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Abstract

Background: In human Estrogen Receptor a (ERa)-positive breast cancers, 59 end dense methylation of the estrogen-
regulated pS2/TFF1 gene correlates with its transcriptional inhibition. However, in some ERa-rich biopsies, pS2 expression is
observed despite the methylation of its TATA-box region. Herein, we investigated the methylation-dependent mechanism
of pS2 regulation.

Methodology/Principal Findings: We observed interplay between Methyl-CpG Binding Domain protein 2 (MBD2)
transcriptional repressor and ERa transactivator: (i) the pS2 gene is poised for transcription upon demethylation limited to
the enhancer region containing the estrogen responsive element (ERE); (ii) MBD2-binding sites overlapped with the
methylation status of the pS2 59 end; (iii) MBD2 depletion elevated pS2 expression and ectopic expression of ERa partially
overcame the inhibitory effect of MBD2 when the ERE is unmethylated. Furthermore, serial chromatin immunoprecipitation
assays indicated that MBD2 and ERa could simultaneously occupy the same pS2 DNA molecule; (iv) concomitant ectopic
ERa expression and MBD2 depletion resulted in synergistic transcriptional stimulation, while the pS2 promoter remains
methylated.

Conclusions/Significance: MBD2 and ERa drive opposite effects on pS2 expression, which are associated with specific
steady state levels of histone H3 acetylation and methylation marks. Thus, epigenetic silencing of pS2 could be dependent
on balance of the relative intracellular concentrations of ERa and MBD2.
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Introduction

Global loss of DNA methylation and localized CpG island

hypermethylation is a common characteristic of cancer cells [1–3],

leading respectively to aberrant ectopic gene activation or

inversely to gene silencing. The pS2 gene (also called TFF1) has

been identified by differential screening of a cDNA library from

the human breast cancer cell line MCF7 [4]. In this cell line, its

transcription is directly controlled by estrogens [5] and an estrogen

responsive element (ERE) has been identified at nt positions 2405

to 2393, from transcription start site [5]. In breast tumors,

expression of the pS2 gene is correlated with the presence of

estrogen receptors (ER), and it had been suggested that pS2

expression increases cell proliferation and tumor cell survival [6,7].

Analysis of breast cancer biopsies or microdissected cells from

formalin-fixed breast tissues has shown that pS2 is hypomethylated

in sub-classes of breast cancers [8,9].

We have previously shown [8] that the hypomethylation of the

CCGG site close to the pS2 ERE correlates with its expression in

human breast cancer biopsies. Southern blots performed with

methylation sensitive enzymes and bisulphite sequencing have

indicated that the breast tumors analyzed exhibited different DNA

methylation patterns at the 59 end of pS2 [8]. Biopsies can display

either methylated, unmethylated and partially methylated 59 end

pS2 sequences at CpGs analyzed (nt positions 284 to +16) [8].

These observations prompted us to investigate the methylation-

linked mechanisms of pS2 gene repression and the potential

involvement of DNA methylation in its response to estrogen

stimulation.

In mammals, mechanisms implicated in the generation of a

repressive state of chromatin associated with methylated DNA

sequences have been investigated for over 20 years [10–13].

Pioneering studies led to the discovery of the Methyl-CpG binding

domain (MBD) proteins family [14], which mediate DNA

methylation-dependent gene silencing. The five bona fide MBD

proteins, MeCP2, MBD1, MBD2, MBD3, and MBD4, share a

canonical MBD. Biochemical and genetic analyses of these

proteins have provided evidence of a direct link between DNA

methylation and repressive chromatin architecture. MeCP2,

MBD1 and MBD2 proteins bind to methylated DNA and recruit

different histone deacetylase (HDAC)- and histone methyltrans-

ferase (HMT)-containing complexes that control chromatin

compaction and gene silencing [15–17]. Mammalian MBD3,

which lacks a functional MBD, does not recognize methylated

DNA but is part of the histone deacetylase and chromatin

remodeling Mi2/NuRD complex [18–20]. The last member of
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this protein family, MBD4, is a thymine glycosylase primarily

involved in DNA repair [21].

The involvement of MBD proteins in gene imprinting [22], X

inactivation [23], and transcriptional silencing of genes possessing

hypermethylated CpG islands in cancer cells [2,3] is now well

documented. However, in contrast to the situation observed for

DNMT-deficient mice, which either fail to develop or else die

shortly after birth [24], the loss of MBD proteins, with the

exception of MBD3, does not result in dramatic phenotypes [17],

suggesting that MBD proteins deficiency causes subtle gene-

expression changes.

Although the involvement of MBD proteins in gene silencing is

well established, new facets regarding the links between DNA

methylation, MBD proteins and gene transcription are emerging.

For instance, it has been reported that DNA methylation in

the body of genes can alter chromatin structure and reduce

transcriptional elongation [25]. In parallel with the above findings,

we have shown that the association of MBD2 with a methylated

CpG island located downstream of the promoter region reduces

the transcription of NBR2 gene [26].

The density of methylation seems to be an important parameter

in the MBD proteins-dependent repression. Several years ago,

using in vitro methylated plasmids, it had been shown that the

density of methylated CpG and promoter strength modulate

transcriptional repression mediated by MeCP1 complexes con-

taining MBD2 [27]. Furthermore, analysis of the transcriptional

activity of patch-methylated plasmids microinjected into Xenopus

oocytes has suggested a competition between transactivators and

MBD proteins for the establishment of an open conformation [28].

All together, these data suggest that transcriptional repression

mediated by DNA methylation is a consequence of a cross-talk

between methylated CpG density, MBD proteins and transacti-

vators.

To further explore the relative roles of methylated CpG patterns

and the competition between transactivators and MBD proteins to

influence or modulate gene transcription, we here investigate the

expression of the estrogen-regulated pS2/TFF1 (Trefoil Factor 1)

gene [29] in cell lines exhibiting different DNA methylation

patterns at its 59 end, unmethylated, regionally methylated, and

fully methylated. In these cell lines, it was possible to manipulate

artificially the Estrogen Receptor-a (ERa), the natural transacti-

vator of pS2, and MBD protein levels, and therefore, use them to

determine the contribution of these proteins to pS2 expression.

