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Macaque monkeys serve as important animal models for understanding the pathogenesis
of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates
in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1
and SIV (SHIV) have been used as challenge viruses in this research field. These viruses,
however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy
of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-
1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired.
Recent studies have demonstrated that host restriction factors, such as APOBEC3 family
and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading
these restriction factors, others and we have succeeded in developing an HIV-1mt that is
able to replicate in macaques. In this review, we have attempted to shed light on the role
of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially
by focusing on TRIM5-related factors.
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INTRODUCTION
It is estimated that about 2.5 million individuals per year get
infected with human immunodeficiency virus type 1 (HIV-1), a
causative agent of acquired immunodeficiency syndrome (AIDS;
UNAIDS Global report 2012, http://www.unaids.org/). To contain
the disastrous epidemic, we need to consider effective approaches.
For the pre-clinical evaluation of the anti-HIV-1 vaccines and ther-
apy, it is necessary to have suitable animal models. Moreover,
animal models would also aid for the understanding of the under-
lying mechanisms of HIV-1 pathogenicity. Since HIV-1 shows very
narrow species specificity, being limited to human and apes, it has
been quite challenging to develop an ideal animal model in which
HIV-1 efficiently replicates and induces pathogenicity. Instead,
many kinds of surrogate models developed as alternative strategy
have provided us many important insights. In this decade, the
molecular characterization of antiviral host restriction factors has
dramatically progressed and shed light on the understanding of
the viral specificity. These findings encouraged us to develop a
novel non-human primate model for HIV-1 infection on the basis
of a new concept (i.e., introduction of minimal modification to
HIV-1 genome), by which the resultant virus would overcome a
number of restriction factors. In this review, we summarize the
history of the identification of the restriction factors and also dis-
cuss its impact and future direction on the development of HIV-1
animal models.

HISTORY OF HIV-1 ANIMAL MODELS
HIV-1 INFECTION IN SMALL ANIMALS
After the identification of HIV-1 as a causative agent of AIDS,many
investigators sought to develop animal models for further research
(reviewed in Gardner and Luciw, 1989). Although many efforts
were performed in small animals, HIV-1 did not infect rodents,

such as mice and rats, due to a number of restrictions, including
the inability of HIV-1 Env to use the surface molecules in these
animals as binding and entry receptors (Atchison et al., 1996) and
the defect of murine cyclin T1 protein to associate with HIV-1 Tat
(Kwak et al., 1999). Although rabbits were once expected to show
susceptibility to HIV-1 infection (Filice et al., 1988; Kulaga et al.,
1989), the reproducibility of this model remains to be elucidated
(Reina et al., 1993; Speck et al., 1998; Tervo and Keppler, 2010).
In an attempt to overcome the limitation in using these animals,
several versions of humanized mice such as SCID-hu-PBL (severe
combined immunodeficiency-human peripheral blood lympho-
cytes) mice (Mosier et al., 1988), Rag2−/− γc−/− mice (Traggiai
et al., 2004), NOG (NOD/Shi-scid/IL-2Rγnull) mice (Ito et al.,
2002), NSG (NOD scid gamma) mice (Shultz et al., 2005), and
NOD/SCID-hu BLT mice (Melkus et al., 2006), have been gen-
erated (reviewed in Berges and Rowan, 2011). To generate this
model, human immune cells were implanted into immunocom-
promised mice. After reconstitution of engrafted immune cells,
HIV-1 replication in these animals was investigated. Generally,
robust HIV-1 replication and loss of peripheral CD4+ T cells
is observed in infected animals. Therefore, this model system
would be useful for evaluation of drugs and neutralizing anti-
bodies against HIV-1 (Denton et al., 2008). Moreover, this model
provides important insight about the viral latency and the role of
accessory genes in vivo (Denton et al., 2012; Marsden et al., 2012;
Sato et al., 2012). However, none or weak immune response is
observed in these animals. Moreover, this model requires special
surgical skills and facilities to perform experiments.

HIV-1 INFECTION IN NON-HUMAN PRIMATES
Differently from other pathogenic viruses for human such as
measles and mumps, HIV-1 does not replicate in New World
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monkeys (NWMs) and Old World monkeys (OWMs). In cells
from NWMs, such as squirrel monkey (Saimiri sciureus) and com-
mon marmoset (Callithrix jacchus), the cluster of differentiation
4 (CD4) and C-C chemokine receptor type 5 (CCR5) molecules
function insufficiently as binding and entry receptors (LaBonte
et al., 2002). On the other hand, in OWM cells, most HIV-1 enters
target cells as efficiently as human cells. Interestingly, recent studies
revealed that some subtypes of HIV-1 are unable to efficiently uti-
lize macaque CD4 because of the difference in the C-terminus of
the D1 domain of CD4 between human and OWMs, and therefore
adaptive mutation was required for optimal efficiency (Humes and
Overbaugh, 2011; Humes et al., 2012). After entering target cells,
the subsequent steps of HIV-1 life cycle (i.e., uncoating and reverse
transcription) are strongly abolished in OWM cells (Shibata et al.,
1995; Hofmann et al., 1999). Although pigtailed macaque (Macaca
nemestrina; hereafter denoted as PM) was once believed to be
promising because of its higher susceptibility to HIV-1 infection
as compared to other OWMs (Agy et al., 1992), the HIV-1 repli-
cation in those animals was weak and the trial of serial in vivo
passage was shown to be unsuccessful (Agy et al., 1997). Among the
animals examined for their susceptibility to HIV-1 infection, chim-
panzees and gibbon apes were identified to have high susceptibility
(Fultz et al., 1986; Lusso et al., 1988). In 1980s and 1990s, many
chimpanzees were experimentally infected with HIV-1, including
clinically isolated viruses and molecularly cloned viruses, result-
ing in a robust viral replication (Alter et al., 1984; Fultz et al., 1987,
1999; Nara et al., 1987; Prince et al., 1988). These experiments pro-
vided many important insights, including the roles of neutralizing
antibody in protective immunity. While some of the infected chim-
panzees experienced AIDS-related symptoms (Fultz et al., 1991;
Novembre et al., 1997; O’Neil et al., 2000), most of them seemed
not to develop apparent clinical symptoms (Gardner and Luciw,
1989; Johnson et al., 1993). Furthermore, there are many concerns
about using chimpanzees, including ethical issues and their quite
high rearing cost; therefore, researchers finally decided not to use
this ape for HIV-1 research (Cohen, 2007). Therefore, the need for
the development of other non-human primate models has been
increasing.

