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ABSTRACT

Although the molecular basis of flowering time control
is well dissected in the long day (LD) plant Arabidopsis,
it is still largely unknown in the short day (SD) plant rice.
Rice flowering time (heading date) is an important
agronomic trait for season adaption and grain yield,
which is affected by both genetic and environmental
factors. During the last decade, as the nature of florigen
was identified, notable progress has been made on
exploration how florigen gene expression is genetically
controlled. In Arabidopsis expression of certain key
flowering integrators such as FLOWERING LOCUS C
(FLC) and FLOWERING LOCUS T (FT) are also epige-
netically regulated by various chromatin modifications,
however, very little is known in rice on this aspect until
very recently. This review summarized the advances of
both genetic networks and chromatin modifications in
rice flowering time control, attempting to give a com-
plete view of the genetic and epigenetic architecture in
complex network of rice flowering pathways.
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INTRODUCTION

Rice flowering time (heading date), which is affected by both
endogenous and exogenous factors, is an important agro-
nomic trait for regional and seasonal adaption. Heading on a
proper time is the most critical step for grain produc-
tion. Precocious flowering reduces the vegetative phase and

leads to reduction of biological yield. On the other hand,
delayed flowering could cause low seed setting percentage
in cold late autumn or delay next planting season, which both
results in production loss.

Florigen is produced in the leaf under inductive day length
conditions and transported to the shoot apex where it trig-
gers flowering transition (Cajlachjan, 1937; Corbesier et al.,
2007; Tamaki et al., 2007). Unlike only one florigen gene
FLOWERING LOCUS T (FT) in Arabidopsis, rice evolves
two florigen genes, Heading date 3a (Hd3a) and RICE
FLOWERING LOCUS T 1 (RFT1), and at least two flowering
pathways are developed to control the expression of flori-
gens, the Heading date 1 (Hd1) pathway which is conserved
between rice and Arabidopsis, and the Early heading date 1
(Ehd1) pathway which is unique to rice (Doi et al., 2004)
(Fig. 1). Numerous studies reveal that a large number of rice
genes regulate flowering time through the two flowering
integrators.

In Arabidopsis, some flowering regulators such as FLC
and FT are reported to be regulated by various chromatin
modifications (He, 2009; Liu et al., 2010). However, little is
known in rice in this field. Recently, we characterized a major
histone methyltransferase (HMTase) gene SET DOMAIN
GENE 724 (SDG724), which is required for Histone H3
lysine 36 (H3K36) methylation, promotes rice heading, indi-
cating that rice flowering could also be regulated by chro-
matin modifications (Sun et al., 2012). In the past two years,
more and more molecular genetic studies gave the clues on
the chromatin modification mechanism in rice flowering
pathways, we summarize here most recent advances
towards understanding of genetic networks and epigenetic
chromatin modifications in rice flowering time control.
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TWO FLORIGEN GENES HD3A AND RFT1 IN RICE

Florigen, which has been hypothesized by many physiolog-
ical studies, is believed to be produced in leaves by the
inductive photoperiod, then moves to the shoot apical meri-
stem (SAM) and triggers flowering transition. But this florigen
has been eluded identification since it was first proposed for
70 years (Cajlachjan, 1937). In 2007, it was firstly revealed
that FT encoded protein in Arabidopsis, is a leaf-derived
long-distance signal directed to floral transition (Corbesier
et al., 2007).

In rice, there are 13 FT homologs in the genome (Char-
don and Damerval, 2005), Hd3a and RFT1 are two of them
which were confirmed to act as florigen genes (Komiya et al.,
2008; Komiya et al., 2009; Tamaki et al., 2007). By fusing
Hd3a or RFT1 with GFP, it was demonstrated that Hd3a or
RFT1 protein was expressed in vascular tissue of leaves,
and could be moved to SAM where they started flowering
induction. As Hd3a-GFP was only detected in the SAM of
plants grown under short day conditions (SD), RFT1-GFP
was merely detected under long day conditions (LD) (Ko-
miya et al., 2009; Tamaki et al., 2007). On the other hand,
Hd3a-RNAi (RNA interference) plants significantly delayed
heading date under SD but not LD, RFT1-RNAi plants
flowering was obviously delayed under LD but not SD
oppositely. Furthermore, rice with knockout of both Hd3a and
RFT1 caused at least 300 days late flowering under both SD
and LD (Komiya et al., 2009). All these data demonstrated
that, unlike Arabidopsis, rice has two florigen genes, Hd3a
and RFT1, Hd3a is responsible for flowering under inductive
SD, whereas RFT1 is responsible for flowering transition
under non-inductive LD. Although Hd3a and RFT1 are
located in some chromosome and separated by only 11.5 kb
in the genome, the fine-tuning of long day flowering by the
H3K36me2/3 level of RFT1 but not Hd3a via SDG724,

