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Abstract: The knowledge of normal metabolite values for neonates is key to establishing robust
cut-off values to diagnose diseases, to predict the occurrence of new diseases, to monitor a neonate’s
metabolism, or to assess their general health status. For full term-newborns, many reference
biochemical values are available for blood, serum, plasma and cerebrospinal fluid. However, there
is a surprising lack of information about normal urine concentration values for a large number of
important metabolites in neonates. In the present work, we used targeted tandem mass spectrometry
(MS/MS)-based metabolomic assays to identify and quantify 136 metabolites of biomedical interest in
the urine from 48 healthy, full-term term neonates, collected in the first 24 h of life. In addition to
this experimental study, we performed a literature review (covering the past eight years and over
500 papers) to update the references values in the Human Metabolome Database/Urine Metabolome
Database (HMDB/UMDB). Notably, 86 of the experimentally measured urinary metabolites are being
reported in neonates/infants for the first time and another 20 metabolites are being reported in human
urine for the first time ever. Sex differences were found for 15 metabolites. The literature review
allowed us to identify another 78 urinary metabolites with concentration data. As a result, reference
concentration values and ranges for 378 neonatal urinary metabolites are now publicly accessible via
the HMDB.
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1. Introduction

According to the 2018 WHO annual report, across the globe, 2.5 million children died in the first
month of life. This represents 7000 newborn deaths per day. One third of these deaths occur in the first
24 h of life, while three quarters of infant deaths occur during the first week after birth [1]. Some of the
most important causes of neonatal death are preterm birth, intrapartum related events, sepsis/tetanus,
infections and congenital abnormalities [2,3].

A neonate is formally defined as a baby that is four weeks old or younger. The neonatal period,
a time during which a baby is particularly small and fragile, is characterized by continuous and rapid
changes in behavior, physiology and metabolism. During the neonatal stage, a number of important
physiological events take place, including the establishment of feeding patterns, remodeling of the
immune system, changes to the endocrine system, as well as modifications to the infant’s overall
metabolism. Usually, the common hospital stay for a newborn is 48 h after a vaginal delivery and
96 h after a caesarean section. However, when medical conditions appear shortly after birth, longer
periods of hospitalization are required. It is during these extended stays that multiple hematological,
urinary, clinical and biochemical tests are often performed. Therefore, the availability of reference
values for hematological, urinary, clinical and biochemical parameters for newborns and neonates is of
critical importance.

Indeed, the use of neonatal reference values for biochemical tests (on blood or urine) of selected
metabolites have been the basis of newborn screening programs around the world for more than
50 years. While the first tests, introduced by Dr. Robert Guthrie to diagnose inborn errors of metabolism
(IEMs), were quite limited and based on simple enzymatic assays [4], over the past 55 years, these
biochemical tests have been expanded and improved significantly. Tandem mass (MS/MS) spectrometry
is now widely used in the screening of newborns and has greatly expanded the number of metabolite
measurements that can be performed [5]. The specificity and sensitivity of tandem mass spectrometry
methods may reach values up to 99.99% and 99%, respectively, for IEM diagnoses. With the advent
of LC-MS and direct infusion tandem mass spectrometry (DI-MS/MS), an increased number of less
common metabolites and correspondingly rarer IEMs can now be detected with relative ease.

For full term-newborns, infants and children, a modest number of reference biochemical values
are available for blood, serum, plasma, urine and cerebrospinal fluid. This information is also available
for preterm newborns [6–10]. However, reference values for many common urinary metabolites in
newborns are lacking. Indeed, an in-depth literature review, along with detailed comparisons to
values reported in the Human Metabolome Database (HMDB) [11] and the human Urine Metabolome
Database (UMDB) [12] indicates that only 212 metabolites have reported urinary reference values for
newborns and infants (detected and quantified). In contrast, the number of urinary metabolites with
adult reference values is >2000 [12]. This suggests that there is a surprising lack of information about
normal urine concentration values for a large number of important metabolites in neonates.

In the present work, we used targeted MS/MS assays to identify and quantify 136 metabolites of
biomedical interest in the urine from 48 healthy, full-term term neonates collected in the first 24 h of
life. The targeted assays that we employed use a combination of liquid chromatography tandem mass
spectrometry (LC-MS/MS) and flow injection analysis (FIA-MS/MS). In addition to this experimental
study, we also performed a detailed literature review (covering the past eight years and a total of
509 papers) to update the information on neonatal urinary concentration data in the HMDB [11] and
the UMDB [12]. Combined with the experimental data reported in this study, the total number of
neonatal urinary metabolites with reference concentration data has now grown to 378. By conducting
this combined experimental/literature review study, we have now nearly doubled the number of
urinary metabolites, with reference concentrations for neonates and infants. All of these metabolites
and reference values have now been added to the HMDB [11] and the UMDB [12], and are publicly
available at www.hmdb.ca.

www.hmdb.ca
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2. Results

Table 1 shows the clinical and phenotypic data collected from the 48 singleton, healthy full-term
neonates, along with the relevant clinical data from the mothers.

Table 1. Clinical data from the newborns and their mothers.

Newborns (N = 48)

Sex
Female 17 (35%)
Male 31 (65%)

Gestational age (weeks) 38.2 ± 1.5

Ave. Apgar at 1 min 8 (100%)

Ave. Apgar at 5 min 9 (100%)

Ave. Silverman–Anderson 0 (100%)

Weight (g) 2979 ± 472

Weight (g) males 2992 ± 86.59

Weight (g) females 2882 ± 112.4

Mothers (N = 48)

BMI (pre-gestational) 27.1 ± 4.9

Age (years) 29 ± 7

Resolution
Vaginal delivery 22 (45.8%)

Caesarean section 26 (54.2%)

Euglycemic 22 (45.8%)

Gestational Diabetes Mellitus (GDM) 26 (54.2%)

2.1. Concentration Data of 136 Metabolites Measured by Targeted Metabolomics

In the present study, we experimentally determined the concentrations of 136 metabolites, selected
due to their known involvement in multiple metabolic pathways associated with metabolic or genetic
disorders (such as IEMs), that could manifest in the first 24 h of life. A total of 45 amino acids and
biogenic amines, 17 organic acids, 24 glycerophospholipids, 10 sphingomyelins and 40 carnitines and
acylcarnitines were detected and quantified in every urine sample. Supplementary Table S1 shows the
limit of detection (LOD) for each measured metabolite using our LC-MS/MS approach.