SIV INFECTION IN NON-HUMAN PRIMATES
As a surrogate model, simian immunodeficiency virus (SIV) infec-
tion in Asian macaques, such as rhesus macaque (Macaca mulatta;
hereafter denoted as RM) and cynomolgus macaque (Macaca fas-
cicularis; hereafter denoted as CM) has been developed. While
SIV efficiently replicates in its natural host [e.g., sooty mangabey
(Cercocebus atys; hereafter denoted as SM) for SIVsm and African
green monkey (Chlorocebus sabaeus; hereafter denoted as AGM)
for SIVagm, respectively; Ohta et al., 1988; Kraus et al., 1989],
infected animals generally do not develop immunodeficiency,
unlike the course of HIV-1 infection in humans. In the 1980s,
accidental transmission of SIVsm to RMs caused a lethal dis-
ease, and the symptoms were quite similar to those seen in AIDS
patients (Daniel et al., 1985; Letvin et al., 1985). Thereafter, the
pathogenic virus was molecularly cloned as SIVmac (Naidu et al.,
1988; Kestler et al., 1990). The combination of SIVmac and RMs
has been broadly utilized as a surrogate model for HIV-1 infection
because of its similarity in the genome structure and pathogenicity.

Specifically, this model dramatically advanced our understanding
in terms of the functional roles of the viral accessory genes in
vivo (Kestler et al., 1991; Gibbs et al., 1995; Hirsch et al., 1998).
Moreover, this model provided the important finding that the
acquired protective immunity induced by live-attenuated vaccines
was effective against homologous and heterologous SIV challenges
(Daniel et al., 1992; Wyand et al., 1996, 1999).

INFECTION OF CHIMERIC VIRUS BETWEEN HIV-1 AND SIV IN
NON-HUMAN PRIMATES
Accumulating evidence has demonstrated the inability of intact
HIV-1 to replicate in OWM cells. Then, what kind of viral com-
ponents in HIV-1 and SIV determine their host tropism? In an
effort to answer this profound question, many researchers con-
structed chimeric viruses between HIV-1 and SIV and analyzed
their viral replication in human and OWM cells. It was shown
that chimeric viruses containing HIV-1-derived gag and/or vif
were unable to replicate in macaque cells and that a chimeric
virus encoding HIV-1-derived env on the SIVmac backbone was
able to replicate in primary OWM cells (Shibata et al., 1991; Shi-
bata and Adachi, 1992), indicating that the step of entry was not
the determinant for the species specificity of HIV-1. As a conse-
quence of vigorous investigation, Shibata et al. finally succeeded
to construct a prototypic simian–human immunodeficiency virus
(hereafter denoted as SHIV) clone that encodes HIV-1-derived
tat, rev, vpu, and env genes on the SIVmac239 backbone (Shi-
bata et al., 1991; Shibata and Adachi, 1992). This SHIV clone was
shown to efficiently replicate in primary macaque cells. Thereafter,
many groups developed several versions of SHIV. Of note, by serial
passaging of apathogenic SHIV-89.6 in monkeys, Reimann et al.
(1996) successfully obtained a highly pathogenic virus (SHIV-
89.6P) that caused rapid and complete depletion of peripheral
CD4+ T cells, leading to simian AIDS. These chimeric viruses
not only enabled us to evaluate the efficacy of antiviral immu-
nity against HIV-1 Env but also supplied us important insights on
what kind of SIVmac-derived genes are necessary to replicate in
macaque cells. This SHIV model became a huge breakthrough for
HIV-1 investigators; by using SHIV, the mechanism and efficacy
of passive immunization (Shibata et al., 1999; Baba et al., 2000;
Nishimura et al., 2002) as well as vaccine candidates (Igarashi
et al., 1997; Letvin et al., 1997; Cafaro et al., 1999) were vigor-
ously investigated. Incidentally, the lower sequence homology in
RT between SIV and HIV-1 limited this model for the evalua-
tion of antiretroviral drugs especially against RT. To overcome
this limitation, RT-SHIV, which encodes HIV-1 RT in the place
of SIVmac RT, was developed and used for the assessment of RT
inhibitors (Uberla et al., 1995; Ambrose et al., 2004; North et al.,
2005). SHIV carrying HIV-1 integrase (IN) in addition to RT was
also constructed (Akiyama et al., 2008). These efforts have dra-
matically advanced the basic research related to HIV-1. However,
since these viruses were constructed on the basis of SIVmac back-
bone, SHIVs are still far from HIV-1. Moreover, some pathogenic
SHIV clones, such as SHIV-89.6P, show quite different pheno-
types in macaques, unlike those in HIV-1 infection of humans and
SIVmac infection of macaques (Feinberg and Moore, 2002). First,
these SHIVs induced abnormally rapid, profound, and irreversible
loss of CD4+ T cells in macaques, differently from the gradual
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decline of CD4+ T cells observed in most HIV-1-infected patients
(McCune, 2001). Second, these SHIVs were somehow highly sus-
ceptible to neutralizing antibodies, while most HIV-1 isolates and
pathogenic SIVs were resistant to neutralization. Therefore, earlier
vaccine studies using SHIV as a challenge virus succeeded in con-
trolling viral replication by immunization with vaccine candidates
(Amara et al., 2001; Barouch et al., 2001). Notably, these outcomes
were frequently observed in experiments with SHIV using C-X-C
chemokine receptor type 4 (CXCR4; X4-tropic virus), or SHIV
using both CXCR4 and CCR5 as co-receptors (dual-tropic virus).
Since HIV-1 in human population usually uses CCR5 as a co-
receptor during transmission (Schuitemaker et al., 1992), it will be
straightforward to develop an R5-tropic SHIV in order to repro-
duce the transmission, latency, and pathogenicity of HIV-1 in
macaques. In fact, R5-tropic SHIVs were recently constructed
and their phenotype seemed different from those of X4-tropic
SHIVs and dual-tropic SHIVs. It is thought that X4-tropic SHIV
selectively infects CXCR4+ naive CD4+ T cells that are enriched
in secondary lymph nodes, while most SIV and R5-tropic SHIV
mainly target CCR5+ memory CD4+ T cells in extra-lymphoid
immune effector sites such as gut, lung and genital tract, explain-
ing the divergent clinical sequel (Harouse, 1999; Nishimura et al.,
2004; Ho et al., 2005). Especially, mucosal infection with R5-tropic
SHIV would be a promising tool for investigating protection and
transmission of immunodeficiency viruses (Matsuda et al., 2010;
Bomsel et al., 2011; Gautam et al., 2012; Moldt et al., 2012).

