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Abstract 

Background:  Gastric cancer (GC), the most commonly diagnosed cancer worldwide with poor 5-year survival rate 
in advanced stages. Although immune-related and survival-related biomarkers, which typically comprise aberrantly 
expressed long non-coding RNAs (lncRNAs) and genes, have been identified, there are no reports of immune-related 
lncRNA pair (IRLP) signatures for GC.

Methods:  In this study, we acquired lncRNA expression profiles from The Cancer Genome Atlas (TCGA) and used the 
least absolute shrinkage and selection operator (LASSO) Cox proportional hazards model (iteration = 1000) to develop 
a IRLP prognostic signature. The area under curve (AUC) was used to assess the prognosis predictive power. The 
multivariate Cox regression analysis was performed to identify whether this signature was an independent prognostic 
factor. The immune cell infiltration analysis was performed between the two risk groups. Last, molecular experiments 
were performed to explore LINC01082 is involved in the development of GC.

Results:  We acquired lncRNA expression profiles and used the LASSO Cox model to develop an 18-IRLP signature 
with a strong prognostic predictive power. The 5-year AUC values of the training, validation, and overall TCGA data-
sets were 0.77, 0.86, and 0.80, respectively. The different prognostic outcomes between the high- and low-risk groups 
were determined using our 18-IRLP signature. Moreover, our 18-IRLP signature was an independent prognostic factor 
as per the multivariate Cox regression analysis, and showed better prognostic evaluation than the traditional TNM 
staging system as well as other clinical features. We also found differences in cancer-associated fibroblast and mac-
rophage M2 infiltration and the expression of PD-L1, CTLA4, LAG3, and HLA were also observed between the two risk 
groups (P < 0.05). Analysis of biological functions revealed that target genes of the lncRNAs in the IRLP signature were 
enriched in focal adhesion and regulation of actin cytoskeleton. Finally, as one of significant candidates of IRLP signa-
ture, overexpression of LINC01082 suppressed the invasion ability of GC cells as well as PD-L1 expression profiles.
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Introduction
Gastric cancer (GC) is the most commonly diagnosed 
cancer worldwide, and was the most common cause of 
cancer-related deaths in 2020 [1]. With an estimated 1.09 
million new cases and 769,000 deaths, GC has the fifth 
highest global incidence and fourth highest rate of mor-
tality [1]. In Eastern Asia, GC is the second most com-
mon malignancy [2]. In China, GC has the fifth highest 
rate of morbidity and the third highest rate of mortality 
in females, and the second highest rate of morbidity and 
the third highest rate of mortality in males, indicating 
that GC is a major burden for both the sexes [3]. After 
conventional therapeutic intervention, the 5-year sur-
vival rate of patients with surgically treated stages IA and 
IB GC is 60–80%. However, in case of patients under-
going surgery for stage III GC, the 5-year survival rate 
is 18–50% [4]. Thus, there is an urgent need to identify 
novel tumor prognostic markers for patients with GC.

Tumor cells can functionally shape their microenvi-
ronment by secreting various cytokines, chemokines, 
and other factors [5]. Cancer immunotherapy is widely 
used for the treatment of human cancers [6]. Over the 
past few decades, different inhibitory receptors that 
play an important role in reducing anti-tumor immune 
responses have been identified. These include cyto-
toxic T lymphocyte-associated antigen-4 (CTLA4), pro-
grammed cell death protein-1 (PD-1), and programmed 
death-ligand 1 (PD-L1) [7]. Immune checkpoint blockade 
is being integrated into first-line therapy and early treat-
ment for GC to provide benefits to a larger proportion of 
patients [8]. Other immune-related biomarkers have also 
been identified, and these pave the way for more effec-
tive immunotherapy [9] and emphasize the potential of 
immunotherapy as a promising therapeutic approach for 
GC.

Long non-coding RNAs (lncRNAs) are large RNAs 
(> 200 nucleotides) with heterogeneous biological func-
tions. LncRNA aberrations have been associated with 
various human cancers [10]. They contribute consid-
erably toward intercellular communication, revealing 
the complex interactions among the tumor cells, tumor 
microenvironment (TME) cells, and immune cells [11]. 
Therapeutic targeting of lncRNAs is being explored as a 
promising research topic [12]. Recently, there have been 
many reports on the involvement of lncRNAs in the 
occurrence and development of GC.

The survival outcomes of patients can be effectively 
predicted using prognosis signatures comprising bio-
markers, such as aberrantly expressed genes and lncR-
NAs. Recently, immune-related biomarkers, such as 
immune-related genes (IRGs) and immune-related 
lncRNA signatures have been reported for prognosis pre-
diction. For instance, Xu et  al. have developed a seven-
IRG risk signature (LCN12, CCL21, RNASE2, CGB5, 
NRG4, AGTR1, and NPR3) for predicting overall survival 
(OS) in male patients with GC [13]. Another study iden-
tified an immune-related prognostic signature consisting 
of ten IRGs (S100A12, DEFB126, KAL1, APOH, CGB5, 
GRP, GLP2R, LGR6, PTGER3, and CTLA4) for GC [14]. 
Wang et al. used gene expression data from The Cancer 
Genome Atlas (TCGA) database to develop a prognostic 
signature with 19 immune-related lncRNAs for GC [15]. 
However, because of the use of different platforms, it is 
challenging to compare and validate different datasets. 
Thus, the concept of gene–lncRNA pairs, which encom-
passes a comparison between the expression levels of 
two genes/lncRNAs, has recently emerged. Zhao et  al. 
have identified a signature of 14 immune-related gene 
pairs (IRGPs) comprising 25 unique genes in GC [16]. An 
11-IRGP signature associated with  TP53 has also been 
developed for predicting the  OS of  patients with GC 
[17]. However, it is noteworthy that currently there are 
no reports of immune-related lncRNA pair (IRLP) signa-
tures for GC.

Thus, in the present study, we performed bioinformat-
ics and biological validation analyses to develop a novel 
18-IRLP signature, which comprised 27 immune-related 
lncRNAs, for the prognosis of GC as well as the evalua-
tion of the related immune response. Our IRLP signature 
will provide a better understanding of the tumor immune 
microenvironment and the therapeutic response in GC.