therefore, RFT1 and Hd3a which have functionally diverged
to control flowering time under LD and SD conditions are
partly due to a fine-tuned epigenetic mechanism (Sun et al.,
2012).

FLORIGEN REGULATED NETWORK

How flowering pathways are regulated differs in plants. In
Arabidopsis, flowering is controlled by a small number of
large-effect genes such as FLC (Salome et al., 2011),
whereas in maize is controlled by many additive small-effect
quantitative trait loci (QTLs) (Buckler et al., 2009). Interest-
ingly, rice combines both regulatory manners, including a
few large-effect factors, such as Hd1, Ehd1, and Grain
number, plant height and heading date 7 (Ghd7), in addition
to some small-effect QTLs and genes (Ebana et al., 2011;
Tsuji et al., 2013) (Table 1).

So far, quite a number of QTLs controlling rice heading
date (Hd) were identified and characterized using different
segregating populations derived from crossing a japonica
cultivar (Nipponbare) and an indica cultivar (Kasalath) (Lin
et al., 1998; Yano et al., 1997). These QTLs include the
major loci controlling photoperiodic flowering responses,
Hd1 (Yano et al., 1997; Yano et al., 2000), Hd2/Ghd7.1/
OsPRR37 (Oryza sativa Pseudo-Response Regulator 37)
(Koo et al., 2013; Liu et al., 2013; Shibaya et al., 2011;
Yamamoto et al., 2000; Yan et al., 2013), Hd3a (Kojima
et al., 2002), Hd4/Ghd7 (Ghd7 for short) (Koo et al., 2013;
Xue et al., 2008), Hd5/Days to heading 8/Grain number,
Plant height, and Heading date 8/Late Heading Date 1
(Hd5/DTH8/Ghd8/LHD1) (Dai et al., 2012; Fujino et al.,
2013; Yan et al., 2011). Furthermore, backcross progenies
derived from the same original cross allowed identification
of other QTLs, such as Hd6/CK2 (CASEIN KINASE 2)
(Ogiso et al., 2010; Takahashi et al., 2001; Yamamoto
et al., 2000), Hd14/Ehd1 (Doi et al., 2004), Hd16/EL1
(Early flowering 1) (Dai and Xue, 2010; Hori et al., 2013;
Shibaya et al., 2011), Hd17/OsELF3/EF7/OsEF3/Hd3b
(Hd17/Oryza sativa Early Flowering 3/Early Flowering 7/
Oryza sativa Early Flowering 3/Hd3b, OsELF3 for short)
(Hori et al., 2012; Matsubara et al., 2012; Saito et al.,
2012; Yang et al., 2013; Zhao et al., 2012). Additionally,
using rice near isogenic lines and mutants, more genes
implicated in controlling flowering time have been identified
and positioned into a regulatory network (Brambilla and
Fornara, 2013; Itoh and Izawa, 2013; Tsuji et al., 2011,
2013) (Fig. 2).