In spite of the usefulness of these SHIVs in experiments target-
ing HIV-1 env, the low similarity in other genes, especially gag and
pol, still limits the use of this virus as a challenge virus. Since cyto-
toxic T lymphocyte (CTL) response against Gag protein is thought
to play a central role in controlling viral replication (Kiepiela et al.,
2007), the absence of HIV-1-derived gag in current SHIV ham-
pers evaluation of vaccine candidate against HIV-1 Gag. To solve
this problem, we need to proceed to construct more relevant ani-
mal models of HIV-1. In this decade, our knowledge about host
factors that form species barrier against HIV-1 has dramatically
increased. This knowledge would permit us to develop an HIV-1
clone having the potential to replicate in macaques. Many efforts
to develop a more feasible model were made by several groups
as described below. Here, we summarize the role of anti-HIV-
1 restriction factors in macaque cells and the viral antagonists
against these factors.

INTRINSIC HOST FACTORS
APOBEC3 FAMILY
It has long been observed that the infectivity of vif gene-deficient
HIV-1 in certain T cell lines such as H9 and CEM, as well as pri-
mary lymphocytes, was strongly decreased (Gabuzda et al., 1992;
Sakai et al., 1993; Tervo and Keppler, 2010). Virions produced
from these restrictive cells have less infectivity as compared to
the wild-type virus. Many efforts were made to identify a cellu-
lar factor that conferred this restrictive activity. In particular, the
fact that heterokaryons between permissive and restrictive cells
suppressed the infectivity of the vif-deficient HIV-1 clearly sug-
gested the existence of a potent endogenous inhibitor of HIV-1
replication in restrictive cells (Madani and Kabat, 1998; Simon
et al., 1998). Finally, in 2002, the apolipoprotein B mRNA editing

enzyme catalytic polypeptide 3 G (APOBEC3G; hereafter denoted
as A3G) was identified as a novel host restriction factor in human
cells (Sheehy et al., 2002). A3G is expressed in various tissues
including testis, ovary, spleen, and peripheral blood mononu-
clear cells (PBMCs; Jarmuz et al., 2002). Since A3G is a member
of the cytidine deaminase enzyme, the vif-deficient virus contains
many G-to-A mutations in its minus-strand genome, leading to
disruption of infectivity. Moreover, the fact that deamination-
deficient mutant A3G can still inhibit vif-deficient HIV-1 implied
that A3G exerts its antiviral activity with deamination-dependent
and deamination-independent fashion (Newman et al., 2005). In
order to counteract the A3G-mediated restriction, HIV-1 has
equipped its genome with vif gene and the resultant protein,
Vif, efficiently inhibits A3G incorporation into progeny virions
by inducing proteasome-dependent degradation of A3G (Conti-
cello et al., 2003; Kao et al., 2003; Mehle et al., 2004). Recently, it
was reported that core-binding factor beta (CBFβ), a transcrip-
tion regulator through RUNX binding, was required for HIV-1
Vif to degrade A3G (Hultquist et al., 2012; Jager et al., 2012). SIV-
mac Vif similarly recruits CBFβ in order to neutralize the RM
A3G (Hultquist et al., 2012; Jager et al., 2012). It was also proposed
that HIV-1 Vif suppresses human A3G activity by inhibiting the
translation of A3G (Mercenne et al., 2010). Although the human
genome encodes other six A3 members (A3A, B, C, DE, F, and
H) in addition to A3G, the precise antiviral activity of the A3
proteins remains to be elucidated. Human A3F was also reported
to have anti-HIV-1 activity and susceptibility to HIV-1 Vif (Lid-
dament et al., 2004; Wiegand et al., 2004; Zheng et al., 2004). In
contrast, Miyagi et al. (2010) suggested that the antiviral activity
of endogenous level of human A3F was negligible as compared
to the activity of A3G. It is known that human A3DE and A3F,
in addition to A3G, are also sensitive to counteraction by HIV-1
Vif (Goila-Gaur and Strebel, 2008). As seen in humans, the RM
genome also encodes seven A3 members (Schmitt et al., 2011).
Virgen and Hatziioannou (2007) investigated the susceptibility
of HIV-1 to each RM A3 family member and showed that A3B,
A3F, A3G, and A3H had the ability to restrict HIV-1 and were
resistant to HIV-1 Vif activity. It should be noted that Vif-A3G
interaction shows species specificity (Mariani et al., 2003). HIV-
1 Vif is able to counteract A3G from humans but not from RM
and AGM (Zennou and Bieniasz, 2006; Virgen and Hatziioannou,
2007). Conversely, SIVagm Vif is effective against A3G from AGM
and RM, but unable to antagonize A3G from human and chim-
panzee (Mariani et al., 2003). SIVmac Vif efficiently counteracts
A3G from human, chimpanzee, AGM, and RM (Mariani et al.,
2003). Are there any polymorphisms in the A3 family? In case
of humans, a polymorphism in A3B deletion was reported (Kidd
et al., 2007). In RMs, a polymorphism in A3DE was observed and
was reported to affect the antiviral activity (Virgen and Hatzi-
ioannou, 2007). How can we obtain HIV-1 with the ability to
overcome macaque A3s? Many efforts have been made to evade
from the restriction by the macaque A3 family. Schrofelbauer et al.
(2006) showed that mutations of HIV-1 Vif at positions 14–17
from DRMR into SEMQ allowed HIV-1 Vif interaction with A3G
from RM. However, this HIV-1 Vif harboring SEMQ remained
susceptible to A3B, A3F, and A3H from RM (Virgen and Hatzi-
ioannou, 2007), suggesting that the introduction of this sequence
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in HIV-1 Vif was not sufficient for evading from A3s other than
A3G. Besides, since the replication of HIV-1 in OWM cells was
suppressed, at least at two steps (early and late stages of HIV-1
lifecycle), it is reasonable to speculate that just a modification of
vif is insufficient for HIV-1 to overcome the restriction in various
OWM cells.