Material and methods
Acquisition of gene expression and clinical data
RNA-sequencing gene expression data (fragments per 
kilobase per million files) and clinical information of GC 
patients were downloaded from TCGA database (https://​
portal.​gdc.​cancer.​gov/) [18] on April 2021. All files were 
downloaded using the “TCGAbiolinks” R package [19]. A 
total of 407 samples were obtained, including 375 cancer 
and 32 normal samples. We then annotated all mRNAs 
and lncRNAs using GENCODE reference annotation 

Conclusions:  Our novel 18-IRLP signature provides new insights regarding immunological biomarkers, imparts a bet-
ter understanding of the tumor immune microenvironment, and can be used for predicting prognosis and evaluating 
immune response in GC.
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(https://​www.​genco​degen​es.​org/) [20] GTF files (gen-
code.v37.annotation.gtf and gencode.v37.long_noncod-
ing_RNAs.gtf.gz, respectively). From the GC clinical 
data, we selected samples with a survival time of more 
than 30 days and with detailed clinicopathological data. 
Finally, we selected a total of 303 patients with GC for 
further study.

Mining immune‑related LncRNAs in GC
To identify immune-related lncRNAs, we used an algo-
rithm developed by Li et  al. [21] in 2020, which is a 
three-step computational framework called “ImmLnc” 
for identifying lncRNA regulators of immune-related 
pathways in human cancers. The R package “Immulan-
cRNA” was used to calculate the tumor purity and par-
tial correlation coefficient, and identify lncRNA–pathway 
pairs. First, gene and lncRNA expression profiles were 
collected from patients with the same tumor. Next, the 
tumor purity of each sample was calculated. All cod-
ing genes were ranked based on the correlation of their 
expression with specific lncRNAs. The rank score (RS) 
was then calculated for each lncRNA–gene pair. All 
genes were ranked based on the RS scores for each candi-
date lncRNA, and then subjected to enrichment analysis. 
Finally, the activity of each lncRNA in the immune path-
way (Additional file 1: Table S1) was calculated based on a 
differential gene enrichment analysis. The activity of each 
lncRNA in the immune pathway (lncRES) was calculated 
based on an improved gene set enrichment analysis. The 
lncRES scores ranged from -1 to 1. LncRNA–pathway 
pairs with absolute lncRES scores > 0.995 and false dis-
covery rate (FDR) < 0.05 were considered significant.

Computation of candidate immune‑related LncRNA pairs 
in GC
To further reduce the number of lncRNAs, we selected 
differentially expressed immune-related lncRNAs 
(DEimmunelncRNAs) between the normal (n = 32) and 
tumor (n = 375) tissues by considering FDR < 0.05 and 
fold change > 1.5 as the cutoff criteria according to the 
“limma” R package [22]. Pairwise comparisons were then 
performed based on lncRNA expression levels in each 
sample to obtain IRLPs. In one specific sample, if the 
expression value of the first lncRNA was greater than 
that of the second lncRNA, the score of the IRLP in that 
sample was considered to be 1; otherwise, it was consid-
ered to be 0. That is,

if ExprlncRNA1 > ExprlncRNA2, then IRLPs = 1, else, IRLPs = 0.
Here, ExprlncRNA1 is the expression value of the first 

immune-related lncRNA, and ExprlncRNA2 is the expres-
sion value of the second immune-related lncRNA. After 
calculating the score of each IRLP in each GC sample, we 
removed IRLPs with low variation (IRLPs with a score 

of 1 or 0 in less than 20% of all samples). The remaining 
IRLPs were subsequently selected as the first candidate 
IRLPs for conducting further analyses. Finally, univari-
ate Cox regression analysis was used and P-value < 0.01 
was considered significant for selecting prognosis-related 
IRLPs.

Construction of a prognostic IRLP signature using a LASSO 
model
All 303 patients with GC from TCGA dataset were ran-
domly categorized into two sets in a 7:3 ratio in the train-
ing set (n = 212) and validation set (n = 91) to avoid the 
influence of random assignment bias. The training and 
validation sets showed no significant differences in the 
distribution of age, sex, tumor stage, grade, pathologi-
cal tumor (pT), node (pN), metastasis (pM) stages, and 
patient survival status (Table  1). We used the Cox pro-
portional hazards model (iteration = 1,000) with a least 
absolute shrinkage and selection operator (LASSO) pen-
alty on the abovementioned prognostic-related IRLPs 
to determine the optimal gene model using the “glm-
net” R package. After 1,000 iterations, gene groups were 
obtained, and the most frequently occurring gene com-
binations were considered as the final IRLP signature for 
GC.

Prognostic evaluation and clinical association of the IRLP 
signature in GC
Based on the above IRGP signature and its regression 
coefficient, the risk score of each patient with GC was 
calculated as follows:

Here, IRLPs refer to the immune-related lncRNA pairs 
and the coefficient refers to the regression coefficient. 
Accordingly, all samples were categorized into low-risk 
and high-risk groups based on the median risk score. 
Kaplan–Meier (K-M) survival curves and log-rank tests 
were used to evaluate the differences in OS between the 
low-risk and high-risk groups. Time-dependent receiver 
operating characteristic (ROC) curve analysis was used 
to evaluate the sensitivity and specificity of the IRLPs. 
The “KMsurv” R package was used to generate the K-M 
plot of the two risk groups and the “survivalROC” pack-
age was used to evaluate the ROC curve of the model and 
calculate the area under the ROC curve (AUC).