Figure 1a–c show the quantitative results we obtained using our LC-MS/MS method, expressed as
mean ± SD for metabolites previously reported in newborns. Additionally, Supplementary Tables S2
and S3 contain the measured concentration data (mean± SD, raw and normalized to creatinine) for these
metabolites. We also report the urinary reference values found in the literature for these compounds,
along with values reported in the HMDB [11] and UMDB [12]. When available, the reference value is
listed for newborns or neonates. However, when this data is not available, a reference value listed for
infants (which is generally assumed to cover babies aged one week to one year) is provided.
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Figure 1. Graphical representation of urinary concentrations of a) amino acids b) biogenic amines and 
c) organic acids, previously reported in newborns by LC-MS/MS. The error bars reflect one standard 
deviation. a) Amino acids are represented by their three-letter code. b) 4-hydroxyproline: Hyp; 
methionine-sulfoxide: Met(O); acetyl-ornithine: AOR; serotonin: 5-HT; asymmetric dimethylarginine: 
ADMA; symmetric dimethylarginine: SDMA; total dimethylarginine: TDMA; carnosine: Car; 
sarcosine: Sar; diacethylspermine: DASpm; betaine: Bet; choline: Cho; alpha-aminoadipic acid: Aad. 
c) lactic acid: LA; 3-Hydroxybutyric acid: BHIB; alpha-Ketoglutaric acid: AKG; citric acid: CA; butyric 
acid: BA; 3-(3-Hydroxyphenyl)-3-hydroxypropanoic acid: HPHPA; succinic acid: SA; fumaric acid: 
FA; pyruvic acid: PA; hippuric acid: HA; methylmalonic acid: MMA; homovanillic acid: HVA; 
indoleacetic acid: IAA; Glucose: Glu. 

Tables 2 and 3 contain the experimental results for metabolites not previously reported in 
newborn and in human urine, respectively, including the absolute concentration (μM, expressed by 
mean ± standard deviation (SD)); creatinine-normalized values (μM/mM creatinine) expressed as a 
mean ± SD; and the 2.5–97.5% percentile range (μM/mM creatinine).  

Urinary creatinine (Ucreat) is often used to adjust or normalize urinary analyte concentrations, 
but we found that Ucreat appeared to be a relatively unreliable reference value in the early newborn 
period, due to its high variation (ranging from 1000 to 17,000 mM). For this reason, we also provide 
the absolute concentrations of each metabolite measured in urine. 

A total of 86 of these experimentally measured urinary metabolites (64%), along with their 
concentration ranges, are being reported in neonates/infants for the first time. Of these, 20 metabolites 
(14% of the compounds identified in this study) are being reported in human urine for the first time 
ever. Note that the concentration data for some metabolites found through our literature and 
database searches had more than one reference value, obtained by different laboratories using 
different methods. This can lead to some minor discrepancies for the numbers reported in these 
tables.  
  

Figure 1. Graphical representation of urinary concentrations of (a) amino acids (b) biogenic amines and
(c) organic acids, previously reported in newborns by LC-MS/MS. The error bars reflect one standard
deviation. (a) Amino acids are represented by their three-letter code. (b) 4-hydroxyproline: Hyp;
methionine-sulfoxide: Met(O); acetyl-ornithine: AOR; serotonin: 5-HT; asymmetric dimethylarginine:
ADMA; symmetric dimethylarginine: SDMA; total dimethylarginine: TDMA; carnosine: Car; sarcosine:
Sar; diacethylspermine: DASpm; betaine: Bet; choline: Cho; alpha-aminoadipic acid: Aad. (c) lactic
acid: LA; 3-Hydroxybutyric acid: BHIB; alpha-Ketoglutaric acid: AKG; citric acid: CA; butyric acid:
BA; 3-(3-Hydroxyphenyl)-3-hydroxypropanoic acid: HPHPA; succinic acid: SA; fumaric acid: FA;
pyruvic acid: PA; hippuric acid: HA; methylmalonic acid: MMA; homovanillic acid: HVA; indoleacetic
acid: IAA; Glucose: Glu.

Tables 2 and 3 contain the experimental results for metabolites not previously reported in newborn
and in human urine, respectively, including the absolute concentration (µM, expressed by mean ±
standard deviation (SD)); creatinine-normalized values (µM/mM creatinine) expressed as a mean ± SD;
and the 2.5–97.5% percentile range (µM/mM creatinine).

Table 2. Metabolites not previously reported in newborns.

Metabolite HMDB ID Mean ± SD
(µM)

Mean ± SD
(µM/mM Creatinine)

2.5–97.5% Percentile
(µM/mM Creatinine)

Histamine HMDB0000870 0.08 ± 0.03 0.02 ± 0.01 0.01–0.04

Putrescine HMDB0001414 1.09 ± 1.54 0.31 ± 0.63 0.03–3.42

Methionine sulfoxide HMDB0002005 7.02 ± 4.70 1.60 ± 0.73 0.60–3.60

N2-Acetylornithine HMDB0003357 3.28 ± 4.00 0.67 ± 0.75 0.12–3.50

Serotonin HMDB0000259 0.98 ± 0.67 0.20 ± 0.06 0.10–0.35

DOPA HMDB0000181 0.20 ± 0.10 0.05 ± 0.03 0.01–0.15

Asymmetric dimethylarginine HMDB0001539 10.6 ± 6.40 2.31 ± 0.83 0.98–4.90

Symmetric dimethylarginine HMDB0003334 45.7 ± 30.8 9.80 ± 3.00 5.33–18.1

Spermidine HMDB0001257 0.25 ± 0.19 0.06 ± 0.05 0.02–0.30

Spermine HMDB0001256 0.23 ± 0.28 0.06 ± 0.11 0.01–0.62

Diacetylspermine HMDB0002172 4.64 ± 3.52 1.03 ± 0.59 0.37–3.11

Trimethylamine N-oxide HMDB0000925 59.4 ± 54.0 12.2 ± 10.3 0.30–43.1

p-Hydroxyhippuric acid HMDB0013678 37.1 ± 24.8 8.03 ± 3.48 4.20–19.6
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Table 2. Cont.

Metabolite HMDB ID Mean ± SD
(µM)

Mean ± SD
(µM/mM Creatinine)

2.5–97.5% Percentile
(µM/mM Creatinine)