BONE MARROW STROMAL ANTIGEN 2
It had been observed that the production of vpu-deficient HIV-
1 in certain cell lines was severely diminished (Klimkait et al.,
1990; Sakai et al., 1995). Specifically, while permissive cells, such
as HEK293T and HT1080 cells, allowed comparative levels of
virion production, non-permissive cells, such as Jurkat and HeLa
cells, decreased the amount of virion production in the absence
of vpu. It was also reported that interferon (IFN) treatment led
to phenotype switch from permissive to non-permissive (Neil
et al., 2007). Thus, the existence of unknown IFN-inducible, Vpu-
sensitive cellular factors, was predicted. In 2008, bone marrow
stromal antigen 2 (BST-2), also known as tetherin, CD317, and
HM1.24, was identified by two independent groups (Neil et al.,
2008; Van Damme et al., 2008). BST-2 is a type 2 integral mem-
brane protein, with the N-terminus located in the cytoplasm, one
membrane-spanning domain, and a C-terminus modified by the
addition of a glycosyl-phosphatidylinositol (GPI) anchor (Kupzig
et al., 2003). Erikson et al. (2011) analyzed the expression pro-
file of BST-2 in vivo and demonstrated that BST-2 was expressed
in various tissues, especially spleen and alimentary system. They
also showed that among PBMCs, monocytes express high levels
of BST-2 as compared to T and B cells. Furthermore, like tripar-
tite motif-containing protein 5 (TRIM5α), hominid BST-2, but
not other primate BST-2, has been recently reported to function
as an innate sensor, leading to the transforming growth factor β

activated kinase-1 (TAK1)-dependent activation of NFκB and sub-
sequent production of pro-inflammatory cytokines (Galao et al.,
2012). Cocka and Bates (2012) recently showed that human BST-
2 gene expressed alternative splice isoforms that led to different
antiviral activity as well as sensing activity from the wild-type one.
To overcome BST-2-mediated restriction, HIV-1 downregulates
BST-2 from the cell surface by expressing Vpu protein, a viral
protein absent in most of the SIVsm/HIV-2 lineage (Neil et al.,
2008; Van Damme et al., 2008). On the other hand, HIV-2 utilizes
Env protein as an antagonist for human BST-2 (Le Tortorec and
Neil, 2009). In the case of SIVmac, Nef protein confers the abil-
ity to overcome BST-2-mediated restriction in RM cells (Jia et al.,
2009; Sauter et al., 2009; Zhang et al., 2009). It is also reported
that Env protein of SIVtan [SIV from Tantalus monkeys (Chloro-
cebus tantalus)] was effective against BST-2 from human and RM
(Gupta et al., 2009). It should be noted that the antagonistic activ-
ity of these viral proteins against BST-2 is thought to function in
a species-specific manner. While Vpu from the HIV-1 group M is
able to counteract human and chimpanzee BST-2, most of these
Vpus are ineffective against BST-2 from RM and AGM (McNatt
et al., 2009; Sauter et al., 2009). In contrast, Nef from SIVmac
is effective for BST-2 from RM and SM but ineffective for BST-
2 from human (Jia et al., 2009). This characteristic resistance of
human BST-2 to SIV Nef was proven to have an association with
the deletion in human BST-2 of 5 amino acid residues, to which