Multivariate Cox regression analysis was used to inves-
tigate whether the IRLP signature could be an independ-
ent prognostic factor for GC. The ROC curve was used 
to compare our IRLP signature with the traditional 
TNM staging system for prognostic prediction. The 
“CancerSubtypes” R package [23] was used to deter-
mine the molecular subtypes of all GC samples using the 

Risk score = � IRLPs ∗ coefficient

https://www.gencodegenes.org/


Page 4 of 20Wang et al. Cancer Cell International           (2022) 22:69 

consensus clustering method. The package CancerSub-
types integrates the current common biology methods 
for cancer subtypes identification and provides a stand-
ardized framework for cancer subtype analysis based 
multi-omics data, such as gene expression. There are 
four main computational methods: Consensus cluster-
ing (CC), Consensus non-negative matrix factorization 
(CNMF), Integrative clustering (iCluster), and Similarity 
network fusion (SNF), and a combined method named 
as SNF-CC to combine SNF and CC together. A nomo-
gram was used to display the combination of clinical 
characteristics with the IRLP signature using the “rms” 
and the “regplot” R packages. We used the concordance 
index (C-index) to evaluate the discriminative power of 
the nomogram, and drew a calibration curve to evaluate 
the accuracy of the prediction. Purpose of the calibration 
plot is to visually see whether the model used to produce 
predicted probabilities is reflective of the true probability 
of the sample. The closer the dots are to the 45 degree 
line, the better the model. To better display the distribu-
tion of the clinical features between the high- and low-
risk groups, we used the “ComplexHeatmap” R package.

Estimation of immune cell infiltration and immune‑related 
activities
We performed immune infiltration estimation using 
TIMER 2.0 (http://​timer.​comp-​genom​ics.​org/), which 
is used for immune infiltration across diverse cancer 
types. The estimation results included expression pro-
files provided by immunedeconv [24] using TIMER 
[25], CIBERSORT [26], quanTIseq [27], xCell [28], 
MCP-counter [29], and EPIC algorithms [30]. R pack-
age “ggplot2” was used to show the coefficients of the 
relationship between immune cell infiltration and 
patient risk scores. The “ggpubr” and “ggplot2” pack-
ages were used to display the differences in distribution 
between the risk groups (low-risk and high-risk groups) 
and immune cell infiltration. The gene expression of 
immune checkpoint inhibitors (ICIs), including pro-
grammed cell death 1 (PCDC1, also known as PD-1), 
CD274 (also known as PD-L1), cytotoxic T-lymphocyte 
associated protein 4 (CTLA4), and lymphocyte-acti-
vation gene 3 (LAG3), was evaluated in the high- and 
low-risk groups. We also explored the distribution of 
the expression of the human leukocyte antigen (HLA) 
family in the two risk groups.

Table 1  Clinical characteristics of GC patients in the training and validation set

*  The statistical differences between two groups were tested by χ2 or Fisher exact tests, if appropriate. pT: pathological T stage. pN: pathological N stage. pM: 
pathological M stage

Clinical features Level Overall Training Validation Statistical 
P-value

Samples 303 212 91

Survival status (%) Alive 177 (58.4) 121 (57.1) 56 (61.5) 0.552

Dead 126 (41.6) 91 (42.9) 35 (38.5)

Age (%)  < 65 134 (44.2) 97 (45.8) 37 (40.7) 0.489

 >  = 65 169 (55.8) 115 (54.2) 54 (59.3)

Sex (%) Female 112 (37.0) 75 (35.4) 37 (40.7) 0.457

Male 191 (63.0) 137 (64.6) 54 (59.3)

pStage (%) I/II 138 (45.5) 92 (43.4) 46 (50.5) 0.308

III/IV 165 (54.5) 120 (56.6) 45 (49.5)

pT (%) T1 12 (4.0) 11 (5.2) 1 (1.1) 0.265

T2 63 (20.8) 42 (19.8) 21 (23.1)

T3 148 (48.8) 100 (47.2) 48 (52.7)

T4 80 (26.4) 59 (27.8) 21 (23.1)

pN (%) N0 93 (30.7) 67 (31.6) 26 (28.6) 0.566

N1 81 (26.7) 57 (26.9) 24 (26.4)

N2 65 (21.5) 41 (19.3) 24 (26.4)

N3 64 (21.1) 47 (22.2) 17 (18.7)

pM (%) M0 282 (93.1) 197 (92.9) 85 (93.4) 1

M1 21 (6.9) 15 (7.1) 6 (6.6)

Grade (differentiated, %) Well 7 (2.3) 7 (3.3) 0 (0.0) 0.19

Moderately 100 (33.0) 74 (34.9) 26 (28.6)

Poorly 188 (62.0) 126 (59.4) 62 (68.1)

Undifferentiated 8 (2.6) 5 (2.4) 3 (3.3)

http://timer.comp-genomics.org/


Page 5 of 20Wang et al. Cancer Cell International           (2022) 22:69 	

Biological functions of the IRLP signature in GC
To investigate the association between targeted drugs 
and our IRLP signature for the treatment of patients with 
GC, we used the “pRRophetic” R package, which is an 
R package used for predicting clinical chemotherapeu-
tic response based on tumor gene expression levels [31]. 
The package can be used to estimate the chemotherapeu-
tic response determined by the half-maximal inhibitory 
concentration (IC50) of each patient with GC. To analyze 
the lncRNA target genes, we used a correlation coeffi-
cient > 0.6 and a P-value < 0.05 to identify potential target 
genes. The “clusterProfiler” R package was used to per-
form pathway enrichment analysis of these target genes. 
FDR < 0.05 were considered significant. Additionally, the 
K-M survival plot was used to determine the prognosis 
and lncRNA expression profiles of the patients. A vio-
lin plot was used to show the differences in the expres-
sion of all signature-related lncRNAs between the tumor 
and normal tissues. Finally, the correlation coefficient 
between two lncRNAs was calculated.

Cell culture and transfection
The human GC cell line HGC-27 was purchased from 
the Procell Life Science&Technology Co., Ltd (Wuhan, 
China). The cells were cultured in RPMI-1640 medium 
(#PM150110, Procell) with 20% fetal bovine serum 
(#164210-500, Procell) and 1% penicillin–streptomycin 
(#PB180120, Procell) in an environment with 5% CO2 
at 37  °C. The cells were seeded in 6-well culture plates, 
and cell transfection was performed when the cell con-
fluence reached 60–70%. For LINC01082 overexpres-
sion, the pcDNA3.1-LINC01082 plasmid was obtained 
from GENEWIZ (Suzhou, China). The negative control 
group of empty vector was referred to as the NC group. 
For LINC01082 knock down, the si-LINC01082 and the 
corresponding negative control were synthesized from 
Ribobio (Guangzhou, China). The cells were transfected 
with 2.5 µg plasmid DNA and 4 µl Lipo8000™ (Beyotime, 
China) per well following the manufacturer’s protocol. 
All cells were collected 48 h after transfection.

