pattern (Figure 10A). ROS are involved in the PCD process in the tapetum,
and timely PCD in the tapetum and the maintenance of dynamically balanced ROS levels
are essential for anther cell growth and survival. The co-expression between APX1 and
OsSPL17 was found in the WGCNA analysis, and the expression of APX1 and APX enzyme
activity assay revealed that the expression pattern was opposite to the ROS accumulation
pattern: low ROS accumulation was observed during the stage of high APX activity in
anther the tapetum (Figure 10B,C). In addition, Liu et al. found that the down regulation of
APX and GPX activity increased the accumulation of ROS in late pollen development in
wheat male sterile materials [79]. In addition, TEM observation of mature pollen grains
revealed the absence of starch grain formation, the absence of pollen intine structure and
abnormal pollen exine structures in sterile pollen grains (Figure 1C). The tapetum has a
secretory role during sporogenesis. Accompanying callus cell degradation, a large amount
of sporopollenin precursor material derived from the tapetum is stored on the primexine,
and constitutes the basic structure of the pollen exine. GAMYB, CYP703A3 and GPT1 were
demonstrated to be essential for pollen exine development in rice, and these mutants all
showed abnormal PCD in the tapetum. Therefore, we propose that OsSPL17 may impact
APX enzyme activity by regulating the expression of APX1, which regulates the balance
of ROS in the anther tapetum, leading to abnormal PCD processes in the tapetum and
producing male sterility (Figure 11).

4. Materials and Methods
4.1. Plant Materials and the Temperature Experimental Treatment for Pollen
Fertility Transformation

The near isogenic lines (NILs) PA2364S and PA2864S come from Peiai64S (PA64S) used
in the study are PTGMS rice, which had been identified and bred by our research team for
multiple generations. PA2364S has a fertility critical temperature of 23 ◦C, and, under long
day (LD) conditions, male sterility manifested when the average temperature was above
23 ◦C, and males were fertile at average temperatures below 23 ◦C. PA2864S has a fertility
critical temperature of 28 ◦C, and, under LD conditions, male sterility manifested when
the average temperature was above 28 ◦C, and males were fertile at average temperatures
below 28 ◦C. This experiment was conducted at the Crop Physiology and Production
Centre of Huazhong Agricultural University (30.28◦ N, 114.20◦ E) during 2020–2021. Sowed
annually on May 10, better growing seedlings were selected and transplanted into enamel
pots to grow naturally. Three plants were transplanted into each pot, each limited to
primary tillers. During this period, regular fertilizer, water and disease management
was performed. According to the method of eight stage differentiation of young rice
spikes [80], when the plant population (50%) develops into the secondary stalk and spikelet
primordium differentiation stage (3rd stage), the rice plants were moved to the plant growth
chamber. The average temperatures were 21 ◦C, 25 ◦C and 30 ◦C with fluorescent light of
300 µmol/(m2·s) and relative humidity of 80% of PA2364S and PA2864S.

4.2. Phenotype and Characterization Analysis of PTGMS Rice

The representative mature rice plants and spikelets were selected for observation
according to our previous research methods [13,81]. The anthers of the top floret that had
initiated heading were picked and stained with 1% I2-KI. The anthers were extruded with
tweezers to remove the residue, and three fields of view were observed randomly under the
microscope. Pollen was classified into two categories, fertile and abortive (pollenless, round
abortive and spot abortive), according to their different morphologies, and the percentage
of fertility was calculated. Finally, the percent fertility of all tested spikelets from the same
treatment was averaged to obtain the percentage of pollen fertility for the period under
the treatment. We selected 60 plants with more than two young spikelets per plant for
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observation, with pollen fertility and seed setting rate (N > 120). Significant differences are,
according to Student’s t-test, at p < 0.05 (*).