SIV Nef binds (Jia et al., 2009; Zhang et al., 2009). Although most
SIVsm/HIV-2 lineage does not encode vpu gene, SIVcpz, SIVgor
[SIV from gorillas (Gorilla gorilla gorilla)], SIVgsn [SIV from
greater spot-nosed guenons (Cercopithecus nictitans)], SIVmon
[SIV from mona monkeys (Cercopithecus mona)], SIVmus [SIV
from moustached monkey (Cercopithecus cephus)], and SIVden
[SIV from Dent’s mona monkey (Cercopithecus denti)] were shown
to harbor the vpu gene (Courgnaud et al., 2003; Dazza et al.,
2005). Recently, Sauter et al. (2009) demonstrated that Vpus from
SIVgsn and SIVden potently counteracted the BST-2 from RM.
Moreover, Shingai et al. (2011) showed that Vpu from SHIVDH12

potently counteracted BST-2 from RM. It is therefore possible
that the exchange of present HIV-1NL4-3-derived-Vpu with these
Vpus might lead to efficient evasion from the BST-2-mediated
restriction in macaque cells. It was reported that a nef-deleted SIV-
mac239 inoculated to RM became pathogenic after in vivo passage
(Alexander et al., 2003; Serra-Moreno et al., 2011). Serra-Moreno
et al. (2011) showed that the nef-deleted SIVmac239 gained the
ability to antagonize BST-2 by utilizing its Env gp41 as a conse-
quence of adaptive mutations in the env gene. In addition, Vpu
from the less pathogenic HIV-1 group O was reported to lose anti-
BST-2 activity (Sauter et al., 2009). It was shown that SHIVDH12

lacking intact Vpu inefficiently replicated in vivo as compared to
the wild-type virus (Shingai et al., 2011). These findings indicate
the importance of evasion from BST-2-mediated restriction for
lentiviral pathogenesis in vivo. Although detailed genetic informa-
tion is limited, the BST-2 gene is reported to be polymorphic at
least in RM (McNatt et al., 2009). Therefore, when using macaques
for HIV-1 research, we should also appreciate the polymorphisms
in BST-2 gene.

SAMHD1
It has long been observed that HIV-1 replication in myeloid
linage cells, such as macrophages and dendritic cells (DCs) was
impaired and the expression of HIV-2/SIV Vpx in trans was
shown to rescue this inhibition (Goujon et al., 2007, 2008; Kaushik
et al., 2009). The sterile alpha motif (SAM) and histidine/aspartic
acid (HD) domain containing protein 1 (SAMHD1) was iden-
tified as an HIV-1 restriction factor in myeloid cells that were
degraded by the HIV-2/SIV Vpx protein (Hrecka et al., 2011;
Laguette et al., 2011). SAMHD1 was reported to restrict HIV-
1 replication in resting CD4+ T cells as well (Baldauf et al.,
2012; Descours et al., 2012). Historically, SAMHD1 is shown to
be associated with the Aicardi–Goutières autoimmune-mediated
neurodevelopmental syndrome. Patients having a mutation in
SAMHD1 gene would have symptoms of abnormal immune acti-
vation likely due to the excessive production of IFNα (Crow and
Rehwinkel, 2009; Rice et al., 2009). Since SAMHD1 functions
as a deoxyguanosine triphosphate (dGTP)-regulated deoxynu-
cleoside triphosphate (dNTP) triphosphohydrolase (Powell et al.,
2011), it exerts its anti-HIV-1 activity via the depletion of
dNTP pools in virus-infected cells, leading to the inhibition of
the reverse transcription (Lahouassa et al., 2012). The fact that
SAMHD1-deficient CD14+ monocytes efficiently permit HIV-1
replication supports this notion (Berger et al., 2011). It is note-
worthy that SAMHD1 exerts its antiviral activity against various
retroviruses ranging from alpha, beta and gamma retrovirus,
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except for prototype foamy virus and Human T cell leukemia
virus type I (HTLV-1; Gramberg et al., 2013). As described above,
the SAMHD1-mediated restriction would be counteracted by
HIV-2/SIV Vpx. Hofmann et al. (2012) showed that Vpx recruits
SAMHD1 to a cullin4 A-RING E3 ubiquitin ligase, leading to pro-
teasomal degradation. The importance of Vpx in vivo was based
on the fact that the replication of vpx-deleted SIV in monkeys was
significantly weaker than that in wild-type SIV (Gibbs et al., 1995;
Hirsch et al., 1998; Belshan et al., 2012). However, vpx-deleted
SIV still had the ability to induce simian AIDS in macaques, sug-
gesting a limited role of SAMHD1-mediated restriction in SIV
pathogenesis (Gibbs et al., 1995). It is of note that while HIV-2
as well as most of SIV linage such as SIVmac encodes vpx, HIV-
1 as well as some SIV lineage such as SIVcpz and SIVgor does
not encode vpx in its genome. Similar to the relationship between
A3G and Vif, SAMHD1 is also antagonized by viral proteins in
a species-specific manner. For instance, Vpxs from SIVmac and
SIVsm are effective against SAMHD1 from human, OWMs, and
NWMs (Laguette et al., 2012), while those from SIVrcm [SIV from
red-capped mangabey (Cercocebus torquatus)] or SIVmnd [SIV
from mandrill (Mandrillus sphinx)] are effective against SAMHD1
from OWMs and NWMs but not from humans (Lim et al., 2012).
Lim et al. (2012) also found that Vpr from some SIV lineage, such
as SIVdeb [SIV from De Brazza’s monkey (Cercopithecus neglec-
tus)], SIVmus, and a part of SIVagm (SIV from AGM), has the
potency of degrading SAMHD1 from RM and AGM. It would be
of great interest to introduce these vprs into HIV-1mt and examine
whether this modification would enhance the viral replication in
myeloid linage cells from macaques.