Results

Correlation between methylation patterns and pS2
transcriptional repression

Expression of pS2 is driven by a complex promoter containing a

promoter/enhancer region responsive to estrogens, EGF, a

phorbol ester tumor promoter, c-Ha-ras oncoprotein, and c-jun

protein [33]. Specifically, the 59 end of pS2 possesses an estrogen-

responsive element (ERE), conferring potential estrogen inducibil-

ity. In the ERa-rich MCF7 cell line, it has been shown [34] that

proteins present on the pS2 promoter in the absence of estradiol

(E2) include basal transcriptional factors, active polymerase II,

certain HATs and HMTs. This basal transcriptional activity

implies steroid-independent expression of pS2. Moreover, the 59

end of pS2 (nt positions 2464 to +314) is included in a CpG-poor

region, G + C = 0.54%, CpG observed / CpG expected = 0.35. A

correlation between the methylation status of the pS2 promoter

region and its expression has been observed in human tissues and

the breast cancer cells lines [8,35]. Experimental evidences are

also in favour of a role of DNA methylation in the repression of

pS2 transcription. In the ERa-rich MCF7 cells, pS2 is unmethy-

lated and transcriptionally active while in the ERa-negative MDA

MB231 cell line the 59 end of pS2 (nt positions 2665 to +17) is fully

methylated and the pS2 gene is silenced, [35]. We have extended

this analysis to the down stream region of pS2 promoter, since it

had been suggested that DNA methylation of the regions adjacent

to a promoter region may affect transcription [26,36,37].

The methylation status of the 59 end of pS2, from nt positions

2464 to +294, was investigated in MCF7 cells expressing pS2 at a

high level and MDA MB231 a pS2 negative cell line (Figure 1A).

Bisulphite conversion of DNA and sequencing of cloned PCR

fragments, indicated that this region is unmethylated in MCF7

and fully methylated in MDA MB231 cells (Figure 1B). A

screening failed to detect a human breast cancer cell lines

exhibiting intermediate methylation patterns similar to that

observed in breast cancer biopsies by Southern blot experiments

Figure 1. pS2 gene expression and DNA methylation patterns
in MCF7, HeLa and MDA MB231 cells. (A) The expression of
endogenous pS2 gene in MCF7, HeLa and MDA MB231 cell lines. pS2
mRNA levels were monitored by relative RT-PCR. Briefly, pS2 transcripts
were simultaneously amplified with b-actin transcripts as a loading
control and expression standard. (B) Methylation patterns at CpG sites
of pS2 59 flanking sequence from nt positions 2464 to +314 in MCF7,
HeLa, and MDA MB231 cell lines. A schematic representation of the
human pS2 gene is shown. The transcription start site is indicated by a
black arrow. Black box, AP1 site; dark-grey box, Estrogen-Responsive
Element (ERE); light-grey box, TATA-box; hatched boxes, pS2 exons. The
studied region (from nt positions 2464 to +314) is presented on an
expanded scale. This region contains 20 CpG sites, represented by white
circles. The bisulphite-sequencing status of this 59 pS2 region in MCF7,
HeLa and MDA MB231 cells (number of analyzed clones, n = 10) is
represented. Each line corresponds to a single DNA template molecule.
Black and open circles represent methylated and unmethylated CpGs,
respectively.
doi:10.1371/journal.pone.0009665.g001

MBD2 Modulates pS2 Expression
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[8]. Nevertheless, some of these patterns, associated with low level

of pS2 transcripts (Figure 1A), are very similar to that observed in

HeLa cells [8]. Thus, these cells were chosen for further analysis.

HeLa cells exhibit an intermediate DNA methylation pattern, the

CpGs spanning the 2464 to 284 region, which includes the ERE

are unmethylated, while the TATA-box region is methylated

(Figure 1B). These data confirm the inverse correlation between

pS2 expression and the density of the methylation of its 59end,

suggesting that the methylation patterns around the transcription

start site impact in the activity of pS2 promoter in these cells.

Specific binding of MBD2 to the methylated pS2
promoter

Among the proteins involved in the methylation-dependent

repression of transcription, MBD proteins seem to play a major

role. Therefore, we assessed the presence of MBD proteins on pS2

promoter by chromatin immunoprecipitation (ChIP) assays using

antibodies directed against MBD1, MBD2 and MeCP2.

Representative experiments from at least three independent

assays for each antibody are shown in Figure 2A. As a control, the

fractions immunoprecipitated with a non-MBD protein-specific

antibody (anti-mouse IgG) were also analyzed. In order to

determine pS2 DNA fragment enrichment in MBD immunopre-

cipitated fractions, a dose-dependent and quantitative (Q-PCR)

amplifications (Figure 2A, B) using an equal quantity of DNA (0.5

ng) per PCR assay, were performed with each fraction obtained

from the ChIP procedure. We focused this analysis on the pS2

methylated promoter region, shared by HeLa and MDA MB231

cells (nt positions 211 to +292).

In the pS2-methylated cells, MDA MB231 and HeLa, when

antibodies against MBD2 were used, the amount of pS2 promoter

per ng of total DNA in immunoprecipitated fraction (Figure 2A,

Figure 2. Specific association of MBD2 to the methylated promoter region of pS2 gene. Detail of the pS2 gene region analyzed (from nt
positions 2464 to +314). CpG sites are represented by circles. The black line represents the position of the fragment amplified by dose-dependant
and quantitative PCR after ChIP. MBD proteins binding to the methylated region of the pS2 promoter (from nt positions 211 to +292) was analyzed
by ChIP in MDA MB231, HeLa and MCF7 cells. Cross-linked chromatin was immunoprecipitated using rabbit polyclonal anti-MBD2, anti-MeCP2 and
anti-MBD1 antibodies. Purified DNAs from the input, unbound, bound or IgG fractions were quantified and an equal quantity of each fraction (0.5 ng)
of this DNA was amplified by dose-dependent (A) or quantitative (B) PCR. (A) Representative experiments of MBD occupancy in the pS2 promoter are
shown. (B) Relative amounts of immunoprecipitaded pS2 promoter to the input fraction measured by quantitative PCR. Each bar represents the mean
6 standard deviation of at least three independent experiments.
doi:10.1371/journal.pone.0009665.g002
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‘‘bound’’) was greater than in the input, or in the non-retained