HD1-DEPENDENT PATHWAY

There is a similar molecular system for florigen control in
Arabidopsis and rice (Izawa, 2007; Tsuji et al., 2011). Hd1
and Hd3a in rice are homologs of CONSTANS (CO) and
FT in Arabidopsis, respectively. As in Arabidopsis, Hd1 acts
upstream of Hd3a (Kojima et al., 2002; Yano et al., 2000),
and overexpression of a rice ortholog of Arabidopsis

RFT1

Hd1 Ehd1

Hd3a

CO

Arabidopsis Rice

FLC

GI OsGI

LDs SDsLDs
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FT

Figure 1. Comparison of core-flowering-pathways in rice

and Arabidopsis. OsGI/GI-Hd1/CO-Hd3a/FT pathway is con-

served between rice and Arabidopsis. CO. accelerates flowering

under LD, however, Hd1 promotes flowering under SD and

represses it under LD. Besides,Ghd7 and Ehd1 in rice, and FLC

in Arabidopsis are unique flowering integrators, respectively.

FLC and Ghd7 are major flowering suppressors, while Ehd1

acts as a flowering promoter.
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GIGANTEA (GI) which acts upstream of CO, namely OsGI,
increased the expression of Hd1 in the transgenic plants,
followed by suppressing Hd3a expression, resulting in late
flowering under both SD and LD (Hayama et al., 2003).
Differently, CO merely promotes FT expression, Hd1 plays
a more enigmatic role in rice, which promotes flowering
under SD, but represses flowering under LD (Hayama
et al., 2003; Komiya et al., 2008; Lin et al., 2000; Tamaki
et al., 2007). These results indicate that the core photo-
periodic pathway composed of the three key flowering
genes OsGI/GI-Hd1/CO-Hd3a/FT is conserved between
rice and Arabidopsis, but its function has diverged during
evolution to produce opposite flowering responses. While
the photoperiodic pathway in Arabidopsis merely acceler-
ates flowering under LD, in rice, it promotes flowering under

SD and represses flowering under LD (Takahashi and
Shimamoto, 2011).

The reversible mechanism that Hd1 functions as either an
activator or suppressor of Hd3a involves the action of the
red-light photoreceptor phytochrome B (phyB), since muta-
tions in phyB or phytochrome chromophore synthesis, such
as photoperiod sensitivity 5 (se5), attenuate this conversion
and maintain Hd1 as an activator under any photoperiodic
conditions. On the other hand, though Hd1-overexpressing
plants delay flowering, Hd1 protein levels in these plants are
not significantly altered (Andres et al., 2009; Ishikawa et al.,
2011; Izawa et al., 2002), thus it is speculated that LD light
signals may modify the protein of Hd1 or Hd1 complex
through phytochrome but not its expression levels, and
convert it into a repressor of flowering. Therefore, uncovering

Table 1. Flowering regulators in rice
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of the biochemical function of Hd1 protein and the molecular
nature of its dual activity will provide exciting insight into the
control of photoperiodic flowering in rice.

Recently, it is deduced that Hd1 protein activity is possible
affected by an additional posttranslational regulatory factor,
Hd6, which encodes a CK2 α-subunit (Ogiso et al., 2010;
Takahashi et al., 2001). The delay flowering effect of Hd6 is
observed only when Hd1 is functional, however, Hd1 is not
phosphorylated by Hd6 in vitro (Ogiso et al., 2010), sug-
gesting that Hd6 phosphorylates unknown substrates that
cooperate with Hd1 in the LD floral suppression pathway.

EHD1 DEPENDENT PATHWAY

In 2004, a novel regulatory Ehd1-pathway which is not pre-
sented in Arabidopsis, is discovered in rice (Doi et al., 2004).
Ehd1, encoding a B-type response regulator, is a floral pro-
moter, and rice variety Taichung 65 (T65) without functional
Ehd1 allele delays flowering under both LD and SD (Doi et al.,
2004). As it has been shown that Ehd1 contributes to flow-
ering time by its expression levels (Takahashi et al., 2009),
thus fine-tuning of Ehd1 expression is crucial for rice flow-
ering at suitable time, and several flowering regulators have
been identified to participate in this regulation.

Ghd7, which is important for increasing rice productivity
and adaptability, is a major regulator of Ehd1 and could delay
flowering by repressing Ehd1 under LD (Takahashi et al.,
2009; Xue et al., 2008). As Ghd7 encodes a CCT (CON-
STANS, CO-like, and TOC1) domain protein, which shows
very low homology to Arabidopsis genome, the Ghd7-Ehd1
may be a unique pathway in rice (Koo et al., 2013; Xue et al.,
2008). Further study shows that Ghd7 and Ehd1 can
respectively set a daylength threshold for Hd3a expression,
which is usually observed in SD plants but not in LD plants
(Itoh et al., 2010; Takimoto and Ikeda, 1961), and this
capacity of discernment in critical day length in rice greatly
enriches the daylength-dependent regulated mechanism of
florigen gene expression.