TRIM5
It was demonstrated that the replication of HIV-1 in OWMs
cells was severely abolished before reverse transcription (Besnier
et al., 2002; Cowan et al., 2002; Munk et al., 2002). An experi-
ment using interspecies heterokaryons between OWM and human
cells suggested the existence of an inhibitory factor in OWM
cells (Munk et al., 2002). Stremlau et al. (2004) by screening the
RM cDNA library, successfully identified TRIM5α as a restric-
tion factor in RM cells that confer permissive cells resistance
to HIV-1 infection. They also demonstrated that RM TRIM5α,
but not human TRIM5α, could restrict HIV-1 infection. On
the other hand, human TRIM5α potently restricts the N-tropic
murine leukemia virus (N-MLV) as well as the equine infectious
anemia virus (EIAV) but not B-tropic murine leukemia virus
(B-MLV; Hatziioannou et al., 2004; Keckesova et al., 2004; Per-
ron et al., 2004; Yap et al., 2004), indicating the importance of
TRIM5α as a host factor restricting the cross-species transmission
of retroviruses. TRIM5α is ubiquitously expressed and consists
of a RING domain, a B-box domain, a coiled coil domain, and
a PRYSPRY (B30.2) domain (Reymond et al., 2001). The char-
acteristic PRYSPRY domain recognizes the capsid of incoming
retroviruses, leading to the restriction of the infection at the post-
entry step. This domain is also responsible for the species-specific
function of TRIM5α (Nakayama and Shioda, 2010). It was shown
that TRIM5α was IFN-inducible and that IFN treatment of cells
led to the augmentation of antiviral activity (Asaoka et al., 2005;
Sakuma et al., 2007). An additional role of TRIM5α as a pattern

recognition receptor was recently identified (Pertel et al., 2011).
TRIM5α binds to the incoming viral capsid and then activates
its E3 ligase activity, together with the UBC13–UEV1A enzyme
complex, resulting in the synthesis of free ubiquitin chains. The
chains stimulate TAK1 phosphorylation and the expression of
NF-κB (nuclear factor kappa-light-chain-enhancer of activated
B cells)- and MPK (mitogen-activated protein kinase)-responsive
genes, leading to an antiviral state (De Silva and Wu, 2011). Among
the restriction factors discussed here, TRIM5 gene might be most
polymorphic in primates. At what degree does this polymorphism
in TRIM5 gene affect the susceptibility to retroviral infection? A
length polymorphism in TRIM5α, in which the TFP residues from
position 339 to 341 of TRIM5α were replaced with a single glu-
tamine (Q), was identified in some RM individuals (Newman et al.,
2006). This TFP/Q polymorphism affects the anti-lentiviral activ-
ity of RM TRIM5α against SIVsmE543-3 and SIVsmE041 but not
against SIVmac (Kirmaier et al., 2010). Similarly, this polymor-
phism in RM TRIM5α is associated with the different antiviral
activity against HIV-2 (Kono et al., 2008).

Although most cell lines from NWMs were susceptible to
VSV-G pseudotyped HIV-1, cell lines from owl monkey (Aotus
trivirgatus) exceptionally showed high resistance to infection by
HIV-1 (Hofmann et al., 1999). As the reason for this discrepancy,
Sayah et al. (2004) successfully identified TRIM5-Cyclophilin A
(CypA) chimeric protein (referred to as TRIMCyp) in owl mon-
key, which was derived from LINE-1-mediated retrotransposition
of CypA cDNA into the region between TRIM5 exons 7 and 8.
In the case of OWMs, the higher susceptibility of PM to HIV-1
infection was, at least in part, explained by the fact that PM exclu-
sively have the TRIMCyp genotype instead of TRIM5α (Liao et al.,
2007; Brennan et al., 2008; Virgen et al., 2008). Differently from
owl monkey TRIMCyp, the TRIMCyp of PM was a consequence
of a retrotransposition of the CypA sequence in the 3′ untrans-
lated region (UTR) of the TRIM5 gene, together with a single
nucleotide polymorphism (SNP) at the exon 7 splice acceptor site.
This SNP at the splice acceptor site leads to skipping exons 7 and 8
encoding the PRYSPRY domain and splicing to the inserted CypA
gene. In addition to PM, it is reported so far that RM and CM also
possess TRIMCyp in their genome (Brennan et al., 2008; Newman
et al., 2008; Wilson et al., 2008). Interestingly, RM has geographic
deviation in the frequency of TRIMCyp, depending on the coun-
try of origin (Wilson et al., 2008). It is reported that Indian RM
possessed TRIMCyp more frequently than Chinese RM (Wilson
et al., 2008; De Groot et al., 2011). We recently reported that CM
also showed divergent frequency of TRIMCyp depending on their
country of origin (Saito et al., 2012b). The frequency of TRIMCyp
in Filipino CM was significantly higher than that in Malaysian
and Indonesian CM. We demonstrated that wild-caught CM also
had a geographic deviation in the frequency of TRIMCyp as seen
in captive CM (Saito et al., 2012a). Consistently, Dietrich et al.
(2011) reported that the frequency of TRIMCyp in Filipino CM
was higher than those in Indonesian and Indochina CM. It was
shown that Mauritian CM, a population thought to be derived
from Indonesian CM, seemed not to possess TRIMCyp, probably
due to the founder effects at the time of introduction by human
(Dietrich et al., 2011; Berry et al., 2012). Since TRIM5α is expected
to act as homomultimer (Mische et al., 2005; Perez-Caballero et al.,
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2005), heterologous expression of TRIM5α in combination with
TRIM5 isoforms other than TRIM5α reportedly led to a dominant
negative effect on the TRIM5α antiviral activity (Berthoux et al.,
2005; Maegawa et al., 2008). Interestingly, it was reported that
RM heterozygous for TRIM5α and TRIMCyp showed higher resis-
tance to repeated intrarectal challenge of SIVsmE660 as compared
to RM homozygous for TRIM5α or TRIMCyp (Reynolds et al.,
2011). Since RM TRIMCyp could restrict SIVsm but not SIV-
mac (Kirmaier et al., 2010), it is reasonable to assume that the
combination of TRIM5α and TRIMCyp may function more effi-
ciently as antiviral factors against SIVsm. We will further discuss
the impact of TRIM5 polymorphism on the viral replication in the
latter chapter. In summary, since TRIM5 genotype would greatly
influence the susceptibility to lentiviruses, the correlation between
polymorphism of TRIM5 gene in macaques and outcomes should
be carefully evaluated.