4.3. Identification and Bioinformatics Analysis of SPL Genes in Rice

To identify members of the SPL gene family in rice, the rice genome and genome
annotation files were downloaded from Ensembl Plants release 50 (http://plants.ensembl.
org/index.html, accessed on 5 July 2021) and that of SBP domain (PF03110) from the
Pfam database [27]. First, we used hmmsearch (http://www.hmmer.org/, accessed on
5 July 2021) with SBP domain to search the poplar amino acid sequences, with a threshold
of e < 1 × 10−5. We obtained all the Arabidopsis SBP-box gene family (AtSPL) protein
sequences from the TAIR database (https://www.arabidopsis.org/index.jsp, accessed on
11 July 2021) by querying the sequences. Based on these data, the sequences of the most
representative SPL gene family members in rice were extracted using the TBtools [82],
and the OsSPL protein sequence was further queried and validated by BLASTp in the
NCBI protein database. (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&
PAGE_TYPE=BlastSearch&LINK_LOC=blasthome, accessed on 13 July 2021). We used
Batch CD-Search in NCBI for further screening based on conserved structural domains
to obtain candidate genes, which were also removed (https://www.ncbi.nlm.nih.gov/
Structure/bwrpsb/bwrpsb.cgi, accessed on 15 July 2021). The ExPASy website (http:
//expasy.org/tools/, accessed on 15 July 2021) was employed for evaluations of molecular
weight (MW), isoelectric point (pI) and amino acid numbers of the identified OsSPL
proteins [83].

The physical location of the OsSPL gene was obtained from the genome annotation
information of rice, the visualization of the OsSPL gene on the rice chromosome was
performed using TBtools, and the intron–exon structure was demonstrated. Conserved
motifs of the OsSPL protein were identified using MEME v5.4.3 (https://meme-suite.org/
meme/tools/meme, accessed on 22 July 2021) with the maximum motif number set to 20.
Finally, the conserved amino acid sequences were visualized using the WebLogo online
tools (http://weblogo.berkeley.edu/, accessed on 22 July 2021).

The SPL protein sequences of rice, Arabidopsis, Hordeum vulgare and Triticum aestivum
were used to construct phylogenetic analyses [84,85], and multiple sequence comparisons
were performed and an unrooted phylogenetic relationship was constructed by MEGA
7.0 software, the phylogenetic relationship was constructed by the Jones–Taylor–Thornton
(JTT)+ gamma distributed (G) model based on 1000 bootstrap replicates [86]. Finally, the
images were processed using Figtree v1.4.4 software and Adobe illustrator 2021.

Genomic and annotation files of Arabidopsis, Zea mays, Hordeum vulgare and Triticum
aestivum were obtained from the Ensembl database for species collinearity analysis. Using
the TBtools with MCScanX, we analyzed the tandem duplication events and the collinearity
relationship for gene pairs from different species [87]. Ka and Ks substitutions between
gene pairs were also calculated, by use of the TBtools [82].

4.4. RNA Sequencing and qPCR Validation for PA2364S and PA2364S Rice

The 4th, 6th and 7th stage materials of PA2364S and PA2864S were selected for the
extraction of total RNA, using TIANGEN RNAprep Pure Plant Kit as described by the
supplier. For RNA sequencing, 3.0 µg of RNA from each sample was used for sequencing.
Each sample was represented by three biological replicates.

For mRNA quantification, the 5th, 6th and 7th stages materials of PA2364S and
PA2864S were selected for the extraction of total RNA, and followed the instructions of
the RevertAidTM First Strand cDNA Synthesis Kit (MBI, Lithuania) to reverse transcribe
RNA samples into cDNA. In this experiment, Acting7 (X16280) was selected as the internal
reference gene. We used primer 3.0 to design specific primers, and these primers were
synthesized by Shanghai Shenggong Bioengineering Co., Ltd., Shanghai, China. The
specific primer information is shown in Supplementary Table S1. The QuantStudio™ Real-
Time PCR Detection System was used for qPCR, and each sample was represented by three
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biological replicates. For miRNA quantification, according to the instructions, we used a
TIANGEN miRcute enhanced miRNA cDNA first-strand synthesis kit to obtain reverse
transcription products in a PCR machine (Bio-Rad, Hercules, CA, USA). A TIANGEN
miRcute Enhanced miRNA Fluorescence Quantitative Detection Kit (SYBR Green) was
used for qPCR of miRNA. U6 was selected as the internal reference gene. The expression of
miRNA was verified by three biological replicates. Values were represented as the average
values of three biological repeats. Error bars represented standard deviations. Asterisks
indicated significant differences revealed by the Student’s t-test.

4.5. Analysis of the Protein Structure and WGCNA of PA64S

Analysis of protein structures was performed using SWISS-MODEL and Phyre2 to
ensure their credibility [88,89]. Files constructed in the database were visualized and edited
using PyMOL (The PyMOL Molecular Graphics System, Schrödinger, LLC., New York, NY,
USA) software.