LysoPC a C16:1 HMDB0010383 0.013 ± 0.011 0.003 ± 0.003 0.0001–0.0150

LysoPC a C16:0 HMDB0010382 0.19 ± 0.20 0.043 ± 0.036 0.007–0.169

LysoPC a C17:0 HMDB0012108 0.018 ± 0.013 0.005 ± 0.001 0.0008–0.0582

LysoPC a C18:2 HMDB0010386 0.03 ± 0.04 0.007 ± 0.007 0.001–0.030

LysoPC a C18:0 HMDB0010384 0.06 ± 0.06 0.015 ± 0.012 0.0008–0.0652

LysoPC a C20:4 HMDB0010395 0.02 ± 0.04 0.005 ± 0.006 0.0–0.03

PC ae C36:0 HMDB0013406 0.02 ± 0.03 0.006 ± 0.013 0.0–0.08

PC aa C36:6 HMDB0008206 0.007 ± 0.006 0.002 ± 0.003 0.0–0.02

PC aa C36:0 HMDB0007886 0.05 ± 0.06 0.013 ± 0.023 0.001–0.130

PC aa C38:6 HMDB0008116 0.08 ± 0.12 0.017 ± 0.020 0.002–0.089

PC aa C38:0 HMDB0007893 0.08 ± 0.04 0.022 ± 0.021 0.005–0.124

PC ae C40:6 HMDB0013422 0.02 ± 0.02 0.005 ± 0.004 0.001–0.021

PC aa C40:6 HMDB0008057 0.04 ± 0.05 0.010 ± 0.013 0.0–0.07

SM(OH) C14:1 HMDB0013462 10.1 ± 0.09 0.02 ± 0.04 0.00–0.25

SM C16:1 HMDB0013464 0.10 ± 0.11 0.02 ± 0.02 0.0–0.11

SM C16:0 HMDB0010168 2.02 ± 2.28 0.50 ± 0.92 0.07–5.31

SM(OH) C16:1 HMDB0013463 0.06 ± 0.08 0.02 ± 0.04 0.0–0.24

SM C18:1 HMDB0012101 0.08 ± 0.10 0.02 ± 0.02 0.0–0.06

SM C18:0 HMDB0012087 0.31 ± 0.37 0.07 ± 0.79 0.01–0.43

SM C20:2 HMDB0013465 0.005 ± 0.005 0.001 ± 0.001 0.0–0.004

SM(OH) C22:2 HMDB0013467 0.03 ± 0.04 0.01 ± 0.01 0.0–0.05

SM(OH) C22:1 HMDB0013466 0.16 ± 0.15 0.04 ± 0.03 0.0–0.15

SM(OH) C24:1 HMDB0013469 0.04 ± 0.05 0.01 ± 0.02 0.0–0.14

Carnitine (C0) HMDB0000062 8.96 ± 7.07 2.01 ± 1.13 0.79–5.67

l-Acetylcarnitine (C2) HMDB0000201 4.49 ± 4.32 0.89 ± 0.38 0.38–1.86

Propenoylcarnitine (C3:1) HMDB0013124 0.08 ± 0.08 0.02 ± 0.01 0.0–0.06

Propionylcarnitine (C3) HMDB0000824 0.14 ± 0.09 0.03 ± 0.02 0.01–0.07

Butenylcarnitine (C4:1) HMDB0013126 0.09 ± 0.04 0.02 ± 0.01 0.01–0.04

Butyrylcarnitine (C4) HMDB0002013 0.53 ± 0.39 0.12 ± 0.07 0.05–0.33

Hydroxypropionyl carnitine
(C3OH) HMDB0013125 0.11 ± 0.05 0.03 ± 0.01 0.01–0.06

Tiglylcarnitine (C5:1) HMDB0002366 0.34 ± 0.23 0.07 ± 0.03 0.03–0.16

Hydroxybutyryl carnitine
(C4OH) HMDB0002095 0.18 ± 0.10 0.04 ± 0.02 0.01–0.08

Hexenoylcarnitine (C6:1) HMDB0013161 0.06 ± 0.03 0.020 ± 0.004 0.01–0.02

Hexanoylcarnitine (C6) HMDB0000756 0.12 ± 0.07 0.03 ± 0.08 0.02–0.05

Hydroxyvalerylcarnitine
(C5OH) HMDB0013132 0.36 ± 0.20 0.08 ± 0.05 0.04–0.29

Glutaconylcarnitine (C5:1DC) HMDB0013129 0.07 ± 0.04 0.02 ± 0.01 0.0–0.03

Glutarylcarnitine (C5DC) HMDB0013130 0.20 ± 0.11 0.05 ± 0.02 0.02–0.09

Octanoylcarnitine (C8) HMDB0000791 0.24 ± 0.19 0.05 ± 0.05 0.02–0.31

Methylglutarylcarnitine
(C5MDC) HMDB0000552 0.27 ± 0.16 0.06 ± 0.02 0.03–0.13

Nonaylcarnitine (C9) HMDB0013288 0.46 ± 0.38 0.09 ± 0.04 0.03–0.18

Pimelylcarnitine (C7DC) HMDB0013328 0.21 ± 0.14 0.05 ± 0.02 0.02–0.09

Decenoylcarnitine (C10:1) HMDB0013205 0.34 ± 0.12 0.09 ± 0.04 0.03–0.20

Decanoylcarnitine (C10) HMDB0000651 0.29 ± 0.18 0.06 ± 0.02 0.04–0.13
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Table 2. Cont.

Metabolite HMDB ID Mean ± SD
(µM)

Mean ± SD
(µM/mM Creatinine)

2.5–97.5% Percentile
(µM/mM Creatinine)

Dodecenoylcarnitine (C12:1) HMDB0013326 0.24 ± 0.10 0.06 ± 0.02 0.02–0.14

Dodecanoylcarnitine (C12) HMDB0002250 0.35 ± 0.27 0.08 ± 0.04 0.03–0.25

Tetradecadienyl carnitine
(C14:2) HMDB0013331 0.05 ± 0.03 0.010 ± 0.003 0.01–0.02

Tetradecenoylcarnitine (C14:1) HMDB0013329 0.06 ± 0.03 0.01 ± 0.02 0.0–0.1

Tetradecanoylcarnitine (C14) HMDB0005066 0.11 ± 0.10 0.02 ± 0.02 0.01–0.10

Hydroxytetradecadienylcarnitine
(C14:2OH) HMDB0013332 0.03 ± 0.02 0.007 ± 0.002 0.003–0.014

Hydroxytetradecenoyl
carnitine (C14:1OH) HMDB0013330 0.04 ± 0.02 0.008 ± 0.002 0.004–0.015

Hexadecadienyl carnitine
(C16:2) HMDB0013334 0.02 ± 0.01 0.004 ± 0.002 0.0–0.01

Hexadecanoylcarnitine (C16) HMDB0000222 0.05 ± 0.03 0.01 ± 0.01 0.01–0.06

Octadecadienylcarnitine
(C18:2) HMDB0006469 0.010 ± 0.003 0.003 ± 0.001 0.0–0.01

Table 3. Metabolites not previously reported in human urine.