fractions (Figure 2A, ‘‘input’’, ‘‘unbound’’, and ‘‘IgG’’), indicating

that this methylated region is immunoprecipitated by anti-MBD2

antibodies. In contrast, ChIP assays with anti-MeCP2 or anti-

MBD1 antibodies led to a depletion of this DNA segment in the

bound fractions (Figure 2A). Western blot analysis, using

antibodies directed against MeCP2 and MBD1, produced a signal

of the expected sizes [14], ,85 kDa and ,70 kDa, respectively

(data not shown), indicating that both proteins are expressed in

MDA MB231 and HeLa cells. As an additional control of MBD2-

ChIP assays, we also amplified the 211 to +292 pS2 region from

MCF7-chromatin immunoprecipitated by anti-MBD2 antibodies

(Figure 2A). As expected, no enrichment was observed in the

bound fraction, since this region was unmethylated in the MCF7

cell line (Figure 2A). Taken together, these data strongly suggest

that MBD2 binds selectively and specifically the methylated region

of this promoter.

High resolution MBD2 binding profiles analysis of pS2
promoter indicates that MBD2 specifically binds the
methylated pS2 promoter region and does not spread to
the umethylated ERE in HeLa cells

In HeLa cells, the bimodal methylation status of the pS2 59 end

suggests that only some regions would actually be bound by

MBD2. The unmethylated region containing the ERE (nt

positions 2405 to 2393) is very close to the methylated TATA-

box region (beginning at nt -9). ChIP experiments are not

appropriate to discriminate between these two regions, as they are

below the limit of resolution of the assay. Standard sonication of

crosslinked chromatin leads to 300–500 bp DNA fragments and

attempts to reduce its length (100–200 bp) resulted in a loss of

efficiency in immunoprecipitation. Therefore, to precisely map the

MBD2 binding sites we used a high-resolution method based on a

ChIP-on-chip approach (Chatagnon et al., manuscript in prepa-

ration). DNAs obtained from HeLa cell chromatin immunopre-

cipitated by anti-MBD2 antibodies were hybridized on an

Affymetrix Human Promoter 1.0R Array (ChIP-on-chip).

ChIP-on-chip experiments indicated that MBD2 associated

specifically the region containing the methylated pS2 TATA-box,

where a strong positive signal (red bars) is observed, while the

region containing the unmethylated ERE is devoid of MBD2.

Thus, the positive signals for MBD2 binding parallels the

methylation status of the pS2 59 end and indicates that MBD2

does not spread outside the methylated region on pS2 promoter

(Figure 3A). As a control, results obtained for a previously

identified MBD2 free promoter [26], BRCA1, are also shown on

Figure 3B. Consistent with previous findings, no MBD2 positive

signal was observed in the region spanning the nucleotides 21000

to +1000 of BRCA1 (Figure 3B).

MBD2 acts as a methylation-dependant transcriptional
repressor of pS2 transcription

The correlation between levels of pS2 expression and the

presence of MBD2 in the TATA-box region argues in favour of a

repressive effect of MBD2 on pS2 transcription. To examine this

further, we depleted cells from MBD2 by transient transfection of

siRNA targeted MBD2 transcripts. Quantitative competitive RT-

PCR assays indicated a significant reduction of the MBD2 mRNA

Figure 3. ChIP-on-chip analysis of MBD2-binding sites on pS2 59 end regionally methylated in HeLa cells. (A) Array peaks on pS2 59 end
of MBD2 log2 signal ratio (MBD2 / Input) values are shown below the Affymetrix’ Integrated Genome Browser (IGB) window. Red bars, MBD2 binding
sites; yellow bars, MBD2 free sites. Genes are transcribed from right to left. pS2 methylation status from nt positions 2464 to +314 is shown by a
diagram. ‘‘pS2 ERE fragment’’ and ‘‘pS2 promoter fragment’’ analyzed by PCR following ChIP are represented by a white box. (B) BRCA1 59 end viewed
as a MBD2 free control.
doi:10.1371/journal.pone.0009665.g003
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level (by 87–93%) (Supplemental Figure S1A). Moreover, in HeLa

cells, western blot analysis also revealed a dramatically lower

abundance of MBD2 proteins in the MBD2 siRNA-treated cells

compared with control cells (Supplemental Figure S1B). Further-

more, the expression of MeCP2 and MBD1 was not different in

MBD2 knockdown HeLa cells than in wild-type or mock-treated

cells (Supplemental Figure S1B).

In the pS2-fully methylated cells MDA MB231, MBD2

depletion (about 90%), did not induce pS2 expression (Supple-

mental Figure S1C). However, in MBD2 siRNA-treated HeLa

cells, pS2 expression is stimulated approximately 3-fold (Figure 4),

while the methylation level of pS2 TATA box region and ERa
expression remain unaffected (data not shown). In MBD2 siRNA-

treated HeLa cells, transient expression of an Mbd2 cDNA,

refractory to siRNA-mediated decay [26], shifted down the pS2

mRNA level (Figure 4). Additional dose of Mbd2 in HeLa cells,

containing normal levels of MBD2 proteins, did not affect pS2

expression (Figure 4). Thus, the amount of MBD2 protein is not a

limiting factor in the transcriptional repression of pS2 in these cells.

In MCF7 cells, quantitative RT-PCR showed that the level of pS2

expression is unaffected by MBD2 depletion, indicating that

MBD2 siRNA did not elevate pS2 expression by an off-target effect

since pS2 is not bound by MBD2 in these cells (Supplemental

Figure S1C).

ERa only bound pS2 ERE when unmethylated in cell lines
To determine whether ERa can be recruited on the pS2 ERE

sequence when this region or the adjacent region is methylated, we

artificially manipulated the level of ERa in MDA MB231 and

HeLa cells, which are deficient in this protein.