Until now, at least three genes, Early heading date 3
(Ehd3), ELF3, and Hd16/EL1, were identified to control
Ghd7 expression in Ehd1-pathway. Ehd3 encodes a plant
homeodomain (PHD) finger protein and is identified as one
repressor of Ghd7. Generally, Ghd7 transcript reaches its
highest level after seeding for two weeks, and then the
expression is gradually reduced to a basal level, but in ehd3
mutants, Ghd7 expression level is always higher and delays
heading date for more than one year under LD. Interestingly,
under SD, Ehd3 could promote Ehd1 expression regardless
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Figure 2. Complex flowering time control network in rice. Rice flowering network is formed by two florigen genes Hd3a and

RFT1, and four regulation modules, including Hd1-dependent pathway, Ehd1-dependent pathway, crosstalk between Hd1 and Ehd1

pathway, and flowering regulators independent of Hd1 and Ehd1. The first three signals come together to regulate Hd1 and Ehd1 and

affect florigen gene expression; the last module may directly control the expression of florigen genes independent of Hd1 and Ehd1.

Besides, expressions of Ehd3, RID1, OsMADS50, Hd3a, and RFT1 can be affected by H3K36me2/3; OsLFL1 and OsLF

transcriptions can be mediated by H3K27me3. Finally, all those florigen signals are transported from leaves to SAM and trigger

flowering transition there. All the gene names for short are showed in Table 1.
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of Ghd7, suggesting a perplexed role of Ehd3 (Matsubara
et al., 2011).

ELF3 in Arabidopsis is responsible for generating circa-
dian rhythm and regulating photoperiodic flowering, consis-
tently, its homolog in rice OsELF3 is also required to sustain
the robust oscillation, and lesions in OsELF3 delay flowering
under both SD and LD (Saito et al., 2012; Yang et al., 2013;
Zhao et al., 2012). Under SD, OsELF3 promotes flowering
mainly by repressing Ghd7, because late flowering of oself3
mutants can be rescued if Ghd7 but not Hd1 is mutated.
Under LD, oself3 mutants increase OsGI and Ghd7
expression, thus up-regulate Hd1 and repress Ehd1
expression, respectively, indicating that OsELF3 influences
photoperiodic flowering in both Hd1 and Ehd1 pathways
(Brambilla and Fornara, 2013; Saito et al., 2012).

Hd16/EL1, encoding a casein kinase I protein, is associ-
ated with the gibberellin-mediated flowering transition (Dai
and Xue, 2010). Deficient in Hd16 weakens rice photoperiod
sensitivity, but increases Ehd1, Hd3a, and RFT1 expression
under LD. Though the expression level of Ghd7 is not sig-
nificantly altered in el1mutants, the biochemical data indicate
thatHd16 acts as a flowering repressor by phosphorylation of
Ghd7 (Dai and Xue, 2010; Kwon et al., 2013).

OsLFL1 (OryzasativaLEC2andFUSCA3Like1) encodesa
putativeB3 transcription factor, knockdownofOsLFL1doesnot
affect flowering time, while ectopic overexpression of OsLFL1
decreasesEhd1 expression and results in late flowering (Peng
et al. 2007, 2008). OsLFL1 is controlled by two members of
MIKC-type MADS-box family, OsMADS50 and OsMADS56.
Both osmads50 mutants and OsMADS56-overexpressing
plants,whichproduce increasedOsLFL1expression,show late
flowering phenotype (Lee et al., 2004; Ryu et al., 2009). Inter-
estingly, OsMADS56 can interact with OsMADS50 in vitro,
suggesting that the two MADS-box members tend to form a
heterodimer complex and function antagonistically through
OsLFL1-Ehd1 pathway under LD (Ryu et al., 2009).