UNIDENTIFIED RESTRICTION FACTORS
Viral infection usually stimulates cellular factors through pattern
recognition receptors, such as Toll-like receptor (TLRs) and RIG-
I-like receptors, expressed on many type of cells, leading to the
induction of IFN production (Bowie and Unterholzner, 2008).
In particular, type I IFN, which include IFN-α and IFN-β, puts
a switch on the IFN-stimulated gene 15 (ISG15), leading to a
cascade of antiviral status (Zhao et al., 2013). The expression
levels of the restriction factors described above are reported to
increase via IFN stimulation (Asaoka et al., 2005; Tanaka et al.,
2006; Neil et al., 2007; Sakuma et al., 2007). Lately, Bitzegeio et al.
(2013) have demonstrated that HIV-1-based chimeric viruses,
engineered to overcome SAMHD1 or BST-2 as well as A3 and
TRIM5 from PM, are still severely restricted in IFN-treated PM
PBMCs. They have also demonstrated that the replication of SIV-
mac in IFN-treated human PBMCs is greatly suppressed, and vice
versa. This finding strongly suggests the existence of unidenti-
fied, IFN-inducible restriction factors in each species. Therefore,
it is also necessary to continue exploring such unidentified cellular
factors.

CONSTRUCTION OF MACAQUE-TROPIC HIV-1
In virtue of the detailed understanding of the molecular rela-
tionship between antiviral host factors and viral antagonists
(summarized in Tables 1 and 2), it became possible to create
a macaque-tropic HIV-1 (HIV-1mt) with the ability to repli-
cate in OWM cells. In 2006, two independent groups succeeded
in the construction of an HIV-1mt that contains partial SIV-
derived sequences on the HIV-1NL4-3 backbone. Hatziioannou
et al. (2006) constructed HIV-1mt that contains the entire Gag-
CA and vif from SIVmac in order to evade from TRIM5α- and
A3G-mediated restriction, respectively. This HIV-1mt, which
contains approximately 88% of HIV-1-derived sequence, was
shown to efficiently replicate in RM PBLs. In parallel with that
study, Kamada et al. (2006) constructed HIV-1mt named NL-
DT5R in which the sequence of CypA binding loop [the loops
of α-helices 4 and 5 (L4/5)] in Gag-CA and entire vif gene
were replaced with those from SIVmac239. NL-DT5R, in which
approximately 93% of its sequence was derived from HIV-1, was
shown to replicate in a CM T cell line (HSC-F cells) as well as

Table 1 | Antiviral host factors and antagonism by lentiviral proteins.

Antiviral host factors Antagonized by NOT antagonized by

Human APOBEC3G HIV-1 Vif

SIVmac Vif

SIVagm Vif

RM APOBEC3G SIVmac Vif

SIVagm Vif

HIV-1 Vif

Human BST-2 HIV-1 Vpu

HIV-2 Env

HIV-1 Nef

SIVmac Nef

RM BST-2 SIVgsn Vpu

SIVden Vpu

SIVmac Nef

HIV-1 Vpu*

Human SAMHD1 SIVdeb Vpr

SIVmus Vpr

SIVmac Vpx

HIV-2 Vpx

HIV-1 Vpr

SIVmac Vpr

SIVrcm Vpx

SIVmnd Vpx

RM SAMHD1 SIVdeb Vpr

SIVmus Vpr

SIVagm Vpr

SIVmac Vpx

HIV-2 Vpx**

SIVrcm Vpx

SIVmnd Vpx

HIV-1 Vpr

SIVmac Vpr

SIVrcm Vpr

Summary of findings about APOBEC3G–Vif interaction (Sheehy et al., 2002; Kao
et al., 2003; Mariani et al., 2003; Zennou and Bieniasz, 2006; Virgen and Hatziioan-
nou, 2007), BST-2–Vpu, Nef, and Env interaction (Neil et al., 2008; Van Damme
et al., 2008; Jia et al., 2009; LeTortorec and Neil, 2009; Sauter et al., 2009; Zhang
et al., 2009; Serra-Moreno et al., 2011), and SAMHD1-Vpx and Vpr interaction
(Hrecka et al., 2011; Laguette et al., 2011, 2012; Lim et al., 2012). *Vpus from
some HIV-1 strains such as HIV-1DH12 are able to antagonize RM BST-2. **Vpxs
from some HIV-2 strains are ineffective in antagonizing RM SAMHD1.

Table 2 | Species-specific restriction of lentiviruses by primateTRIM5

proteins.