ChIP assays, using anti-ERa antibodies, were performed from,

HeLa and MDA MB231 cells transiently transfected with the

vector HEG0 encoding ERa. ERa-rich MCF7 cells were used as a

positive control and untransfected HeLa and MDA MB231 cells as

negative controls. As expected, ChIP assays performed from

MCF7 chromatin indicated that the amount of pS2 DNA per ng of

total DNA in immunoprecipitated fraction (Figure 5, ‘‘bound’’) is

higher (about 8-fold, Q-PCR assays) than in input, or non-retained

fractions (Figure 5, ‘‘input’’, ‘‘unbound’’, and ‘‘IgG’’) while no

enrichment in pS2 sequence was observed in immunoprecipitated

fraction obtained from untransfected HeLa and MDA MB231

cells (Figure 5). All together, these data indicate that anti-ERa
antibodies specifically precipitated chromatin bound by ERa.

Figure 4. MBD2 specifically and directly represses pS2 tran-
scription. Real time RT-PCR analysis of pS2 transcripts in HeLa and
MBD2-depleted HeLa cells (HeLa cells pretreated for 72 h with MBD2
siRNA) transfected with an MBD2 vector expressing a transcript resistant
to RNAi (pRev-MBD2 vector) or with an empty basic vector pGL3.
Transcriptional expression of pS2 was analyzed 24 h after transfection.
The fold change of pS2 expression was calculated from the relative pS2
mRNA in pRev-MBD2-transfected cells compared to pGL3-transfected
cells. Values are presented as the mean 6 standard deviation of at least
three independent transfection experiments. A significant difference
between the two cell groups is represented by an asterisk * (P,0.05).
doi:10.1371/journal.pone.0009665.g004

Figure 5. ERa only associates hypomethylated ERE region of pS2. Representative experiments of ERa ChIP assays in ERa-rich MCF7 cells, in
ERa-negative HeLa and MDA MB231 cells, and in HeLa and MDA MB231 expressing the vector HEG0 encoding ERa (HeLa::ERa, and MDA MB231::ERa).
ChIP assays were performed as described in Figure 2. The position of the ‘‘pS2 ERE fragment’’ analyzed by PCR are represented on the pS2 59 end
schema.
doi:10.1371/journal.pone.0009665.g005

MBD2 Modulates pS2 Expression
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In HeLa cells, transient expression of the vector HEG0 coding

for ERa, leads to enrichment in pS2 sequence in the immunopre-

cipitated fraction (Figure 5). This enrichment (about 10 fold, Q-

PCR assays) was comparable to that observed in MCF7 cells,

indicating that ERa is efficiently recruited on the pS2 ERE site in

HeLa cells. In contrast, in MDA MB231 cells, despite ectopic

expression of ERa, pS2 sequence was not selectively immunopre-

cipitated by the anti-ERa antibodies (Figure 5). Thus, ERa does

not bind the methylated pS2 ERE in MDA MB231 cells,

suggesting that full DNA methylation induces chromatin changes

that prevent ERa binding.

Ectopic expression of ERa enhances pS2 gene expression
only when its 59 end region is partially methylated, in ERa
negative cells

The ERE of the pS2 promoter can act as a strong enhancer in

the presence of E2 and ERa [29,33]. To analyze the potential

antagonistic activity of MBD2 and ERa on pS2, ectopic expression

of ERa was induced in MDA MB231 and HeLa cells.

Transient expression of ERa elevated pS2 expression by a 4-fold

(Figure 6), in HeLa cells. This stimulation by ERa of pS2

transcription did not affect the methylation status of HeLa pS2

promoter (data not shown). ERa stimulation of pS2 expression was

fully reversed by antiestrogen (4-hydroxytamoxifen, OHT)

treatments (Figure 6), while the basal level of pS2 expression

was conserved. These results indicate the existence of estrogen-

dependent transactivation of pS2 in HeLa cells. As expected, pS2

expression was not induced in MDA MB231 cells (data not

shown), since ERa did not bound pS2-ERE sequence in this cell

line (Figure 5). These results suggest that demethylation of ERE

region allows the estrogen response of pS2 in HeLa cells.

MBD2 is not displaced from the pS2-methylated
promoter region by ERa transactivation, in HeLa cells

HeLa cells expressing the vector encoding ERa were used to

identify the proteins bound to the 59 end of pS2. Dose-dependent

and quantitative PCR amplifications of each fraction obtained

from the ChIP procedure were performed. These assays showed

that MBD2 was still present on the methylated region of pS2

promoter (Figure 7A), and the enrichment in the bound fraction

was not modified by the presence of ERa on the ERE (Figure 7A).

These results provide evidence that ERa can overcome, at least

partially, the inhibitory effect of MBD2 binding to pS2 promoter

and imply that both proteins can occupy the 59 end of the pS2

gene.

To address this matter, we performed serial ChIP assays. A first

round of immunoprecipitation was carried out with an anti-ERa
antibody from HeLa cells transiently transfected with the vector

HEG0 encoding ERa. Then, immunoprecipitated cross-linked

DNA-protein complexes were isolated and subjected to reimmu-

noprecipitation using antibodies directed against MBD2. PCR

amplification of pS2 promoter region from the fraction reimmu-

noprecipitated with anti-MBD2 antibodies gave a positive signal

Figure 6. ERa stimulates pS2 transcription in HeLa cells. Real
time PCR quantification of pS2 mRNA in HeLa cells ectopically
expressing ERa. HeLa cells were transfected with the vector HEG0
coding for ERa and pS2 expression was monitored 24h after. To
investigate the estrogen dependence of pS2 expression, cells were
exposed to 5 mM of antiestrogen (4-hydroxytamoxifen or OHT). Bar
chart show the fold change of pS2 expression calculated from the
relative pS2 mRNA in HEG0-transfected cells compared to pSG5, empty
vector-transfected cells. Each bar represents the mean 6 standard
deviation of three analyses. A significant difference between the two
cell groups is represented by an asterisk * (P,0.05).
doi:10.1371/journal.pone.0009665.g006