Metabolite HMDB ID Mean ± SD
(µM)

Mean ± SD
(µM/mM Creatinine)

2.5–97.5% Percentile
(µM/mM Creatinine)

LysoPC a C14:0 HMDB0010379 0.02 ± 0.02 0.006 ± 0.003 0.002–0.012

LysoPC a C18:1 HMDB0002815 0.07 ± 0.09 0.02 ± 0.03 0.0–0.20

LysoPC a C20:3 HMDB0010394 0.014 ± 0.002 0.004 ± 0.003 0.0–0.01

LysoPC a C24:0 HMDB0010405 0.07 ± 0.02 0.02 ± 0.01 0.0–0.05

LysoPC a C26:1 HMDB0029220 0.01 ± 0.01 0.002 ± 0.002 0.0–0.01

LysoPC a C26:0 HMDB0029205 0.01 ± 0.01 0.004 ± 0.005 0.0–0.03

LysoPC a C28:1 HMDB0029221 0.01 ± 0.01 0.002 ± 0.002 0.0–0.01

LysoPC a C28:0 HMDB0029206 0.04 ± 0.01 0.011 ± 0.007 0.0–0.04

PC aa C32:2 HMDB0007874 0.03 ± 0.03 0.01 ± 0.01 0.0–0.03

PC aa C40:2 HMDB0008276 0.01 ± 0.01 0.003 ± 0.008 0.0–0.05

PC aa C40:1 HMDB0007993 0.03 ± 0.04 0.01 ± 0.02 0.0–0.13

Decadienylcarnitine (C10:2) HMDB0013325 0.14 ± 0.07 0.03 ± 0.01 0.01–0.07

Dodecanedioylcarnitine
(C12DC) HMDB0013327 0.27 ± 0.29 0.05 ± 0.05 0.01–0.29

Hexadecenoylcarnitine (C16:1) HMDB0006317 0.05 ± 0.02 0.01 ± 0.01 0.0–0.03

Hydroxyhexadecadienylcarnitine
(C16:2OH) HMDB0013335 0.02 ± 0.01 0.004 ± 0.001 0.0–0.01

Hydroxyhexadecenoyl
carnitine (C16:1OH) HMDB0013333 0.04 ± 0.02 0.010 ± 0.004 0.0–0.02

Hydroxyhexadecanoylcarnitine
(C16OH) HMDB0061642 0.04 ± 0.02 0.008 ± 0.003 0.0–0.02

Octadecenoylcarnitine (C18:1) HMDB0006464 0.02 ± 0.01 0.005 ± 0.004 0.0–0.03

Octadecanoylcarnitine (C18) HMDB0000848 0.03 ± 0.03 0.01 ± 0.01 0.0–0.07

Hydroxyoctadecenoylcarnitine
(C18:1OH) HMDB0013339 0.02 ± 0.01 0.004 ± 0.002 0.0–0.01

Urinary creatinine (Ucreat) is often used to adjust or normalize urinary analyte concentrations,
but we found that Ucreat appeared to be a relatively unreliable reference value in the early newborn
period, due to its high variation (ranging from 1000 to 17,000 mM). For this reason, we also provide the
absolute concentrations of each metabolite measured in urine.
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A total of 86 of these experimentally measured urinary metabolites (64%), along with their
concentration ranges, are being reported in neonates/infants for the first time. Of these, 20 metabolites
(14% of the compounds identified in this study) are being reported in human urine for the first time
ever. Note that the concentration data for some metabolites found through our literature and database
searches had more than one reference value, obtained by different laboratories using different methods.
This can lead to some minor discrepancies for the numbers reported in these tables.

2.2. Gender-Sex Differences Associated Metabolites

In addition to the combined sex (male + female) results, we also investigated the presence of
any sex differences in the measured metabolites. We found that three metabolites (uric acid, butyric
acid and octadecadienylcarnitine (C18:2)) were consistently higher (p < 0.05) in males than females,
while the following 12 metabolites (creatinine, symmetric dimethylarginine, spermine, spermidine,
LysoPC a 17:0, LysoPC a 18:1, SM C16:0, SM(OH) C16:1, PC aa 36:0, SM(OH)24:1, PC aa 40:2, and PC
aa 40:1) were consistently lower in males than females (p < 0.05) (Supplementary Figures S1 and S2).
A complete set of tables showing the sex-specific values is included in the Supplementary Material
(Supplementary Tables S4–S8). Additionally, the sex-specific values for these urinary metabolites are
now available in the HMDB [11] and UMDB [12].

2.3. Impact of Resolution Mode on the Urinary Metabolome of Healthy Newborns

In the present study, 22 newborns were born by vaginal delivery (VD) and 26 newborns were
born by caesarian section (CS). Babies born by VD had significantly lower levels of asparagine, lysine
and arginine than babies born by CS. Moreover, an increase in glutaconylcarnitine and nonaylcarnitine
was also found in VD babies (Supplementary Figure S3).

2.4. Literature Review of the Urinary Metabolome of Healthy Newborns

Finally, we conducted a thorough literature review of other neonatal/infant metabolite
concentrations reported over the past eight years, and used this information to supplement the
neonatal urinary data reported in the HMDB and UMDB (www.hmdb.ca). This literature review,
which covered an initial set of 509 papers, allowed us to identify another 78 urinary metabolites,
with concentration data measured by different platforms (LC-MS/MS, HPLC, 1H-NMR, FIA-MS/MS and
GC-MS). Combined with the 212 neonatal urinary metabolites previously reported in the HMDB/UMDB
and the 86 neonatal urinary metabolites experimentally detected and reported here, there are now
378 neonatal urinary metabolites that have reported concentration values, and which are publicly
accessible via the HMDB or UMDB (Figure 2).
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liquid chromatography (HPLC), nuclear magnetic resonance (1H-NMR), gas chromatography mass
spectrometry (GC-MS) and FIA-MS/MS. Experimental data: 136 compounds. Literature review: 236
data values from 78 compounds.

3. Discussion

Over the past decade, our team, as part of the Human Metabolome Project (HMP), has been
systematically characterizing human biofluids using a combination of quantitative metabolomic
techniques and literature analyses. During that time, we have characterized human (adult) serum [13],
cerebrospinal fluid [14], urine [12], saliva [15] and stool samples [16]. Other groups have also analyzed
the metabolomes for human breath [17], breast milk [18], bile fluids [19] and hair [20]. We undertook
this study to fill in important gaps in our understanding of urinary metabolite concentrations in
neonates. While a number of databases and reference textbooks are available that provide reference
values for different populations (age, gender, ethnicity) for serum, plasma, CSF and other fluids in
newborns [12,13,21–23], there is a paucity of information on urine reference values for newborns and
infants. Given that urine samples can be non-invasively collected (via diapers or other simple collection
mechanisms) and given that urine provides an invaluable readout of general metabolism, as well as
kidney, liver and gut microbiome function, we believe that the development of a reference set of urine
metabolites would be highly valuable.