The co-expression network was constructed using the WGCNA package in Rsoftware.
In this study, the data from 18 samples were analyzed. Before performing WGCNA
analysis, selected genomes were filtered to remove low quality genes, and the data were
filtered by setting a coefficient of variation of 0.5. The parameters of WGCNA program
were as follows: power estimate (estimate value) = 8, min module size = 30, merge cut
height = 0.25. The other parameters were defined as default values. Highly similar modules
were subsequently identified by clustering and then merged into new modules on the basis
of eigengenes. Finally, Cytoscape 3.8.2 was used to visualize the data.

4.6. Electron Microscopy Methods and TUNEL Assays of PA64S

The sample preparation and observation for TEM (transmission electron microscopy),
SEM (scanning electron microscopy), and TUNEL (transferase mediated dUTP nick end
labeling) of rice anthers were performed according to the previous work [77].

4.7. Determination of DAB Staining, H2O2 Content and APX Activity in Rice Anthers

PA64S anthers were stained with 3,3′-Diaminobenzidine as described in previous
studies [90]. ROS was quantified by measuring H2O2. Briefly, fresh rice anthers were
ground to a fine powder using liquid nitrogen and the powder was homogenized with
buffer on ice, and centrifugation at 8000× g for 10 min at 4 ◦C. The H2O2 in the supernatant
was quantified as described in the H2O2 kit (Keming, Suzhou, China). Similarly, APX
activity was performed using the plant APX activity assay kit (Keming, Suzhou, China).

4.8. UPLC-MS/MS Analysis of Anther Metabolites

Anther samples were freeze dried by vacuum freeze dryer (Scientz-100F). The freeze
dried sample was crushed using a mixer mill (MM 400, Retsch) with a zirconia bead for
1.5 min at 30 Hz. A total of 100 mg of lyophilized powder was dissolved with 1.2 mL
70% methanol solution, vortexed for 30 s every 30 min for 6 times in total, the sample was
places in a refrigerator at 4 ◦C overnight. Following centrifugation at 12,000 rpm for 10 min,
the extracts were filtrated (SCAA-104, 0.22 µm pore size; ANPEL,Shanghai, China, http:
//www.anpel.com.cn/, accessed on 11 October 2021) before UPLC-MS/MS analysis. The
sample extracts were analyzed using an UPLC-ESI-MS/MS system (UPLC, SHIMADZU
Nexera X2, https://www.shimadzu.com.cn/, accessed on 11 October 2021; MS, Applied
Biosystems 4500 Q TRAP, https://www.thermofisher.cn/cn/zh/home/brands/applied-
biosystems.html, accessed on 11 October 2021).

4.9. Data and Figures

The RNA-seq data of the OsSPL gene family in 11 various tissues (shoots, leaves, seeds,
inflorescence and anthers) were obtained from the public database (Rice Genome Annota-
tion Project, http://rice.plantbiology.msu.edu/index.shtml, accessed on 22 August 2021).
Statistical analysis of data and plotting of histograms were performed using Origin 2021.

http://www.anpel.com.cn/
http://www.anpel.com.cn/
https://www.shimadzu.com.cn/
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Error bars represented by standard deviations. Asterisks indicated significant differences
revealed by the Student’s t-test.

5. Conclusions

In conclusion, we identified the SPL gene family in rice with 19 members. Based on the
temperature experimental system for pollen fertility transformations from PTGMS rice lines
PA2364S and PA2864S, with different critical temperatures, it was suggested that three SPL
family members, OsSPL4, OsSPL16 and OsSPL17, were involved in regulating male fertility
responding to temperature. The WGCNA analysis revealed CHI and APX1 co-expression
with OsSPL17, and they play an important role in the flavonoid synthesis pathway and
ROS clear system, respectively. Flavonoid metabolite analysis revealed that a more active
flavonoid biosynthesis process exists in fertile plants, OsSPL17 negatively regulates CHI to
increase the biosynthetic process of flavonols and flavonoids, which provide more flavonoid
substances for fertile plant fertility formation. In addition, OsSPL17 negatively regulates
APX1 to affect APX activity, thereby regulating ROS content in the tapetum, controlling
the PCD process, and regulating male fertility in rice. The results provide a new insight
for further analysis of the OsSPL gene regulation of male fertility in PTGMS rice. Further
research is needed to understand the molecular mechanism of OsSPL in the regulation of
male fertility in rice.
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