Figure 7. The transactivators ERa and the methylation-
dependant repressor MBD2 can simultaneously bound the
pS2 promoter in HeLa cells. (A) MBD2 ChIP assays in HeLa cells
expressing ERa (HeLa::ERa). Relative amounts of immunoprecipitaded
pS2 promoter measured by quantitative PCR from HeLa or HeLa::ERa
cells. Each bar represents the mean 6 standard deviation of at least
three independent experiments. (B) Serial ERa-MBD2 ChIP assays to pS2
promoter. Chromatin prepared from HeLa cells transfected with a
human ERa expression vector was subjected to the ChIP procedure
with the anti-ERa antibody, and again immunoprecipitated using
antibodies as indicated at the top of the figure (Non-specific antibody,
IgG; anti-ERa antibody, ER; anti-MBD2 antibody, MBD2).
doi:10.1371/journal.pone.0009665.g007

MBD2 Modulates pS2 Expression
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(Figure 7B). In control reactions, as expected, no signal was

detected with non-specific antibodies, while a positive signal was

observed in the fraction reimmunoprecipitated with anti-ERa
antibodies (Figure 7B). Thus, the binding of ERa on the ERE of

pS2 does not displace MBD2 from the methylated TATA-box

region, since both proteins were present on the same DNA

molecules.

Synergic activity of MBD2 depletion and ectopic ERa
expression on pS2 transcription, in HeLa cells

The opposite effects of MBD2 and ERa proteins on pS2

expression suggest an antagonistic action between these two

transcriptional regulators, in HeLa cells. To investigate this

possibility, the concentrations of MBD2 and ERa proteins were

artificially manipulated in these cells. After MBD2 depletion

mediated by RNA interference, ectopic ERa expression resulted in

a dramatic (approximately 31-fold) enhancement of pS2 mRNA

concentration, approaching the level to that observed in MCF7

(Figure 8A, B). Thus, pS2 responses to ERa activation (4-fold

increase) and MBD2 depletion (3-fold increase) are not additive

and suggest a cross-talk between these two transcriptional

regulators. Concomitant exposure to OHT knocked down pS2

expression to the level observed in HeLa cells transfected by

MBD2 siRNA alone, (about 3-fold) when compared with control

HeLa cells (Figure 8A, B). It should be noted that pS2 transcription

cannot be induced by concomitant ectopic expression of ERa and

MBD2 depletion when its 59 end is fully methylated, as observed in

MDA MB231 cells (data not shown). In cells exhibiting a bimodal

methylation profile as HeLa cells, a synergic activation was

observed. Thus, the binding of MBD2 to the methylated TATA-

box of pS2 reduces but does not abolish pS2 response to ERa,

suggesting that as a result of regional demethylation, pS2 is poised

for transcription.

Post-translational modifications of histone H3 are
associated with pS2 expression induction

To get further insight on the mechanism involved in the

opposite effect of MBD2 and ERa on pS2 transcription, we

investigated histone modifications in HeLa cells. It is well known

that both proteins, MBD2 and ERa, regulate the transcription by

the recruitment of chromatin remodeling complexes [15,38]

Importantly, ERa has been shown to interact with several

coactivators with histone acetyltransferase activity (CBP, p300,

p/CAF and the members of p160 family) [38], or histone

demethylase (LSD1) [39]. Conversely, MBD2 recruits corepressors

with histone deacetylase activity (Mi2/NurD) [17]. Histone H3

acetylation (H3Ac) and histone H3 lysine 9 (H3K9) trimethylation

chromatin marks have been the subject of intense investigation

during the past few years and appear to be associated with active

and silent promoters, respectively.

In our study, ChIP assays indicated that ERa pS2 stimulation

was associated with increase in histone H3 acetylation (,2.5 fold)

and enhanced the demethylation of H3K9 (,500 fold) at pS2

promoter, when compared with wild type HeLa cells (Figure 9).

Moreover, in HeLa cells, the synergic activity of MBD2 depletion

and ectopic ERa expression on pS2 transcription led to a stronger

induction of histone H3 acetylation (,28 fold) at pS2 promoter,

while H3K9 methylation was still lowered (,10 fold), (Figure 9).

From these findings we conclude that the transcriptional MBD2

repressor and ERa transactivator co-participate to the regulation

of pS2 expression by mediating a balance between repressive

histone H3 lysine 9 trimethylation and active histone H3

acetylation marks at pS2 promoter. Thus, the repressive effect of

MBD2 on the transactivation of pS2 mediated by ERa is linked to

histone modifications.

Discussion

In cancer tissues and cell lines, transcriptional silencing

associated with aberrant methylation of promoter regions is now

regarded as an almost universal epigenetic marker of malignant

transformation [1–3]. Since the first experiments showing that the

MBD2 binds in vivo to the methylated regulatory regions of p16

and p14 and could thereby contribute to gene silencing in colon

carcinoma cell lines [40], a body of evidence has accumulated

concerning associations between MBD proteins and hypermethy-

lated promoter regions [41–43]. In non-pathological situations,

MBD proteins are also directly involved in the repression of

Figure 8. MBD2 modulates the estrogen response of pS2 gene.
(A) Transcriptional expression of pS2 was analyzed using relative RT-PCR
in HeLa cells expressing ERa and/or depleted in MBD2. Mock, mock-
treated HeLa cells. ER, HeLa cells 24 h after transfection with a human
ERa expression vector, HEG0. MBD2 siRNA, HeLa cells pretreated for 72
h with MBD2 siRNA and again for 24 h. MBD2 siRNA + ER, HeLa cells
pretreated for 72 h with MBD2 siRNA, then cotransfected with MBD2
siRNA and HEG0 for 24 h. OHT, 24 h treatment with 4-hydroxytamox-
ifen. MCF7, MCF7 cells. (B) Bar chart showing the fold change of pS2
expression in HeLa cells expressing ERa and/or depleted in MBD2. pS2
transcripts were quantified by real time RT-PCR. The fold change was
calculated from the relative pS2 mRNA in treated compared to mock-
treated cells. Each bar represents the mean 6 standard deviation of
three analyses. A significant difference between the two cell groups is
represented by an asterisk * (P,0.05).
doi:10.1371/journal.pone.0009665.g008
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imprinted genes and differentiation-dependent gene expression

[17].