3.1. Comparison of Experimental Values with Reported Reference Values

As described here, we were able to experimentally measure 136 urinary metabolites in 48 full-term
healthy neonates. Our combined experimental and literature approach has nearly doubled the total
number of metabolites and reference ranges reported for neonatal/infant urine. In addition to greatly
expanding the knowledge of neonatal urine composition, we were also able to quantify 20 metabolites
(including acylcarnitines and glycerophospholipds), that had never been reported in human urine
previously. Given that several well-known metabolic disorders involve the dysregulation of lipid
metabolism and molecules transporting lipids, we believe it is very important to monitor the abundance
of these types of compounds in biological fluids. In the specific case of the population selected for
this study, several babies were born to mothers who, in some cases, were overweight (see Table 1).
The monitoring of lipids during the early stages in life may be useful in preventing the development
of future metabolic disorders (such as diabetes or dyslipidemia) in the children of overweight or
obese mothers.

In general, the experimental values reported by us are in accordance with previous reference
values consulted in the UMDB and the Metagene database (http://metagene.de). We only
found notable discrepancies in the concentration values of six compounds: taurine, carnosine,
butyric acid, isobutyric acid, 3-hydroxyphenyl-3-hydroxypropionic acid (HPHPA) and indoleacetic
acid (Supplementary Table S2). In our study, the interquartile (IQ) range for taurine was
74.64–2841 µmol/mmol creatinine. The reference value reported in the UMDB was 250–910 µmol/mmol
creatinine (using NMR) [24]. The abnormal concentration quoted for taurine in the HMDB is
1261 µmol/mmol creatinine, associated with molybdenum cofactor deficiency [25]. However,
since all babies included in our study were healthy babies, we must consider other factors
contributing to this discrepancy. Relatively few reports on taurine in the perinatal period have been
published, but Zaima et al. [26] demonstrated that, in newborns, the urinary taurine concentration was
6222.3 µmol/L on the first day; 1620.1 µmol/L on the third day and on the fifth day 419.3 µmol/L or 1/15
of that of the first day. The daily urinary excretion of taurine was 74.3 micromoles/day on the first day;
79.1 micromoles/day on the third day and 22.7 micromoles/day on the fifth day. So, this suggests that,
depending on the day of sampling, the results may be different, with a very large difference between
the first and third day after birth. The results obtained in newborns by us correspond to the first 24 h
after birth and appear to match well with the data reported by Zaima et al. Taurine accumulates in the
maternal tissue during pregnancy to provide the fetus, via the placenta, with adequate levels and to

http://metagene.de
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the newborn via breast milk. Low maternal taurine levels result in low fetal levels [27], but high levels
of taurine have been found in maternal plasma in the third trimester among GDM Hispanic women
treated with insulin, reflecting altered protein metabolism [28].

We also found that the measured urinary concentration of carnosine was consistently
lower (IQ 0.47–35.5 µmol/mmol creatinine) than the value reported in previous literature
(IQ 3.05–115.4 µmol/mmol creatinine), which was reportedly measured by the same method
(LC-MS/MS) [29]. Carnosine is a dipeptide of the amino acids β-alanine and histidine. It is highly
concentrated in muscle and brain tissues. It has been reported that carnosine increases with age as the
muscle mass increases in newborns [30]. Because the age of the neonates cited in reference [14] is not
known, and given that the urinary samples evaluated in the present work belong to the first 24 h of life,
we suspect that the concentration differences in carnosine are likely due to minor age differences in the
neonate cohorts being sampled, not unlike those seen with taurine.

In addition to taurine and carnosine, the concentration values of four organic acids (butyric acid,
isobutyric acid, 3-hydroxyphenyl-3-hydroxypropionic acid [HPHPA] and indoleacetic acid) are lower
than the respective reference values reported for these metabolites (Supplementary Table S2). In the
specific case of butyric, isobutyric acid and HPHPA, the literature-derived reference values found by us
and listed in Supplementary Table S2 (marked with asterisks) belong to infants (4 weeks to 1 year) and
not to neonates (<4 weeks). We suspect that this is the primary reason why our values are significantly
lower (by a factor of 5–10) than the reported reference values. It is well known that during the first hours
of life, glycogen stores are depleted, and protein catabolism contributes little to energy requirements.
This particular metabolic situation seems to be reflected in the reduced urinary excretion of certain
organic acids (including butyric and isobutyric acid) compared to older individuals where glycogen
stores are fully restored [31]. Furthermore, indoleacetic acid measured in our neonatal cohort were also
found to be 10-fold lower than what has been reported in the literature for neonates [32]. Both HPHPA
and indoleacetic acid are known gut microbial metabolites, with HPHPA excretion being associated
with gut microbial degradation of dietary phenylalanine or polyphenols [33] and indoleacetic acid
being a microbially derived breakdown product of tryptophan [33]. Neonates typically do not have a
well-established gut microflora, while older infants do. This difference in intestinal microflora likely
contributes to the age-related difference in these two microbially-derived metabolites [34].

3.2. Gender-Sex Differences Associated Metabolites

Through this study, we were also able to identify a number of metabolites that exhibit
clear sex-dependent trends, including uric acid, butyric acid and octadecadienylcarnitine (C18:2),
which are increased in males, relative to females. In addition, we found that creatinine, symmetric
dimethylarginine, spermine, spermidine, LysoPC a 17:0, LysoPC a 18:1, SM C16:0, SM(OH) C16:1, PC
aa 36:0, SM(OH)24:1, PC aa 40:2, and PC aa 40:1 are increased in the urine of females, relative to males.

The influence of gender in the early newborn metabolome has not been well studied and reliable
reference intervals for males and females have not been extensively reported. It is commonly understood
that sex differences start in utero [35] and the implementation of sex or gender-dependent strategies in
laboratory medicine may help to obtain the correct diagnosis of diseases affecting newborns. Only a
handful of studies have been published addressing the effect of gender in the urinary newborn
metabolome [30,36,37]. In particular, Diaz et al. [37] reported that allantoin and xanthine levels are
higher in the urine of females than in males, which suggests a slightly altered nitrogen metabolism
in females, compared to males. In addition, glucose and lactose were also found to be higher in
females, but infant females also had lower levels of inositols and other sugars, suggesting that changes
in sugar metabolism may be associated with gender in the first days of life [37]. More recently,
Caterino et al. [36] analyzed urinary organic acids in healthy Caucasian infants and children (aged
1 month to 36 months), and reported that in the first six months of life, sex differences were more
frequent, and the majority of urinary organic acids were higher in males than in females. The authors
conclude that sex deeply influences urinary organic acids levels [36]. In our study, we only found
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significant sex differences in the level of two organic acids: uric acid and butyric acid (higher in males
than in females).