As mentioned in Hd1-pathway, phytochrome is probably a
primary cause of Hd1-dependent suppression of rice flow-
ering, but underlying molecular mechanism of phytochrome
in Ehd1-pathway is not well understood. Recent studies
showed that SE5 and phyB also suppress Ehd1 expression,
and the phyB-mediated suppression of Ehd1 is confirmed to
be repressed by a CONSTANS-like (COL) gene OsCOL4
(Oryza sativa CONSTANS-like 4) (Andres et al., 2009; Ko-
miya et al., 2009; Lee et al., 2010). OsCOL4 expression is
decreased in osphyB mutants, and osphyB oscol4 double
mutants flower is similar to osphyB single mutants, indicating
that OsCOL4 functions downstream of OsphyB (Lee et al.,
2010).

Besides the above regulators, Ehd1 expression is also
modulated by other four flowering factors independently.
Indeterminate 1 (ID1) is one of them, which expresses in leaf
but induces flowering in the shoot meristem. ID1 has been
once thought to be involved in the florigen synthesis in maize
(Colasanti et al., 2006; Colasanti et al., 1998), and its reg-
ulated mechanism has been exhibited in rice. Lesions in rice

RID1 (Early heading date 2/OsINDETERMINATE 1/Rice
INDETERMINATE 1, Ehd2/OsID1/RID1, RID1 for short) lead
to extremely late flowering phenotype, as well as decreased
expression of Ehd1 and downstream florigen genes under
both SD and LD (Matsubara et al., 2008; Park et al., 2008;
Wu et al., 2008).

Ehd4 (Early heading date 4), encoding a CCCH-type zinc
finger transcriptional regulator, is expressed mostly in
immature leaves and shows a similar diurnal expression
pattern of Ehd1 under both SD and LD. Ehd4 up-regulates
the expression of the florigen genes Hd3a and RFT1 through
Ehd1. Strikingly, Ehd4 is highly conserved in both wild rice
and cultivated rice, but homologs cannot be found in other
species, suggesting that Ehd4 is unique flowering regulator
in Oryza genus differed from other grass members during
evolution (Gao et al., 2013).

OsMADS51 is another MADS box gene, other than Os-
MADS50 and OsMADS56, it acts downstream of OsGI,
transmits a promotion signal from OsGI to Ehd1 under SD.
Though its null mutants showed late flowering phenotype
followed by decreased expression of Ehd1 and Hd3a,
ectopic expression of OsMADS51 causes early flowering,
accompanying with increased expression Ehd1 and Hd3a
(Kim et al., 2007).

Hd5/DTH8/Ghd8/LHD1 encodes a putative HEMEACTI-
VATOR PROTEIN 3 (HAP3) subunit of a CCAAT-box binding
protein (HAP complex) that binds to CCAAT boxes in yeast
and animals. Similar to Hd1, Hd5/DTH8/Ghd8/LHD1 delayed
flowering in rice under LD and promotes flowering under SD,
but by regulating expression of Ehd1 (Dai et al., 2012; Lin
et al., 2003; Wei et al., 2010; Yan et al., 2011).

Most interestingly, though Hd5/DTH8/Ghd8/LHD1 sup-
presses rice heading though Ehd1, genetic analysis implies
thatHd5 requires functionalHd1 to repress floweringunder LD
(Nonoue et al., 2008), rising a questionwhat is the relationship
between Hd1 and Ehd1. Recent findings indicate that tran-
script level of Ehd1 is down-regulated in Hd1-overexpression
transgenic lines, suggesting that, to some degree, Hd1 is an
upstream regulator ofEhd1 expression, but how this crosstalk
works is still undefined (Ishikawa et al., 2011).