In unmethylated MCF7, methylated MDA MB231, and

regionally methylated HeLa cells, we found that MBD2 binding

profiles parallel the methylation patterns of the pS2 59 end, while

MeCP2 and MBD1 were not detected in this region. Furthermore

in HeLa cells, high resolution mapping of MBD2 binding sites

indicated that MBD2 only associated the methylated region close

to the TATA-box, whereas the unmethylated region, including the

pS2 ERE, was not targeted by this repressor.

MBD2 depletion by siRNA targeting MBD2 transcripts elevated

pS2 transcription by a factor of ,3 in HeLa cells, while, in

unmethylated cells (MCF7), pS2 expression was not affected by

MBD2-specific siRNA transfection suggesting a direct relationship

between pS2 repression and MBD2 binding.

Injection in Xenopus laevis oocytes of regionally methylated

plasmids has shown that a few methylated cytosines can inhibit a

flanking promoter but a threshold of modified sites is required to

organize a stable, diffusible chromatin structure. From these data

and results obtained with chemical inhibitor of histone deacetylase,

these authors have proposed that a specialized chromatin

structure, formed not only by MBD proteins but also by other

structural and remodelling activities, is organized on the modified

DNA, when the number of methylated sites is increased and

reaches the threshold that leads to diffusion of gene silencing on

the DNA fiber [28]. In agreement with this hypothesis, MBD2

depletion did not induce pS2 transcription in MDA MB231 cells

exhibiting fully methylated pS2 59 end.

The present study also indicates that ERa only associates the

unmethylated pS2 ERE independently of the methylation status of

the TATA-box region, since the same level of ERa was observed

at the ERE region in MCF7 cells and in HeLa cells transiently

transfected with the HEG0 vector encoding this receptor. In

contrast, strong expression of ERa upon transient transfection

with HEG0, did not lead to ERa binding in MDA MB231 cells,

suggesting that full methylation of the 59 end of pS2 prevents its

binding. Although a direct effect cannot be totally excluded, we

have previously shown, using electrophoretic mobility assays, that

methylated oligonucleotides containing the pS2 ERE are efficiently

recognized by ERa [44]. In vivo experiments also suggest an

indirect effect of DNA methylation. In the HE5 cell line derived

from MDA MB231 that expresses functional ERa, but not pS2,

DNase I hypersensitive sites are not modified by ERa expression,

while in the ERa and pS2 positive MCF7 cells display hormono-

dependent hypersensitive DNase sites at the pS2 ERE region [45].

Thus, the methylation of TATA-box region does not seem to lead

to diffusible alteration of chromatin structure, in HeLa cells.

As expected from the analysis of methylation and ERa binding

sites profiles, ectopic expression of ERa in MDA MB231 cells did

not stimulate pS2 expression. In HeLa cells, ERa induction of pS2

expression was observed suggesting that the demethylation of ERE

region seems to be a prerequisite for estrogen-dependent pS2

stimulation. Nevertheless, the level of pS2 transcript remained

relatively low when compared with that observed in E2 treated

MCF7 cells. The present study indicates that high levels of ERa
can at least partially overcome the transcriptional repression

mediated by MBD2 without affecting the methylation status of the

pS2 promoter. Thus, the binding of MBD2 to the methylated

TATA-box of pS2 reduces but does not abolish pS2 response to

ERa.

The mapping of MBD2 binding sites at pS2 locus indicated that

MBD2 proteins lay downstream the initiation start site. The

analysis of the 59 region of the endothelin receptor B gene in

human cell lines shows that extensive methylation closely

downstream of the initiation site does not abolish gene expression

[46]. However, the impact of intragenic methylation has been

studied from transgenes methylated exclusively in a region

downstream of the promoter, into a specific genomic site. This

methylation pattern induces a close chromatin conformation and

decrease transcription levels, suggesting that this epigenetic mark

may reduces the efficiency RNA polymerase II elongation [25].

Thus, we cannot exclude that DNA methylation and MBD2

binding downstream pS2 promoter region may impact elongation

rate. However, we observed post-translational modifications of

histone H3 (acetylation and demethylation) at the promoter

region, when pS2 transcription is induced by MBD2 siRNA and/

or ERa expression, suggesting that MBD2 depletion influences

chromatin conformation at pS2 promoter.

Recently, it has been published that, upon E2 induction,

synchronized human cell lines exhibit a cyclical methylation/

demethylation of the pS2 ERE region correlated with cyclical

binding of transcriptional repressors/activators [47,48], when the

59 end of pS2 is unmethylated [35,48]. Although the maintenance

of DNA methylation patterns begin to be well described, it will also

be important to consider mechanisms that enable the removal of

these marks to fully comprehend the dynamic behavior of DNA

methylation, as suggested by recent reports [47,48]. Nevertheless,

the mechanisms and enzymatic activities that are responsible for

DNA demethylation in mammals although potentially linked to

DNA repair are controversial [47–53].

Transcriptional repression mediated by MBD proteins can be

reversed by various mechanisms. In mouse and rat, Mecp2 is

Figure 9. Histone H3 marks on pS2 promoter in presence or
absence of MBD2 and/or ERa. HeLa cells, wild type (HeLa),
expressing ectopically ERa (HeLa::ERa), and depleted in MBD2 and
expressing ectopically ERa (MBD2 KD HeLa::ERa), were subjected to
ChIP analysis using anti-histone H3 acetylation (H3Ac) or an anti-histone
H3 lysine 9 trimethylation (H3K9me3) antibodies. The pS2 promoter was
amplified by real-time PCR from an equal amount (0,5 ng) of total DNA
immunoprecipitated by the different antibodies. Relative amounts of
H3Ac or H3K9me3 marks were measured by comparing fractions
immunoprecipitated by the anti-H3Ac or anti-H3K9me3 antibodies to
fractions immunoprecipitated by the anti-histone H3 pan antibody.
Each bar represents the mean 6 standard deviation.
doi:10.1371/journal.pone.0009665.g009
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directly involved in a depolarization-controlled repression of the

brain-derived neurotrophic factor (Bdnf) gene in neurons [54,55]. This

protein, associated with the corepressor Sin3a, binds to a CpG-

poor methylated region of Bdnf promoters. Upon the initiation of

Ca++ signaling, Mecp2 becomes phosphorylated and is liberated

from the promoter as Bdnf is activated. Mbd2 is also able to repress

CpG-poor methylated promoter. In Mbd2 null mice, ectopic

expression of interleukin-4 (Il4) disrupts T-helper cell differentia-

tion, suggesting that Mbd2 is a transcriptional repressor of Il4 in

naı̈ve T cells. Indeed, in naı̈ve wild type T cells, overexpression of

the transcription factor GATA-3, normally required for Il4

expression, displaces Mbd2 from the promoter and activates Il4

transcription [56].