3.3. Impact of Birth Resolution on the Urinary Metabolome of Healthy Newborns

We found significantly lower levels of asparagine, lysine and arginine in the urine of neonates
born by VD, than in those born by CS. Moreover, an increase in glutaconylcarnitine and nonaylcarnitine
was found in the urine of VD neonates. Early in the postnatal period, major physiological adaptations
occur in newborns to cope with stress and extrauterine cold exposure upon exiting the womb.
Differences found in relation to delivery mode have been associated with difference in lower gut
microflora colonization as well as in alterations of hepatic metabolism [37]. In a recent study,
Pierre Martin et al. [38] reported that VD newborns had lower urinary levels of lysine (as we found),
as well as lower levels of histidine, relative to CS newborns. It is also important to remember that
lysine is involved in carnitine biosynthesis. Indeed, the two main precursors for carnitine biosynthesis
are lysine and methionine, which provide the carbon backbone and 4-N-methyl groups of carnitine,
respectively. The substrate for carnitine biosynthesis is 6-N-trimethyllysine (TML) [39]. Using up
reserves of lysine to produce TML to synthesize carnitine and acylcarnitines would be expected to lead
to low levels of lysine. This is consistent with the increased urinary excretion of acylcarnitines and the
decreased excretion of lysine in VD newborns found by us.

It is also possible that these metabolic differences may arise from the differential nutrition between
VD and CS newborns. Neonates from our cohort born by VD were fed with breast milk immediately
after delivery. Breast milk is known to be rich in carnitine. The development of ketogenesis in the
human neonate is greatly dependent on the exogenous supply of carnitine, because the liver has a
limited capacity for de novo carnitine synthesis [40]. Given that VD versus CS metabolic differences
were not the primary focus of this study, it is clear that additional mechanistic studies are warranted.

3.4. Urinary Metabolites Associated with IEMs

While most IEM tests are designed for blood or dried blood spots, many health institutions also
perform urine tests using targeted assays that employ liquid or gas chromatography coupled with
tandem mass spectrometry [41,42]. In a recent study, Kennedy et al. [43] identified (but did not quantify)
over 1200 molecules from among 100 clinical urine samples from children (average age of 4.3 years).
This study showed clear biochemical signatures for 16 of the 18 IEM diseases tested. This work nicely
illustrated the utility of urinary metabolomics for assessing IEMs [43]. Supplementary Table S9 lists
the metabolites included in our experimental approach that have been previously identified as urinary
markers for different IEMs.

A number of IEMs, such as those related to amino acid metabolism; creatinine disorders; fatty
acid metabolism and β-oxidation and organic acid disorders; peroxisomal biogenesis and metabolism;
aminolevulinic acid dehydratase deficiency; purine and pyrimidine metabolism and urea cycle
disorders, can be diagnosed via urinalysis. Urinary metabolic profiling can be used to detect altered
levels of intermediate metabolites that result from the incomplete metabolism of amino acids or
organic acids.

Carnitines and acylcarnitines are usually measured in plasma to detect IEMs. However, genetic
defects in the OCTN2 carnitine transporter can result in a condition known as primary carnitine
deficiency. This is associated with a decreased accumulation of intracellular carnitine, higher levels
of carnitine in the urine and low levels of carnitine in serum. Because carnitine is transferred from
the mother to the child via the placenta, shortly after birth, the levels of carnitine in newborns with
carnitine transporter defects could, artefactually, be normal. However, this deficiency could be
more easily diagnosed in urine, by detecting an increase in urinary carnitine. Therefore, to properly
detect this condition, the additional analysis of urinary organic acids in conjunction with the clinical
presentation would allow one to correctly diagnose it [44]. In the study reported by Kennedy et al. [43],
they measured urinary concentrations of β-hydroxyisovaleroylcarnitine, α-hydroxyisovalerylcarnitine,
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tiglylcarnitine, succinylcarnitine, malonylcarnitine, 3-methylglutarylcarnitine and glutarylcarnitine.
These authors demonstrated the comparable usefulness of these acylcarnitine biomarkers when
determined both in plasma and in urine, for the correct diagnosis of holocarboxylase deficiency and
lysinuric protein intolerance [43]. However, to use urinary acylcarnitines in the diagnosis of IEMs, it is
necessary to have reference values for normal concentrations of urinary acylcarnitines. Prior to our
work (presented in Table S6), reference concentration values for most neonatal urinary acylcarnitines
were not previously available.

In this work, we also provide the urinary concentration values for 24 glycerophospholipids and
10 sphingomyelins. There are at least 40 IEMs with neurological/muscular presentations related to the
defects in phospholipid, sphingolipid and long chain fatty acid biosynthesis [45]. Additionally, there are
more than 100 IEMs that may lead to primary or secondary defects of complex lipids synthesis and
remodeling [46]. Supplementary Table S9 shows the associated IEMs to urinary markers experimentally
measured in the present work and the abnormal concentrations reported in literature to diagnose these
conditions. We believe that, with the availability of so much more referential data for neonatal urine,
it should now be possible to identify a number of other previously undetected or unsuspected IEMs or
metabolic conditions in neonates via urinalysis.

3.5. The Importance of Age-Specific Intervals

The availability of quantitatively measured metabolites in biofluids of newborns, particularly in
urine, provides extensive and dynamic information that, if followed and controlled over time, can be
useful in predicting the “biological age” of infants. Biological age (as opposed to calendar age) is greatly
influenced by several factors, such as diet, stress, environment, lifestyle, genetics and disease [47].
Since these factors play important roles in determining the metabolome, urinary metabolomics may
provide reliable and sensitive markers to understand the complexity of age-related changes, leading to
the identification of novel treatments or strategies for the management of health and disease in early
childhood [48]. These age-specific data may also be used for the establishment of inflection points
related to metabolic disorders, which is very important in accurate disease diagnosis or prognosis.
In this sense, it is important to keep in mind that metabolite concentrations change continuously with
growth and age, especially with children and infants. This is often not fully realized, due to the fact that
the majority of clinical studies that have been published are for adults [49–55]. Indeed, to date, there
have only been a few comprehensive studies looking at age-specific intervals in children [48,56,57] and
newborns [30].

Among the urinary metabolites that are known to vary considerably with age are carnitine,
3-hydroxyisovalerate, creatinine, alanine, and trigonelline. Indeed, these metabolites differ significantly
between younger and older groups [54]. Urinary trimethylamine-N-oxide (TMAO) has been found to
be higher in infants (aged 1 week–1 year), which may be directly associated to the consumption of
milk at this age and/or the corresponding gut microflora found in infants, due to breast feeding [48].

Urinary glycine and glutamine levels have been reported to decline significantly within the
first year of life, probably due to their use in supporting the increased growth of skeletal muscle
tissue during infancy [48]. Another important metabolite measured in urine that changes with age
is creatinine (Ucreat). In particular, it has been noted that creatinine levels increase as children age.
However, only a few studies have attempted to measure the values of Ucreat in the first days of life.
It has been demonstrated that the mean Ucreat concentration is significantly higher in neonates than in
older children [58]. Furthermore, Ucreat is also highly variable, until it begins to stabilize by the first
month. Creatinine levels at birth typically do not yet reflect neonatal creatinine clearance, but rather
maternal creatinine clearance. Furthermore, because of passive tubular back leak in infants instead of
active secretion, creatinine clearance does not yet fully reflect GFR (glomerular filtration rate).