RNA extraction and quantitative real‑time PCR analysis
Total RNA was extracted using TRIzol™ Reagent 
(Thermo Fisher Scientific, China) and reverse-tran-
scribed into complementary DNA (cDNA) using the 
All-In-One 5X RT MasterMix Kit (abmgood, Canada) 
by following the manufacturer’s protocol. Quantitative 
real-time polymerase chain reaction (qRT-PCR) was per-
formed using the 2 × Taq PCR Master Mix (abmgood, 
Canada). The protocol of each qRT-PCR cycle was: 94 °C 
for 10 min, 94  °C for 30 s, 60  °C for 30 s, and 72  °C for 
60  s, which was repeated 40 times. The forward primer 
sequence of LINC01082 was 5ʹ-CGG​ACT​CTA​TCG​AGG​

CAC​AC-3ʹ and the reverse primer sequence was 5ʹ-GCT​
GCT​CTC​GAG​TTC​CCT​AC-3ʹ. The forward primer 
sequence of GAPDH was 5ʹ-CAA​ATT​CCA​TGG​CAC​
CGT​CA-3ʹ and the reverse primer sequence was 5ʹ-GAC​
TCC​ACG​ACG​TAC​TCA​GC-3ʹ.

Transwell assays
Transwell migration assays were performed to determine 
the migration potential of the transfected cells using 
Transwell devices containing microporous 8-μm mem-
branes (Becton,Dickinson and Company, USA) in 24-well 
plates. First, 500 μL Dulbecco’s modified Eagle’s medium 
(DMEM) containing 20% FBS to each well was added into 
24-well plates. Next, approximately 4 × 104 transfected 
cells were resuspended in 100 μL DMEM seeded in the 
chamber. The cells were cultured for 48 h at 37 °C with 5% 
CO2. Then, 1 mL of 4% formaldehyde solution was added 
to each well and fixed at room temperature for 10 min. 
Then, the wells were washed with 1 × phosphate-buffered 
saline (PBS), and 1  mL of 0.1% crystal violet solution 
(Solarbio, Beijing, China) was added to each well. After 
staining for 30  min, the wells were washed three times 
with 1 × PBS and dried. Finally, all non-migrated cells 
were scraped using a cotton bud. Cells were counted in 
five randomly and uniformly selected visual fields of the 
membrane.

Cell proliferation assays
A total of 1 × 103 transfected cells were seeded in the 
96-well plates for 0, 24, 48, 72 and 96 h. The cell counting 
kit 8 (CCK-8, #ab228554, Abcam) was selected, and 10 
μL of CCK-8 was added per well. After being incubated 
for 1 h at 37 °C, we detected the absorbance of each well 
at a wavelength of 450  nm. Individual assays were per-
formed for three times.

Western blotting
Total proteins were extracted by the Cell Lysis Buffer 
(Beyotime, China). The protein quantification from the 
total extracted cell protein lysates was detected by the 
BCA protein assay, then the same 10 μg of protein sam-
ples were separated by the SDS-PAGE and transferred 
onto PVDF membranes. The proteins on the mem-
brane were then blocked with 5% skim milk for 30  min 
and incubated overnight at 4  °C with anti-E-Cadherin 
(#20874-1-AP, Proteintech, China, 1:5000), anti-MMP2 
(#10373-2-AP, Proteintech, China, 1:500), anti-ZO-1 
(#13663, Cell Signaling Technology, USA, 1:1000), 
and anti-GAPDH (#10494-1-AP, Proteintech, China, 
1:10,000) antibodies. The membranes were incubated 
with the corresponding secondary antibody (#SA00001-
1, #SA00001-2, Proteintech, China, 1:5000) at room tem-
perature for 30  min. Last, membranes  were incubated 
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with chemiluminescent substrate according to the manu-
facture’s protocol (#E412, Vazyme, China) and visualized 
using Tanon-4600 automatic chemiluminescence/fluo-
rescence image analysis system (Shanghai, China). The 
experiments were repeated twice.

Statistical analysis
All statistical analyses were conducted using the latest 
version of the R programming language (version 4.1.0). 
Mann–Whitney–Wilcoxon test was used to compare 
two independent non-parametric samples. Univariate 
and multivariate Cox proportional hazards regression 
models were used to identify the prognostic factors and 
independent prognostic factors, respectively. Spear-
man’s correlation coefficient was used to assess the cor-
relation between two factors. Relative RNA expression 
levels of LINC01082 in overexpressed groups (OE) com-
pared with negative control groups (NC) were calculated 
using 2−ΔΔCT, we performed the following four steps: (1) 
The mean CT value of each gene was calculated for each 
group; (2) ΔCT values: ΔCT is the difference between 
the target cDNA and endogenous reference in the CT 
value (GAPDH; ΔCT = CT lncRNA – CT GAPDH); (3) ΔΔCT 
values: –ΔΔCT = –(ΔCT OE – ΔCT NC); and (4) 2−ΔΔCT 
values: After 2−ΔΔCT calculation, the relative expres-
sion of the target gene between OE and NC was finally 
obtained. The calculation methods of LINC01082-si and 
NC groups were the same as above. All reported P-val-
ues were two-tailed, and P-values < 0.05, were considered 
significant.

Results
Identification of candidate immune‑related LncRNAs in GC
We performed a multi-step integrated analysis to con-
struct an IRLP signature for predicting prognosis and 
evaluating immunotherapeutic response in GC (Fig.  1). 
We used the gene expression profiles from TCGA data-
base and the computational framework “ImmLnc” to 
identify 1704 immune-related candidate lncRNAs for 
determining lncRNA regulators of the immune-related 
pathways in GC. We further screened the lncRNAs to 
avoid very low expression lncRNAs, and obtained 1448 
lncRNAs with expression values greater than 0 in 70% 
of all samples. Using the “limma” R package, a total of 
162 DEimmunelncRNAs between the tumor and normal 
samples were selected, of which 74 were upregulated and 
88 were downregulated (Fig. 2A).