FLOWERING REGULATORS INDEPENDENT OF HD1
AND EHD1

Besides Ehd1, T65 also bears a loss-of-function allele of
Hd1, but it could still flower in time and serves as a com-
mercial rice variety, so there are must some other regulators
independent of Hd1 and Ehd1 in rice flowering network (Doi
et al., 2004). OsCO3 and DTH2 are two of them, and pro-
mote flowering by regulating florigen genes. Though both of
them are COL genes, they function under different photo-
periodic conditions. Expressions of Hd3a and FT-like genes
are decreased in the OsCO3-overexpressing plants
under SD without altered expression of other florigen
upstream regulators, suggesting that OsCO3 primarily

Network of rice flowering pathways REVIEW
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controls flowering time under SD by negatively regulating the
expression of florigen genes, independent of other known
SD-promotion pathways (Kim et al., 2008). For DTH2, both
association analysis and transgenic experiments indicate
that two functional nucleotide polymorphisms that correlated
with early heading and increased reproductive fitness under
natural LD in northern Asia. Further combined population
genetics and network analyses suggest that DTH2 probably
represents a target of artificial selection for adaptation to LD
during rice domestication and improvement, demonstrating
an important role of minor effect quantitative trait loci in crop
adaptation and breeding (Wu et al., 2013).

Although some PRR genes are major components of the
circadian oscillator, a rice PRR gene Hd2/Ghd7.1/OsPRR37
may down-regulate Hd3a expression independent of any
known pathways to suppress flowering under LD. As lesions
in Hd2/Ghd7.1/OsPRR37 cause early flowering phenotype,
the japonica varieties harboring nonfunctional alleles of both
Ghd7 and Hd2/Ghd7.1/OsPRR37 flower extremely early
under natural LD, and make these varieties adapt to the
northernmost rice cultivation regions. Further study implied
that natural variations in Hd2/Ghd7.1/OsPRR37 have con-
tributed to the expansion of rice cultivation to temperate and
cooler regions (Koo et al., 2013; Liu et al., 2013; Yan et al.,
2013).

Different from Hd2/Ghd7.1/OsPRR37, OsDof12 is LD-
specific flowering repressor and encodes a DNA-binding
with one finger (Dof) transcription factor which is involved in
a variety of biological processes of plants. The transcriptions
of OsDof12 can express at different development stages, but
strongly inhibited by dark treatment. OsDof12-overexpress-
ing plants flower earlier in consistent with the up-regulation
of Hd3a independent of other flowering genes under LD but
not SD (Li et al., 2009).

CHROMATIN MODIFICATIONS REGULATE
FLOWERING IN RICE

Chromatin, which is composed by complexing DNA with his-
tone, carries not only genetic, but also epigenetic information.

In Arabidopsis, the expression of a major flowering repressor
FLC is regulated by a number of active and repressive chro-
matin modifications, such as histone tails methylation, acety-
lation, ubiquitination etc. In addition, histonemodifications can
also directly regulate the expression of florigen gene FT, and
the regulation manner of FLC and FT provides a paradigm for
control of developmental regulators through chromatin modi-
fications (He, 2009). Currently, not somany data are available
about that in rice, but molecular genetic studies indicated that
rice flowering control also undergoes the complex chromatin
modifications (Table 2).

ACTIVE CHROMATIN MODIFICATIONS AND RICE
FLOWERING

S-Adenosyl-l-methionine is a universal methyl group donor
involved in numerous transmethylation reactions, including
histone methylation. Knockdown of rice S-Adenosyl-l-
methionine synthetase (SAMS) 1, 2, and 3 greatly reduced
the expression of Ehd1, Hd3a, RFT1 and led to a late
flowering phenotype. Moreover, the histone H3K4me3 and
symmetric DNA methylation at these genes was significantly
reduced, suggesting an association between epigenetic
modification and flowering in rice, but more research are
required on this relationship (Li et al., 2011).

We have demonstrated that SDG724, a histone methyl-
transferase gene which belongs to SET domain family Class
II (Ng et al., 2007), affected flowering time by mediating
H3K36 methylation in rice. SDG724 loss-of-function mutant
lvp1 showed a late flowering phenotype under both LD and
SD, which was associated with the suppressed expression
of RFT1 and Hd3a. Interestingly, only the chromosomal
region of RFT1, but not Hd3a, reduced the level of
H3K36me2/3 modifications which associated with the
transcriptionally active chromatin state, although the two
florigenic genes are closely linked in the genome and sep-
arated by only 11.5 kb (Sun et al., 2012). This similar regu-
lated way in RFT1 is also found in a previous report that
RFT1 expression can be promoted through another active