The interplay between ERa and MBD2 in pS2 transcription

indicates that the partial reversion of transcriptional repression

mediated by MBD2 does not necessary involve the displacement

of this repressor from its CpG-poor promoter region. In the model

studied, the amounts of pS2 gene immunoprecipitated by anti-

MBD2 antibodies was not affected by the binding of ERa. In

addition, serial ChIP assays showed that pS2 promoter region can

be simultaneously bound by ERa and MBD2 proteins. Further-

more, the synergic effects of ectopic ERa expression and depletion

of MBD2 on pS2 transcription also suggest that both proteins do

not compete for pS2 promoter occupancy.

Data, obtained from experiments performed on cell lines,

indicate that methylation-dependent repression of pS2 expression

is mediated by MBD2. Nevertheless, ERa binding can counteract

the inhibitory effect of DNA methylation without displacing

MBD2 proteins from the TATA-box region. Taken together these

data might explain pS2 expression in some ERa-rich breast

cancers despite the methylation of its TATA-box.

Materials and Methods

Cell culture
MDA MB231, MCF7, and HeLa cells were obtained from the

American Type Culture Collection (ATCC, Rockville, MD). Cells

were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) containing 1g/l glucose (Eagle, Sigma, L’isle d’Abeau,

France) and supplemented with 10% of heat inactivated fetal

bovine serum (Lonza, Vervier, Belgium) and grown at 37uC in a

humidified 5% CO2 atmosphere.

Due to the poor efficiency of repeated siRNA treatments

associated with vector transfections in estradiol depleted medium

by charcoal extraction, all the experiments were performed in

standard DMEM medium supplemented with-fetal bovine serum.

To investigate the estrogen dependence of pS2 expression, cells

were exposed to estradiol or to 5 mM 4-hydroxytamoxifen (OHT).

Sodium bisulphite modification
Sodium bisulphite reactions were carried out as previously

described [30]. Two regions (nt positions 2464 to +67, and nt

positions +37 to +314 from the pS2 transcription start site) within

the pS2 promoter gene were analyzed. PCR amplifications were

accomplished in 100 ml using the HotStart Taq DNA polymerase

Kit (Qiagen, Courtaboeuf, France) and 0.25 mM of the primers

(Supplemental Table S1), after 15 min at 95uC for Taq polymerase

activation and 35 cycles (30 s denaturation at 94uC, 1 min

annealing at 52uC, and 1.5 min extension at 72uC). To determine

accurately the proportion of methylated CpG, PCR products were

cloned into a pGEM-T vector (Promega, Lyon, France) and 10

random clones from each sample were analyzed by automatic

sequencing (Biofidal, Lyon, France).

Chromatin Immunoprecipitation (ChIP) assays
Nucleoprotein complexes were sonicated to reduce the length of

DNA fragments to 300–600 bp, and ChIP assays were carried out

as described previously [26]. Fithteen ml of two different polyclonal

anti-MBD2 antibodies (kindly provided by Dr. P. Wade and Dr.

E. Ballestar) or 20 ml of polyclonal anti-MBD1 (Abcam, Cam-

bridge, UK), anti-MeCP2 (Upstate Biotechnology, Lake Placid,

NY) antibodies, or 2.5 mg of polyclonal anti-ERa antibody (Santa

Cruz Biotechnology, Inc, Santa Cruz, CA) or anti-mouse IgG

(Dakocytomation, Trappes, France), were used for immunopre-

cipitation. DNA samples obtained from the input, unbound and

bound fractions were quantified by densitometry using the

VersaFluorTM Fluorometer (Biorad, Ivry, France) and RiboGreen

reagent (Molecular Probes, Interchim, Montluçon, France). The

amounts of DNA in IgG control fractions were at the limit of the

fluorometric detection methods. Thus, PCR quantification of

DNA fragments in IgG fractions was not accurate as in other

fractions, since we have used very large parts of the ‘‘IgG

fractions’’ when compared with the other fractions.

PCR assays were performed to assess the binding of the proteins

to the pS2 59 flanking sequence. Two regions were analyzed: ‘‘pS2

ERE fragment’’ (from nt positions 2461 to 2204 from the pS2

transcription start site) and ‘‘pS2 promoter fragment’’ (from nt

positions 211 to +292). We amplified, by dose-dependent and

quantitative PCR (Q-PCR), equal amounts of total DNA (0.5 ng)

from the input, unbound and bound fractions. HotStar Taq

polymerase kit (Qiagen) and 0.4 mM of the primers (Supplemental

Table S1) were used in classical PCR. After 15 min at 95uC for

Taq polymerase activation and 37 cycles (30 s denaturation at

94uC, 1 min annealing at 53uC, and 1.5 min extension at 72uC) for

the ‘‘pS2 ERE fragment’’ or 36 cycles (30 s denaturation at 94uC, 1

min annealing at 58uC, and 1.5 min extension at 72uC) for the

‘‘pS2 promoter fragment’’, PCR products were analyzed on a 2%

agarose gel containing 1 mg/ml ethidium bromide and were

quantified by densitometry. Real-time PCR was carried out using

LightCycler H Fast Star DNA Master PLUS SYBR Green I

System (Roche Molecular Biochemicals, Maylan, France) and

0.4 mM of the primers (Supplemental Table S1). Cycling

parameters were 95uC for 10 min followed 45 cycles at 95uC for

10 s, 64uC for 5 s and 72uC for 10s.