Construction of an 18‑IRLP prognostic signature in GC
Based on above 162 DEimmunelncRNAs that were 
selected, we performed pairwise comparisons using the 
lncRNA expression levels in each sample to obtain IRLPs. 
After eliminating IRLPs that did not meet the inclusion 

criteria, we retained 6677 IRLPs for subsequent analyses. 
Using the univariate Cox proportional hazards regres-
sion model, a total of 54 prognosis-related IRLPs were 
screened (Fig.  2B, Additional file  2: Table  S2). To avoid 
the influence of random assignment bias, all 303 patients 
were categorized into training and validation sets, which 
showed no significant differences in the distribution of 
the clinical features. The training and validation sets 
showed no significant differences in the distribution of 
the clinical features (Table 1). To construct a stable prog-
nostic evaluation model, the 54 selected IRLPs under-
went Cox proportional hazards regression with tenfold 
cross-validation to generate the most optimal gene sig-
nature. We performed 1000 iterations and included five 
gene groups for further analyses. As shown in Fig.  2C, 
an 18-IRLP gene signature, including 27 immune-related 
lncRNAs, was selected. The selected model had the high-
est frequency of 555 times higher than that of all other 
models (Table  2). Therefore, this 18-IRLP gene model 
was considered to be the most suitable for generating the 
immune signature in GC (Fig. 2D, E).

Evaluation of survival prediction and validation of the IRLP 
signature
We used the 18-IRLP signature and calculated the risk 
score for each patient in the training set to construct a 
prognostic risk model for patients with GC. Based on 
the median risk score, we found that the high-risk group 
exhibited poorer prognosis than the low-risk group in 
the training, validation, and TCGA sets (log-rank test 
P-value < 0.05; Fig. 3A, C, and E). The 1-, 3-, and 5-year 
AUC values of the training set were 0.73, 0.78, and 0.77, 
respectively (Fig. 3B). In addition, the AUC values in the 
validation and TCGA sets were greater than 0.75 in case 
of 1-, 3-, and 5-year AUC (Fig. 3D, F). These results sug-
gest that our 18-IRLPs signature is a strong prognostic 
predictor for GC.

Association between the IRLP signature and clinical 
features
To explore the association between the IRLP signature 
and clinical features, along with other clinical factors, 
including sex, age, pT stage, pN stage, pM stage, and 
grade, the multivariate Cox regression analysis revealed 
that our 18-IRLP signature was an independent prognos-
tic factor for GC (Fig. 4A). As shown in Fig. 4B, we deter-
mined that our model was better than the traditional 
TNM staging system, as well as other clinical features in 
terms of prognostic evaluation in GC. Figure  4C shows 
the distribution of the risk score and survival status.

To explore whether our IRLP signature was useful in 
determining the molecular clusters for GC, we used a 
consensus clustering method to stratify all the samples, 
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Fig. 1  Flow chart of the present study. A novel immune-related lncRNA pair (IRLP) signature for predicting prognosis and evaluating immune 
response in gastric cancer (GC) was obtained via a bioinformatics and biological validation-based study
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and identified three molecular subtype clusters: subtype 
1, subtype 2, and subtype 3 (Fig. 4D). We found signifi-
cant differences in the survival rates among the patients 
in the three subtype clusters, especially in case of subtype 
2 (log-rank test, P < 0.001, Fig. 4E). These results suggest 
that our IRLP signature can be used for molecular sub-
typing in further studies.

We then examined the differences in the risk score 
according to different clinicopathological features. The 
distribution of the risk scores was significantly different 
with respect to age, pM stage, and pathological stage I 
with IV (P < 0.05, Fig.  5A). Moreover, we integrated the 
abovementioned clinicopathological indicators with 
sex, age, pT stage, pN stage, pM stage, grade, and our 
18-IRLPs signature. We constructed a nomogram to fur-
ther improve the accuracy of the prognostic prediction 
model for GC (Fig.  5B). The C-index of this nomogram 
was 0.762, which indicates a strong prognostic prediction 
ability for GC. The calibration curve used to evaluate the 
prediction accuracy of the model is shown in Fig. 5C. To 
better display the distribution of the clinical information 

between the high-risk and low-risk groups, a heatmap 
of the distribution of clinical features is illustrated in 
Fig. 5D.

Relationship between the IRLP signature 
and immune‑related activities
Immune cell infiltration is associated with cancer prog-
nosis [32]. We explored the differences in immune cell 
infiltration between the high- and low-risk groups. We 
first estimated the immune infiltration status in GC by 
using TIMER, CIBERSORT, quanTIseq, xCell, MCP-
counter, and EPIC algorithms. As shown in Fig.  6A, we 
determined that several immune-related responses, 
such as those associated with B cells, CD4 + T cells, 
CD8 + T cells, follicular helper T cells, and M1 mac-
rophages had a negative correlation with the risk scores 
(correlation coefficient < 0). However, M2 macrophages, 
cancer-associated fibroblasts, and endothelial cells were 
positively correlated with the patient risk scores (correla-
tion coefficient > 0). Additional file  3: Figure S1 shows a 
heatmap of immune cell infiltration estimated using all 

Table 2  Prognostic-related 18-IRLPs signature by univariate Cox and LASSO regression analysis

IRLPs immune-related lncRNA pairs, HR hazard ratio

IRLPs LncRNA1 LncRNA2 LASSO Coefficient Univariate Cox HR Univariate 
Cox P-value