Supplementary Table S10 shows a comparison between metabolite concentrations (normalized
to creatinine) measured in the present study and in a previous study conducted by our group on
healthy adult urine samples [12]. By limiting the comparison to samples analyzed in the same lab
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using largely the same techniques and workflow (from pre-analytical to post-analytical analysis),
we could ensure that any inter-laboratory variation was minimized. From a total of 79 common
metabolites, 33 showed a clear, decreasing trend with age, while most others were largely unchanged.
In comparing adult urine with newborn urine, we found that a number of amino acids were much
higher in newborns than adults, including glycine, alanine, serine, proline, histidine, lysine, methionine,
and most branched-chain amino acids. Amino acids have been previously reported to decrease with
age and this phenomenon likely arises from age-dependent changes in cell growth, tissue growth and
muscle metabolism [59]. High levels of glycine, serine and proline in newborn urine may be correlated
with generally high levels of these amino acids in the newborn body, as high levels of water-soluble
metabolites in the urine strongly correlated with levels of water-soluble metabolites in the blood or
tissues. These small amino acids are likely needed to support high levels of collagen synthesis in
newborns (the most abundant protein in the body). High levels of essential amino acids in newborn
urine also reflect their high levels throughout the newborn body. Essential amino acids are obviously
needed by newborns to support rapid cell division and cell growth during the first weeks of life [60].
Another group of molecules that showed a decreasing trend with age are biogenic amines. This is in
line with previous reports. For example, in children (at five years of age), muscle carnosine levels are
initially low but, as children grow, carnosine levels gradually increase before declining and reaching
a plateau in adulthood [61]. Dopamine is also observed to be lower in adults than in newborns.
This decrease may be explained by the age-related decline in the integrity of the dopamine system,
which is seen in most adults [62]. Urinary polyamines, such as putrescine, spermidine and spermine,
were also seen to decline with age in our newborn-adult comparison. This result mirrors a previous
study that showed that polyamines declined progressively with age [63]. Polyamines are typically
elevated in cells that are rapidly dividing (as might be expected for newborns) and can often be seen as
metabolic by-products in cancer (in adults).

4. Materials and Methods

4.1. Sample Collection and Research Ethics Approvals

This was a cross-sectional study carried out at the Hospital Central “Dr. Ignacio Morones Prieto”,
San Luis Potosi, Mexico, from January 2018 to August 2019. The study was approved by the Research and
Ethics Committee, with the registration number 84-17 and folio CONBIOETICA-24-CEI-001-201604279.
The protocol complied with the Declaration of Helsinki. Written informed consent was obtained from
the parents of all studied subjects.

At the moment of birth, all newborns were carefully examined by a trained neonatologist. Variables
such as weight, sex, Apgar score at 1 min, Apgar score at 5 min, pregnancy resolution, gestational age
(Capurro test) and Silverman–Anderson test scores were determined and recorded for each newborn
as expediently as possible. After this assessment was complete, one urine sample was collected
noninvasively for each newborn. The genitals were cleaned thoroughly, and a sterile bag was placed
on the genital area until micturition.

Urine samples contaminated with meconium were discarded. After visual inspection of the
urine sample and after at least 1 mL of urine had been excreted by the infant, the sterile bag was
removed. The urine sample in the bag was transferred via a micropipette to a sterile 1.5 mL Eppendorf
tube. The urine samples were then centrifuged at 3000 rpm to precipitate sediments. Following this,
the samples were stored in sterile microtubes at −80 ◦C until further use.

4.2. Chemicals and Internal Standards (ISTD)

Optima™ LC/MS grade formic acid and HPLC grade water were purchased from Fisher Scientific
(Ottawa, ON, Canada). Optima™ LC/MS grade ammonium acetate, phenylisothiocyanate (PITC),
3-nitrophenylhydrazine (3-NPH), HPLC grade methanol and HPLC grade acetonitrile (ACN) were
also purchased from Sigma-Aldrich (Oakville, ON, Canada). Furthermore, 2H-, 13C-, and 15N-labelled
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compounds were purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA) and
from Sigma-Aldrich (Oakville, ON, Canada).

A working internal standard (ISTD) solution mixture in water (for amino acids, biogenic amines,
carbohydrates, carnitines and derivatives, phosphatidylcholines and their derivatives) was made by
mixing all the prepared isotope-labeled stock solutions together. For organic acids, a working internal
standard (ISTD) solution mixture in 75% aqueous methanol was made. All standard solutions were
aliquoted and stored at -80 ◦C until further use.

4.3. Metabolite Measurement

4.3.1. Sample Preparation

The urine samples were thawed on ice before analysis. For the analysis of organic acids, 10 µL
of an internal standard (ISTD) mixture solution and 10 µL of the samples (three phosphate buffered
saline [PBS] blank samples, seven calibration standards, three quality control samples and urine
samples) were pipetted directly into the center of corresponding spot in a 96-deep well plate. 30 µL
of 75% aqueous methanol was then added to each of the wells, followed by adding 25 µL to each
of the following three solutions: 1) 3-nitrophenylhydrazine (250 mM in 50% aqueous methanol),
1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (150 mM in methanol) and pyridine (7.5% in 75%
aqueous methanol). The whole plate was then shaken at room temperature for 2 h to derivatize
the organic acids. After the derivatization reaction, to each plate well, 350 µL of water and 25 µL
of butylated hydroxytoluene solution (2 mg/mL in methanol) were added, to dilute and stabilize
the final solution. Then, 10 µL was injected into an Agilent 1260 UHPLC-equipped QTRAP 4000
mass spectrometer for LC-MS/MS analysis, using multiple reaction monitoring (MRM) scanning in
the negative mode. For the analysis of amino acids, biogenic amines and derivatives, acylcarnitines,
lipids and glucose, 10 µL of each sample and 10 µL of the ISTD mixture solution were loaded onto
the center of a 96-well filter plate and dried in a stream of nitrogen for 30 min. Subsequently, 50 µL
of 5% phenylisothiocyanate (PITC) solution was added to each sample and the whole plate was
then incubated at room temperature for 20 min. After incubation, all the samples were again dried
under nitrogen for 1.5 h to evaporate excess PITC. The extraction of targeted metabolites was then
achieved by adding 300 µL of extraction solvent (5 mM ammonium acetate prepared in methanol).
The extracts were obtained by centrifugation into a lower 96-deep well collection plate. To quantify
amino acids, biogenic amines and derivatives, extracts were diluted with water in a 1:1 ratio, and 10 µL
was injected; to analyze acylcarnitines, lipids and glucose, extracts were diluted five times and 20 µL
was injected into an Agilent 1260 UHPLC-equipped QTRAP 4000 mass spectrometer, using multiple
reaction monitoring (MRM) scanning in the positive mode. All data analysis was done using Analyst
1.6.2 (AB SCIEX, Foster, CA, USA) and MultiQuant 3.0.3 (AB SCIEX, Foster, CA, USA).