ChIP-on-chip
For ChIP-on-Chip analysis, the specific protein-DNA complex-

es were obtained from independent immunoprecipitations using

two different polyclonal anti-MBD2 antibodies (kindly provided by

Dr. P. Wade and Dr. E. Ballestar). The ChIP DNAs from the

input and bound fractions were amplified, labelled and hybridized

on microarrays by ProfileXpert service according to AffymetrixTM

protocols. Briefly, the ChIP DNA was amplified by random PCR.

Enrichment of MBD2-bound sites during the amplification

procedure was assayed, by PCR amplification of NBR2 [26] and

pS2 promoters, on each ChIP samples before and after

amplification. The amplified DNAs were then labelled using the

GeneChipH WT Double - Stranded DNA Terminal Labelling Kit

and hybridized to the human tiling arrays (Human Promoter 1.0R

Arrays), which were then washed and scanned. Raw data from the

scans were analyzed using AffymetrixH Tiling Analysis Software

(TAS) and the results were viewed in Affymetrix’ Integrated

Genome Browser (IGB) Software.

Serial ChIP assays (ChIP re-ChIP)
The ERE and the TATA box regions of pS2 are placed about 450

bp apart. In order to immunoprecipitate, from the same DNA

fragments, the proteins bound to both regions, nucleoprotein
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complexes were sheared to reduce the length of DNA fragments to

500–1000 bp. In serial ChIP experiments, following primary

immunoprecipitation, the cross-linked complexes were eluted from

the immunoprecipitated fraction by incubation with elution buffer

(1% SDS, 50 mM NaHCO3) at room temperature for 30 min, and

then diluted 1:10 in ChIP dilution buffer (0.01% SDS; 1.1% Triton

X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.0, 167 mM NaCl)

followed by reimmunoprecipitation with a second set of antibodies.

Transient MBD2 siRNA knockdown and ERa vector
transfections

siRNA duplexes for MBD2 (sense: 59-GGAGGAAGUGUACC-

GAAATT-39; antisense: 59-UUUUCGGAUCACUUCCUCCT-

T-39) and non-specific siRNA control were obtained from

Eurogentec (Eurogentec, Seraing, Belgium). HEG0, an expression

vector coding for human ERa [31], and the empty vector pSG5,

were provided by Prof. P. Chambon. MBD2 siRNA and ERa
vector was transfected with Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

Briefly, cells were seeded at 26105 cells per well in six-well plates,

and grown to 50–60% confluence on the day of transfection. All

transfections were done in Opti-MEM medium (Invitrogen) with

625 nM of MBD2 siRNA and 1 mg of ERa expression plasmid.

Lipofectamine 2000 complexes were incubated for 4–5 hours. The

medium was then removed and replaced with fresh medium. Cells

were grown and harvested at various times after the transfection.

Reverse-transcription-PCR analysis
Total RNA was extracted from the cell lines using the RNeasy

Mini kit (Qiagen). After extraction, the integrity of total RNA was

examined on a 1.2% agarose gel containing 1 mg/ml ethidium

bromide and quantified by densitometry using a Fluor’s

fluorimeter and Quantity One software (Biorad, Ivry, France) by

comparison with serial dilutions of a standard RNA (Roche,

Molecular Biochemicals, Maylan, France).

pS2 mRNA was detected by relative RT-PCR using primers

described in Supplemental Table S1. Briefly, 0.1 mg of total RNA

were amplified simultaneously for b-actin and pS2 using the One

Step RT-PCR kit (Qiagen). After 30 min incubation at 50uC, RT

was inactivated by heating at 95uC for 15 min. PCR amplification

was then performed under the following conditions: 30 cycles, 30 s

denaturation at 94uC, 1 min annealing at 55uC and 1.5 min

extension at 72uC. PCR products were analyzed on a 2% agarose

gel and quantified. The ratio between pS2 and b-actin signals was

then determined.

Real-time RT-PCR were also carried out to quantify pS2

mRNA using LightCyclerH RNA Master SYBR Green I One-Step

RT-PCR mix on a LightCyclerH 2.0 system according to the

manufacturer’s instructions (Roche). b-actin mRNA was used as a

reference. The primers sequences used for reverse-transcription-

PCR are available in Supplemental Table S1.

MBD2 mRNA was quantified by competitive quantitative RT-

PCR as previously described [32].

Supporting Information

Figure S1 MBD2 siRNA treatments, supplementary data. (A)

MBD2 expression in MBD2 siRNA transfected cells. Bar chart

representing the efficiency of MBD2 siRNA in HeLa, MCF7 and

MDA MB231 In mock treated cells, the initial amount of MBD2

molecules / mg of total RNA was: 7.4 10661.36106, in HeLa

cells; 5.86106 616106, in MDA MB231 cells and

3.2610660.66106, in MCF7 cells. The efficiency of MBD2

siRNA was calculated from the MBD2 mRNA in treated cells

compared with mock-treated cells. Each bar represents the mean

6 standard deviation of, at least, three independent analyses. (B)

MBD1, MBD2 and MeCP2 protein quantifications in HeLa cells

expressing transient MBD2 siRNA. HeLa cells were pretreated for

72 h with MBD2 siRNA and again for 24 h. Mock-treated cells

were transfected with a non-specific siRNA. Immunoblot analysis

of MBD2, MBD1 and MeCP2 proteins in mock-treated and in

MBD2 siRNA-treated HeLa cells. MBD2, MBD1 and MeCP2

proteins were probed using rabbit polyclonal antibodies. The same

membrane was then stripped and probed using a mouse b-tubulin

antibody as a loading control. (C) Bart chart showing the fold

change of pS2 expression in MCF7 and MDA MB231 cells

depleted in MBD2. pS2 transcripts were quantified by real-time

RT-PCR. The fold change was calculated from the amount of pS2

mRNA in treated cells compared with mock-treated cells. Each

bar represents the mean 6 standard deviation of, at least, three

independent analyses.

Found at: doi:10.1371/journal.pone.0009665.s001 (0.52 MB TIF)

Table S1 List of primers.

Found at: doi:10.1371/journal.pone.0009665.s002 (0.03 MB

DOC)
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