LINC01082|MECOM-AS1 LINC01082 MECOM-AS1 0.182461199 1.844162 0.006239

AL162231.2|AP000695.2 AL162231.2 AP000695.2 − 0.090117905 0.604829 0.005055

AF001548.1|MIR222HG AF001548.1 MIR222HG 0.013909284 1.807629 0.001712

AC092718.3|VPS9D1-AS1 AC092718.3 VPS9D1-AS1 − 0.1216813 0.6087 0.009608

AC092718.3|LBX2-AS1 AC092718.3 LBX2-AS1 − 0.315792113 0.525771 0.000353

AC018521.6|AP000695.2 AC018521.6 AP000695.2 − 0.221816573 0.531631 0.000512

AC010542.5|LINC01269 AC010542.5 LINC01269 − 0.322756413 0.524657 0.000923

LINC01232|AC015912.3 LINC01232 AC015912.3 0.227198005 1.719174 0.003078

AC104695.2|AP000695.2 AC104695.2 AP000695.2 − 0.120394541 0.525991 0.000775

AL512274.1|AP005233.2 AL512274.1 AP005233.2 − 0.223782758 0.606419 0.005118

AL512274.1|LINC01023 AL512274.1 LINC01023 − 0.035507173 0.603742 0.005325

AL365181.3|AC016065.1 AL365181.3 AC016065.1 − 0.036905121 0.600231 0.006761

AL365181.3|AC133552.5 AL365181.3 AC133552.5 − 0.13115007 0.538969 0.000808

AP003071.4|AL133346.1 AP003071.4 AL133346.1 0.20335131 1.681189 0.006167

AP003071.4|LINC02195 AP003071.4 LINC02195 0.210730199 1.649251 0.005243

AC127521.1|AC005520.2 AC127521.1 AC005520.2 − 0.153210626 0.560476 0.003205

AL133346.1|AP000695.2 AL133346.1 AP000695.2 − 0.196021258 0.615435 0.007012

WASL-DT|LINC01023 WASL-DT LINC01023 − 0.340532934 0.597772 0.004098

Fig. 3  The prognostic evaluation and validation of the immune-related lncRNA pair (IRLP) signature in gastric cancer (GC). A The Kaplan–Meier 
(K-M) plot between the high- and low-risk groups in the training set (n = 212). B The time-dependent receiver operating characteristic (ROC) curves 
for 1-, 3-, and 5-years in the training set. C The K-M plot between the high- and low-risk groups in the validation set (n = 91). D The time-dependent 
ROC curves for 1-, 3-, and 5-years in the validation set. E The K-M plot between the high- and low-risk groups in The Cancer Genome Atlas (TCGA) 
set (n = 303). F The time-dependent ROC curves for 1-, 3-, and 5-years in TCGA set

(See figure on next page.)
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above mentioned methods. Moreover, cancer-associated 
fibroblasts (Fig.  6B), M2 macrophages (Fig.  6C), and T 
cell-associated infiltration (Fig.  6D) showed differential 
infiltration (P-value < 0.001) between the high- and low-
risk groups.

We next explored the correlation between the risk 
score and ICI-related biomarkers. Significant differences 
were observed in the expression of PD-L1, CTLA4, and 
LAG3 between the high- and low-risk groups (P < 0.05); 
however, the difference in PD-1 expression was not 
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significant (Fig.  6E). The correlation coefficients that 
were computed to determine an association between the 
18-IRLP signature and the ICIs (Fig. 6F) suggested a weak 
correlation.

As shown in Fig.  6G, the expression of HLA-F was 
downregulated in the high-risk group, whereas, the 
expression of HLA-DQB2 was upregulated in the high-
risk group, indicating that this possibly led to tumor 
immune evasion (P-value < 0.05).

Biological functions of the IRLP signature in GC
Considering the importance of targeted drugs in the 
treatment of patients with GC, we determined the drugs 
that were more sensitive in the high- and low-risk groups 
based on the IC50 value (Additional file  4: Figure S2). 
According to the IC50 values, we found that bryostatin-1, 
dasatinib, KU-55933, MG-132, pazopanib, and temsiroli-
mus were more effective in the high-risk patients.

To explore the biological functions of the 18-IRLP sig-
nature, we identified target genes of the lncRNAs. By 
considering correlation coefficient > 0.6, we obtained 
190 potential target genes, including 143 positively cor-
related and 47 negatively correlated genes (Additional 
file 5: Table S3). The target genes were enriched in sev-
eral important biological pathways, such as “focal adhe-
sion,” “regulation of actin cytoskeleton,” and “cGMP-PKG 
signaling pathway” (Fig. 7A). We then screened for target 
genes with a correlation coefficient > 0.7, and found three 
significant lncRNAs, namely, AP003071.4, AF001548.1, 
and AC092718.3 (Fig. 7B). Based on the expression levels, 
the survival analysis revealed that only three lncRNAs 
(AC015912.3, AC127521.1, and AL365181.3) were asso-
ciated with GC prognosis (Fig. 7C) and were differentially 
expressed in the tumor and normal tissues (Fig.  7D). 
AP003071.4 and AF001548.1 expression showed a 
strong positive correlation (correlation coefficient = 0.90; 
Fig. 7E).

The LINC01082 regulated the migration of GC cells
To explore the biological behavior of the selected lncR-
NAs, we performed a molecular validation via func-
tional experiments. Among the many candidates in our 
signature, we selected an interesting lncRNA named 
as LINC01082, which has almost never been reported. 
Based on TCGA data, we found that LINC01082 was sig-
nificantly downregulated in cancer tissues (Fig.  8A). At 

the same time, this lncRNA has not been reported in GC, 
so its biological behavior is worthy of our in-depth study. 
Results of qRT-PCR displayed substantially increased 
expression of LINC01082 in pcDNA3.1-LINC01082 
overexpressed group (LINC01082-OE) in HGC-27 cells. 
Decreased expression of LINC01082 was seen in knock 
down-group (LINC01082-si) compared with NC group 
(Fig. 8B). Cell migration assay was performed to investi-
gate the regulatory role of LINC01082 in GC cell migra-
tion. We demonstrated that it can inhibit cell migration 
in the LINC01082-OE group than in the control group 
(Fig.  8C, P-value < 0.001). However, down-regulation 
of LINC01082 can improve GC cell migration (Fig.  8D, 
P-value < 0.001). Based on the western blotting results, 
we also found the expression of tight junction protein 
1 (ZO-1, one of Epithelial-Mesenchymal Transition 
(EMT) relative marker) and E-Cadherin (E-cad, one of 
EMT relative marker) were increased and matrix metal-
lopeptidase 2 (MMP2, one of migration relative marker) 
was suppressed by upregulation of LINC01082 (Fig. 8E). 
However, we found that there was no statistical differ-
ence in cell proliferation in the two groups (Fig.  8F). 
These results suggested that LINC01082 is involved in 
the migration of GC cells.