Table 2. Chromatin modification regulators in rice

Gene name Pathways Gene ID Note Modifications Target genes

SDG724 Ehd1 Os09g0307800 SET domain group protein H3K36me2/3 RFT1, OsMADS50

SDG725 Ehd1 Os02g0554000 SET domain group protein H3K36me2/3 Ehd3, Ehd2, OsMADS50,
Hd3a, RFT1

LC2/OsVIL3 Hd1 Os02g0152500 Plant homeo domain (PHD)
finger

H3K27me3 OsLF

OsVIL2 Ehd1 Os12g0533500 Plant homeo domain (PHD)
finger

H3K27me3 OsLFL1

OsEMF2b Ehd1 Os04g0162100 C2H2 zinc-finger protein,
interact with OsVIL2

H3K27me3 OsLFL1

OsTrx1 Ehd1 Os09g0134500 SET domain group protein,
interact with Ehd3

Unkown Unkown
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histone modification H3K9 acetylation around the transcrip-
tional start site of its chromatin in Hd3a-RNAi transgenic
plants (Komiya et al., 2008). In conclusion, both of the two
findings suggest an epigenetic regulation mechanism
through RFT1. In addition, SDG724 also affects the histone
modification state at OsMADS50 chromosomal region, thus
all the results suggest a LD floral promotion pathway medi-
ated by H3K36me2/3 deposition through OsMADS50-Ehd1-
RFT1 pathways in rice (Sun et al., 2012).

Coincidentally, another member of Class II in SET domain
family (Ng et al., 2007), SDG725, is also involved in pro-
moting rice flowering through H3K36me2/3. In SDG725
knockdown plants, the expression levels of Ehd3, RID1,
OsMADS50, OsMADS51, Ehd1, Hd3a, and RFT1 were all
drastically reduced, but the Ghd7 expression was increased,
under either SD or LD. Different from SDG724, SDG725 is
required for deposition of H3K36me2/3 at more flowering
gene loci, such as Ehd3, RID1, OsMADS50, Hd3a, and
RFT1. Thus, SDG724 and SDG725 regulate both over-
lapped and specific flowering genes by mediating
H3K36me2/3 deposition and promote rice flowering, which
are different to the previously known function of these epi-
genetic marks in Arabidopsis flowering (Sui et al., 2012; Xu
et al., 2008; Zhao et al., 2005).

Very recently, another homolog of SDG724, OsTrx1,
which belongs to SET domain family Class III (Ng et al.,
2007), might activate or maintain the active transcribed
states of target genes, and was reported to delay flowering
time under LD through Ghd7 pathway but not OsMADS50
and Hd1 pathways (Choi et al., 2014). Though expression of
Ehd3 that functions upstream of Ghd7 is unchanged in os-
trx1 mutants, it was proved that OsTrx1 could bind to Ehd3
in vitro. Further study showed that PHD motif of OsTrx1
could bind to native histone H3 and the C-terminal end of
SET domain of OsTrx1 has histone H3 methyltransferase
activity, thus OsTrx1 and Ehd3 tend to form a complex to
methylate downstream genes, but further studies are nee-
ded to illuminate its function in detail (Choi et al., 2014).

REPRESSIVE CHROMATIN MODIFICATIONS AND
RICE FLOWERING

Arabidopsis VILs (VIL, VERNALIZATION INSENSITIVE),
VIN3, and VRN5 are components of PRC2 (Polycomb
Repressive Complex 2), mediating the H3K27 trimethylation
at the FLC locus to repress its expression and hence to
induce flowering. In rice, a VIL homolog gene LC2/OsVIL3 is
considered as a possible component of PRC2 complex, and
lc2 mutants display late flowering along with the reduced
expression of Hd1 and Hd3a under SD. Furthermore, con-
sistent with the result that OsLF (Oryza sativa Late Flower-
ing) directly repressed Hd1 expression (Zhao et al., 2011),
LC2/OsVIL3 binds to the promoter region of OsLF and
represses the OsLF expression via H3K27me3 methylation,
thus eventually promotes flowering (Wang et al., 2012).