4.3.2. LC-MS/MS Method

An Agilent reversed-phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 µm particle
size, 80 Å pore size), with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-column
(4.0 mm × 3.0 mm), was used for the LC-MS/MS analysis of organic acids, amino acids, biogenic
amines and derivatives.

The LC parameters used for the analysis of amino acids, biogenic amines and their derivatives
were as follows: mobile phase A 0.2% (v/v) formic acid in water, and mobile phase B 0.2% (v/v) formic
acid in acetonitrile. The gradient profile was as follows: t = 0 min, 0% B; t = 0.5 min, 0% B; t = 5.5 min,
95% B; t = 6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven was set at 50 ◦C.
The flow rate was 500 µL/min, and the sample injection volume was 10 µL.

For the analysis of organic acids, the mobile phases used were A) 0.01% (v/v) formic acid in water,
and B) 0.01% (v/v) formic acid in methanol. The gradient profile was as follows: t = 0 min, 30% B;
t = 2.0 min, 50% B; t = 12.5 min, 95% B; t = 12.51 min, 100% B; t = 13.5 min, 100% B; t = 13.6 min, 30% B
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and finally maintained at 30% B for 4.4 min. The column oven was set to 40 ◦C. The flow rate was
300 µL/min, and the sample injection volume was 10 µL.

4.3.3. FIA-MS/MS Method

For the analysis of lipids, acylcarnitines and glucose, the LC autosampler was connected directly
to the MS ion source by red PEEK tubing. The mobile phase was prepared by mixing 60 µL of formic
acid, 10 mL of water and 290 mL of methanol; and the flow rate was programmed as follows: t = 0 min,
30 µL/min; t = 1.6 min, 30 µL/min; t = 2.4 min; 200 µL/min; t = 2.8 min, 200 µL/min; and t = 3.0 min,
30 µL/min. The sample injection volume was 20 µL.

4.3.4. Quantification

To quantify organic acids, amino acids, biogenic amines and derivatives, an individual seven-point
calibration curve was generated for each analyte. The ratios of each analyte’s signal intensity to its
corresponding isotope-labelled internal standard were plotted against the specific known concentrations,
using quadratic regression with a 1/x2 weighting.

Lipids, acylcarnitines and glucose were analyzed semi-quantitatively. Single point calibration
of a representative analyte was built, using the same group of compounds that share the same core
structure, assuming linear regression through zero. All data analysis was done using Analyst 1.6.2 and
MultiQuant 3.0.3.

4.4. Statistical Analysis

GraphPad Prism 5.0 software (GraphPad Software, Inc., La Jolla, CA, USA) was used for all
statistical analyses reported here. Percentiles, mean values and standard deviations (SD) were calculated
using standard statistical formulas. Continuous and categorical variables are presented as mean ± SD
or median (interquartile range) and number (for percentile) respectively. The Kolmogorov–Smirnov
test was used to test the normality of the distribution for continuous variables. A statistical
analysis to evaluate gender differences was performed with GraphPad Prism 5.0 software (GraphPad,
La Jolla, CA, USA) and MetaboAnalyst (https://www.metaboanalyst.ca). p-value adjustments for
multiple metabolites were carried out by using Benjamini-Hochberg false discovery rate adjustment
(FDR < 0.05).

The methodology for determining the reference intervals is based on the recommendations from
the International Federation of Clinical Chemistry [64]. All primary reference ranges have been
calculated using more than 40 samples, allowing for reliable estimates of the 2.5th and 97.5th centiles.
A non-parametric calculation was used to calculate ranges, due to non-normally distributed data.

4.5. Literature Review and Data Entry

The last detailed literature overview conducted by our team on urinary metabolites in newborns
was performed in 2012 [12]. A literature search was conducted in PubMed from November 2019
to February 2020. Our first search filter combined the truncated search term “urin*”. Our second
search filter combined the term “newborn” and its synonym “neonat*” with the Boolean operator OR.
The third search filter combined the terms “reference value” and “concentration” with the operator OR.
Our last search filter used the truncated search term “metaboli*”. We then combined these searches
with the Boolean operator AND. Through this preliminary search, we retrieved 509 articles. From this
number, 191 were from the last 8 years (the time of the last literature update conducted on the UMDB
and HMDB for neonatal reference values). After careful reading through these articles, 34 papers
were found to have useful information about metabolite concentration values in newborn urine. From
these 34 papers, 78 metabolites with concentration values were obtained and used to update the
HMDB/UMDB.

https://www.metaboanalyst.ca
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5. Conclusions

The size and chemical diversity of the “measurable” metabolome of healthy neonates appear
to be somewhat smaller and simpler than that of children or adults (~300 metabolites vs. ~2000
metabolites). This appears to be due to fundamental differences in neonatal metabolism, as well as
differences due to diet, exposures and gut microflora composition. Despite the relative simplicity of
neonatal urine in terms of its metabolic diversity, we were surprised by the appearance of several
unexpected metabolites. Indeed, 86 of the experimentally measured urinary metabolites had not
previously been reported in neonates/infants, and another 20 metabolites are being reported in human
urine for the first time ever. Comparisons between neonatal urine and adult urine also show some
striking concentration differences for certain metabolites. Much higher levels of essential amino acids,
collagen-associated amino acids and acylcarnitines in neonatal urine likely reflect the large pool of
these compounds needed to sustain rapid cell growth and cell division in neonates. In addition to the
obvious differences between adult and infant urine composition, we also observed clear differences
in urinary metabolites between newborn males and females, as well as differences arising due to
birth modality (VD vs. CS). Some of our findings reiterated the findings of earlier studies, while
others appear to be quite novel. The clear existence of sex differences in the urine composition of
newborns reinforces the need for implementing specific sex-reference values of metabolic markers for
female and male neonates. These sex-specific differences may also be relevant in the diagnosis of IEMs.
Interestingly, prior to this study, the influence of sex on acylcarnitines, glycerophospholipids, biogenic
amines and sphingomyelines urinary levels at birth had not been investigated.

One of the major strengths of our work is the fact that all the urinary samples were collected in the
same period of time (the first 24 h of life), which makes the reported measurements more comparable
and homogeneous. As a result, we believe that the values reported here should constitute a robust
and generally useful set of clinical reference values for the absolute and creatinine-normalized urinary
concentration for healthy, full-term neonates. All of these values, along with chemical structures and
detailed descriptions of the compounds, are freely available in the UMDB and HMDB (www.hmdb.ca).
We hope that such a set of reference values and reference information will be used by clinicians and
other health professionals to assist with the diagnosis, prognosis or monitoring of various IEMs and
other neonatal health conditions.
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