Discussion
In this study, we developed a novel 18-IRLP signature for 
predicting prognosis and evaluating immune response 
using a series of bioinformatics and biological validation 
analyses for GC. Recently, the identification of immune-
related biomarkers has paved the way for more effective 
immunotherapy in human cancers such as GC. Results of 
preclinical and clinical trials have expanded our under-
standing of targeted therapy and immunotherapy [9]. 
Immunotherapy, such as new immune checkpoint regu-
lators, is considered an innovative approach for GC 
treatment [33]. Several potential immunotherapy target 
agents, including anti-CTLA4, anti-PD-1/PD-L1, cancer 
vaccines, and adoptive cell therapy, have become promi-
nent in immunotherapy-based clinical trials for GC.

With the continuous improvement of RNA-sequencing 
methods, TCGA database, which comprises molecu-
lar features of more than 20,000 primary cancers and 
matched normal samples of 33 cancer types, is increas-
ingly being used in research. Detailed patient progno-
sis information in TCGA has allowed for an increasing 

Fig. 7  Biological functions of the immune-related lncRNA pair (IRLP) signature in gastric cancer (GC). A Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the target genes of the lncRNAs in our signature. B Target gene regulatory network with correlation 
coefficient greater than 0.7. C The Kaplan–Meier (K-M) survival plot of three prognostic-related lncRNAs.D Distribution of lncRNA expression in our 
signature between the tumor and normal samples. * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001; ns: P-value ≥ 0.05. E Correlation analysis of 
lncRNA expression with each other

(See figure on next page.)
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number of studies on prognostic evaluation signatures, 
including immune-related gene based or lncRNA based 
prognostic signatures. For example, eight immune-
related lncRNAs (LINC00461, LINC01055, ELFN1-AS1, 
LMO7-AS1, CYP4A22-AS1, AC079612.1, LINC01351, 
and MIR31HG) related to the prognosis of patients 
with colorectal cancer have been identified from TCGA 
database [34]. Zhang et  al. [35] have constructed a four 
immune-related lncRNA prognostic signature for lung 
cancer based on a series of bioinformatics analyses. In 
another study, Zhang et al. used univariate and multivari-
ate Cox regression analyses as well as LASSO analysis to 
build a six immune-related lncRNA signature for bladder 
cancer [36]. Thus, studies based on gene expression pro-
files and patient survival data deepen our understanding 
of the factors affecting human cancer prognosis.

However, because of different sequencing platforms 
and batch effects, prognostic evaluation models, such as 
those mentioned above, can be effectively established but 
cannot be verified by other samples or other data sets. 
The concept of immune gene pairs solves this problem. 
A major advantage of this concept is that it is produced 
by pairwise comparisons and is completely based on 
gene expression in the tumor of the same patient. Thus, 
it can overcome the batch effects of different platforms 
and does not require data standardization. Zhao et  al. 
[16] identified a signature of  14 immune-related gene 
pairs consisting of 25 unique genes to predict the OS of 
patients with GC. In another study, a 14-IRGP signature 
was developed as a novel prognostic marker for predict-
ing survival of patients with head and neck squamous cell 
carcinoma [37]. As for IRLP signature, one study identi-
fied a 21-IRLP signature to predict the clinical outcomes 
and immunotherapeutic responses in case of head and 
neck squamous cell carcinoma [38]. However, this is the 
only relevant study about IRLP signature in tumor so far. 
Therefore, the construction of an IRLP signature in GC 
has novel research significance and value.

In this study, we used the R package "ImmulancRNA" 
was used to calculate the tumor purity and partial corre-
lation coefficient, and identify lncRNA- pathway pairs. It 
is worth noting that a tumor purity step is very required. 
Malignant tumor tissue includes not only tumor cells, 
but also tumor-related normal epithelial cells and stromal 

cells, immune cells and vascular cells. This is the compo-
sition of the tumor’s immune microenvironment, and the 
tumor’s percentage is tumor purity. Moreover, infiltrating 
stromal cells and immune cells are the main components 
of normal cells in tumor tissue. They not only interfere 
with tumor signal, but also play an important role in 
tumor biology [39]. Several studies suggested that genes, 
whose expression is negatively correlated with tumor 
purity and positively correlated with immune cell infil-
tration, are likely to play important roles in immunol-
ogy [25, 40]. For example, the immune status of glioma 
patients with different purity was different. The immu-
nophenotype of glioma with low purity was stronger than 
that of glioma with high purity [41]. Thus, a tumor purity 
step is required in computation.

Here, if the expression value of the first lncRNA was 
greater than that of the second lncRNA, the score of 
the IRLP in that sample was considered to be 1; oth-
erwise, it was considered to be 0. Because the immune 
gene pairs only need to consider the value of gene 
expression within one specific sample, we do not need 
to consider the expression value between different sam-
ples, which saves us the problem of inter-sample batch 
correction. If we need to do more than one dataset vali-
dation, it can help us solve the problem of batch correc-
tion. Some IRLPs may be specified as constant values 
(0 or 1) in the dataset for the following reasons [42]: 
(1) bias caused by a particular platform; (2) biologi-
cally preferred transcription characteristics, this does 
not distinguish the survival of one patient from that of 
another. No relationship was considered between pairs 
and prognosis if the expression quantity of lncRNA 
pairs was 0 or 1 because pairs without a certain rank 
could not properly predict patient survival outcome 
[43]. In brief, IRLPs with the same score (0 or 1) was 
considered uninformative in more than 80% of the 
samples and removed from the analysis. The biggest 
advantage of our study is the use of a repeated LASSO 
(iteration = 1000)  method, which is different from tra-
ditional LASSO. In the traditional LASSO algorithm, a 
specific set of genes appears every time the regression 
is run. However, in our study, we performed a repeated 
LASSO to generate gene groups after 1,000 iterations. 
Thus, the gene signature generated was strong and 