OsVIL2 may be another VILs member in rice PRC2
complex, and mutations in OsVIL2 cause late flowering
under both SD and LD. Different from LC2/OsVIL3, the late
flowering phenotype is associated with increased OsLFL1
and reduced Ehd1, Hd3a, RFT1 expression. Furthermore,
OsVIL2 can bind to native histone H3 in vitro and is directly
associated with OsLFL1 chromatin in vivo, and H3K27me3
is significantly reduced on OsLFL1 chromatin in osvil2
mutants compared to the wild type, indicating that OsVIL2
epigenetically represses OsLFL1 expression to promote
flowering in rice. Besides, OsVIL2 can physically interact
with OsEMF2b, which may be also a member of PRC2.
Similar to osvil2, a null mutation of OsEMF2b caused late
flowering by increasing OsLFL1 and decreasing Ehd1
expression (Wang et al., 2012; Yang et al., 2012).

In short, similar to Arabidopsis, LC2/OsVIL3, OsVIL2, and
OsEMF2b may function together with PRC2 to induce flow-
ering by affecting histone modification H3K27me3, but their
target flowering genes are different, indicating that a diverse
flowering pathway regulated by PRC2 in rice flowering.

CONCLUSION AND PERSPECTIVES

Heading date is an important agronomic trait that deter-
mining rice to grow in different regions and seasons. In last
two decades, tremendous progress has been made by the
study of QTLs and genes controlling rice flowering, which
not only identified the nature of the mobile signal florigen,
but also unveiled a complex genetic network that controls
florigen in rice. Hd3a and RFT1, two florigens regulated
respectively rice flowering under SD and LD, are mainly
controlled through Hd1 and Ehd1 pathways. However, as
mentioned in various T65 with lack of both, rice also
develops some additional pathways that could induce rice
flowering.

Histone modification is very important for defining tran-
scriptional regulation expression, thus plays a fundamental
role in plant growth and development, as well as responding
to various environmental conditions. These modification
marks are dynamically “written” and “erased”, and then
specifically recognized by the “readers” and instruct specific
biological process, such as flowering. Very recently, a large
number of studies have revealed that various ‘active’ histone
modifications, H3K4 methylation, H2B monoubiquitination,
H3K36me2/me3, histone deacetylation, and ‘repressive’
chromatin modifications, H3K4 demethylation, H3K9 meth-
ylation, H3K27 methylation, histone arginine methylation, are
involved in modulating FLC expression in Arabidopsis.
Though the regulation of FLC expression via chromatin
modification provides a paradigm in flowering gene expres-
sion, whether there exists a major flowering regulator such
as FLC in rice is still unknown (Fig. 1). Rice possibly has
some new routes in its flowering control. In rice, a number of
studies revealed the difference in chromatin modification
mechanism in the past two years, ‘active’ H3K36me2/3,
H3K4me3, H3K9 acetylation and ‘repressive’ H3K27me3

Network of rice flowering pathways REVIEW

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn 895

P
ro
te
in

&
C
e
ll



modifications mediate flowering time through Hd1 and Ehd1
dependent pathways, and our finding about SDG724 also
suggests a LD floral promotion pathway that could be
mediated via an epigenetic regulation of florigen RFT1 itself.
All these data suggest that the target flowering genes of
chromatin modifications are dispersed in both conserved
and unique flowering pathways in rice. Taken together, all the
progress in rice, along with Arabidopsis, provides a complete
evolutionarily comparative view of genetic and epigenetic
flowering mechanisms in plants until now.

Furthermore, in rice, some histone modification partici-
pators tend to function under SD and LD, but others like to
function mainly under SD or LD, thus unveiling of histone
modification mechanism in rice flowering might set a solution
to verify the relationships between particular histone modi-
fications and photoperiod environments. On the other hand,
as a LD plant, Arabidopsis flowering is accelerated by LD,
but SD plant rice flowers earlier under SD than under LD,
further study will be helpful to distinguish the function and
evolutionary process of histone modification in various
photoperiodic plants. Thus, it would be of great interest to
identify more chromatin modification regulators and their
target genes in rice flowering in future.
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