(See figure on next page.)
Fig. 8  The LINC01082 regulated the migration of gastric cancer (GC) cells. A LINC01082 was significantly downregulated in the cancer tissues 
than in the normal tissues. B The overexpression and knock down efficiencies of LINC01082 in HGC-27 cells. C Transwell migration assay for 
overexpression of LINC01082. Original magnification × 20. Scale bar = 200 μm. D Transwell migration assay for knock down of LINC01082. Original 
magnification × 20. Scale bar = 200 μm. E The western blotting results of ZO-1, E-cad, and migration relative marker MMP2. F Cell proliferation 
assessment of LINC01082 overexpressing and knock down group vs control group by cell counting kit 8 (CCK8) assay. * P-value < 0.05; ** 
P-value < 0.01; *** P-value < 0.001; **** P-value < 0.0001. NC: negative control group, LINC01082-OE: LINC01082 overexpression group, LINC01082-si: 
LINC01082 knock down group
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Fig. 8  (See legend on previous page.)
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robust. We also compared the performance of our IRLP 
signature with other reported immune-related genes/
lncRNA models in GC. As shown in Additional file  6: 
Table  S4, we found that the 5-year AUC of our IRLP 
signature (AUC = 0.77) was greater than that in other 
studies. In addition, the AUC in the validation set and 
TCGA sets was more than 0.75 for 1-, 3-, and 5-year 
AUC. Most importantly, this is the first study to report 
an IRLP-based prognostic evaluation model for GC.

Tumor immunity is a very complex process, which 
involves many factors. Malignant tumor tissue includes 
not only tumor cells, but also tumor-related normal 
epithelial cells and stromal cells, immune cells and 
vascular cells. This is the composition of the tumor’s 
TME. The cells of the TME constitute an important 
part of the tumor tissues. Three TME phenotypes have 
been defined as per the genomic characteristics and 
clinicopathological features of GC [44]. They found 
TMEcluster-A was characterized by increases in the 
infiltration of cancer-associated fibroblasts and M2 
macrophages. TMEcluster-B exhibited high infiltration 
of M0 macrophages and neutrophils. And TMEclus-
ter-C showed increases in the infiltration of CD8+ T 
cells and M1 macrophages. Immune cell infiltration 
in the TME affects the prognosis of tumors [45, 46]. 
Immune cell infiltration has been determined as a bio-
marker for the diagnosis and prognosis of stage I-III 
colon cancer [47]. In our study, we determined that 
several immune-related responses showed a nega-
tive correlation with the risk scores, such as those by 
B cells, CD4+ T cells, CD8+ T cells, follicular helper T 
cells, and M1 macrophages (correlation coefficient < 0). 
However, M2 macrophages, cancer-associated fibro-
blasts, and endothelial cells were positively correlated 
with the patient risk scores (correlation coefficient > 0). 
Macrophages are the most abundant cells in the tumor 
matrix, and perform multiple functions in the TME 
[48]. The M2 macrophage phenotype reportedly has 
a tumor-promoting effect; in our study, this was posi-
tively correlated with the patient risk scores. In addi-
tion, this phenotype can influence multiple steps in 
the tumor development in other cells, including can-
cer-associated fibroblasts. However, the anti-tumor 
M1 phenotype has been shown to be a strong killer of 
cancer cells [48]. Tumor endothelial cells can acceler-
ate tumor metastasis via tumor angiogenesis [49]. Thus, 
these findings can be further investigated for patients 
in the high-risk group, who presented with more 
severe cancer metastases. Immune checkpoint refers 
to a series of molecules that are expressed on immune 
cells and can regulate the degree of immune activation. 
They play an important role in preventing the occur-
rence of autoimmunity. Therefore, immune checkpoints 

are protective molecules in the body’s immune system 
that act like brakes to prevent inflammatory damage 
caused by overactivation of T cells. But this mechanism 
is used by tumor cells, by suppressing immune cells. 
Thus, tumor cells can escape surveillance, or "immune 
escape". Thus, we showed the correlation coefficients 
between the 18-IRLP signature and the ICIs in Fig. 6F.

When we identified potential target genes, we look 
only at the correlation coefficient of lncRNA expres-
sion. Therefore, the top-ranked biological pathways 
almost have nothing to do with immune regulation or 
immune response. Here we want to look at another 
way in which these lncRNAs are involved in other 
important molecular pathways. A total of 27 immune-
related lncRNAs were identified in our IRLP signa-
ture, and approximately half of them have not been 
reported in cancer. Among the ones that have been 
reported, LINC01232 promotes metastasis and par-
ticipates in the progression of pancreatic cancer [50]. 
In GC, LBX2-AS1 positively regulates LBX2 mRNA 
stability, which affects the proliferation and apoptosis 
of GC cells [51]. LINC01082 expression is significantly 
downregulated in colon cancer tissues, and overex-
pression of LINC01082 can significantly suppress the 
proliferation of the colon cancer cells [52]. However, 
to date, no study has explored its biological functions 
in GC. In our molecular functional experiments, we 
found that overexpression of LINC01082 suppressed 
the invasion of GC cells. Moreover, the expression of 
PD-L1 was also suppressed, suggesting its role in tumor 
immunity. Above results suggest that LINC01082 may 
play a significant role in the development and progres-
sion of GC. As for other lncRNA in our signature, there 
are also some recent studies reported in cancers. For 
examples, VPS9D1-AS1 expression was shwn to be 
downregulated in GC tissues than that in adjacent non-
tumorous tissues and its expression level was correlated 
with tumor size, TNM stage, overall and disease free 
survival [53]. Studies have proved that high expression 
of LINC02195 in human head and neck squamous cell 
carcinoma tissues and cell lines compared with normal 
mucosal tissues [54].

To conclude, our 18-IRLP signature had a strong 
and robust performance in predicting prognosis and 
immune response in GC. However, the limitations of 
our study must be acknowledged. First, the robustness 
of our signature was determined using gene expression; 
it should be verified in a larger sample size of patients 
with GC. Second, our 18-IRLPs gene signature included 
27 immune-related lncRNAs. In our opinion, this num-
ber is high, and a prognostic signature with fewer lncR-
NAs can be built. Third, our model may help in the 
selection of ICIs and other immunotherapies, however, 
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this would require further clinical trials. Finally, further 
experimental validation of these lncRNAs is required, 
not only including LINC01082.

Conclusion
Based on bioinformatics and biological validation studies, 
we generated a novel 18-IRLP signature for prediction of 
prognosis and evaluation of immune responses in GC. 
Our IRLP signature provides novel insights into immu-
nological biomarkers, and improves our understanding 
of the tumor immune microenvironment and therapeutic 
response in GC.
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