TRIM5 alleles Restrictive against:

HIV-1 HIV-1mt MN4Rh-3 SIVmac239

Human TRIM5α − − −
RM TRIM5α (TFP) + + −
RM TRIM5α (Q) + + −
CM TRIM5α + + −
RM TRIMCyp − − −
PM TRIMCyp − − −
CM TRIMCyp (DK) + − −
CM TRIMCyp (NE) − − −

Summary of findings about interactions between each TRIM5 allele and
lentiviruses (Stremlau et al., 2004; Newman et al., 2006; Liao et al., 2007; Bren-
nan et al., 2008; Virgen et al., 2008; Dietrich et al., 2011; Saito et al., 2012b). “+”
denotes restrictive, while “−” denotes not restrictive against each lentivirus,
respectively.
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CD8+ cell-depleted PM PBMCs but hardly in CD8+ cell-depleted
RM PBMCs. Subsequently, Igarashi et al. (2007) investigated the
replication capability of NL-DT5R in PM and found that this
prototypic HIV-1mt was able to induce acute viremia up to
around 1 × 104 copies/mL. Thereafter, in order to enhance the
viral replication, we further modified the sequence of NL-DT5R-
based HIV-1mt by 2 different approaches. First, we performed
a long-term adaptation experiment in CM T cell lines to induce
adaptive mutation in its genome. As a consequence of adapta-
tion, several nucleotide substitutions were identified (see Figure 1,
orange arrows in MN4-5 and MN4-5S). The functional signifi-
cance of each mutation was molecularly evaluated (Nomaguchi
et al., 2013a). Second, we introduced the α-helices 6 and 7 (L6/7)
in addition to L4/5 of Gag-CA into MN4-5, resulting in MN4-5S.
As shown in Figure 2, this substitution enhanced the viral replica-
tion in vitro (Kuroishi et al., 2009) and in vivo (Saito et al., 2011).
We next constructed a new HIV-1mt named MN4Rh-3 carrying
the Q110D substitution in Gag-CA. This HIV-1mt exhibited fur-
ther enhanced growth property specifically in macaque cells but

impaired replication in human cells (Nomaguchi et al., 2013b).
We also examined the replicative property of MN4Rh-3 in CM
(Saito et al., 2013). In accordance with in vitro data (Nomaguchi
et al., 2013b), MN4Rh-3 induced higher viremia on average up to
50 times as compared to MN4-5S (Figure 2). Notably, TRIMCyp
homozygotes were highly permissive to MN4Rh-3 infection, while
the replication of MN4Rh-3 in TRIM5 homozygotes was strongly
suppressed. We also observed that CM heterologous for TRIM5α
and TRIMCyp showed similar anti-HIV-1 activity with TRIM-
Cyp homozygotes (Saito et al., 2013). These findings indicated
that MN4Rh-3 enhanced the replicative capability in CM hav-
ing TRIMCyp, but was still unable to overcome TRIM5α-mediated
restriction. It should be noted that the sequence of most TRIMCyp
encoded in CM are different from those in RM and PM. It was once
thought that CM exclusively possessed TRIMCyp in which the
amino acid residues at positions 369 (Cyp66) and 446 (Cyp143)
were aspartic acid (D) and lysine (K) [denoted as the TRIMCyp
(DK)], respectively, while PM and RM had TRIMCyp in which the
amino acids at the corresponding positions were asparagine (N)

FIGURE 1 | Structure of HIV-1mt clones. Blue boxes denote
HIV-1NL4-3-derived sequences and red boxes denote SIVmac239-
derived sequences, respectively. Orange arrows show adaptive
mutations that enhance viral growth potential in macaque T cell

lines. The green arrow indicates the CA-Q110D mutation.
(Bottom) Summary of the modifications in our current and
future HIV-1mts in order to evade from restriction factors in
macaque cells.
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FIGURE 2 | Serial modifications of the viral genome lead to an enhanced

viral replication in vitro and in vivo. (Top) CD8+ T cell-depleted peripheral
mononuclear blood cells from CMs homozygous for TRIMCyp were infected

with each HIV-1mt. The representative result of viral replication kinetics was
shown. (Bottom) CM having TRIMCyp were infected with each HIV-1mt
intravenously. Plasma viral RNA loads in each monkey are shown.

and glutamic acid (E) [denoted as the TRIMCyp (NE); Brennan
et al., 2008; Ylinen et al., 2010], respectively. However, others and
we recently revealed that CM possessed TRIMCyp (NE) as well as
TRIMCyp (DK) in spite of the low frequency of TRIMCyp (NE)
haplotype in CM population (Dietrich et al., 2011; Saito et al.,
2012a,b). Strikingly, others and we reported that TRIMCyp (DK)
and TRIMCyp (NE) exhibit different anti-lentiviral activity. It is
well established that the TRIMCyp (DK) efficiently restricts HIV-1
but weakly restricts HIV-2 (Saito et al., 2012b). On the other hand,
the TRIMCyp (NE) fails to restrict HIV-1 but efficiently restrict
HIV-2 (Wilson et al., 2008). It was also shown that both haplotypes
hardly restricted SIVmac239 replication. These results indicate
that the sequence variations in CypA greatly affect the spectrum
of their anti-HIV-1 activity. However, how does TRIMCyp (DK)
exert its anti-HIV-1 activity? Actually, TRIMCyp (DK) is expected
to bind the L4/5 in Gag-CA. Moreover, the treatment of the target
cells with cyclosporin A, an inhibitor against CypA, or the intro-
duction of amino acid changes in this loop of the viral genome
relieved the inhibitory effect by TRIMCyp (DK;Ylinen et al., 2010).
Therefore, when we use CM homozygous for TRIMCyp (DK), it is

necessary to modify the loop in order to evade restriction. In fact,
we have used HIV-1mts in which the L4/5 in Gag-CA were replaced
with the corresponding sequence of SIVmac239 (Kamada et al.,
2006). In contrast, those research groups that used PM did not
need to modify this region. Hatziioannou et al. (2009) have suc-
cessfully constructed an HIV-1mt that induced persistent viremia
in PM with modification of only vif and env gene. Similarly,
Thippeshappa et al. (2011) also constructed an HIV-1mt named
HSIV-vif that encoded vif gene from pathogenic PM-adapted
SIVmne027. This HSIV-vif was shown to persistently replicate
in PM but was unable to induce pathogenicity in animals. Over-
all, further understanding of the host–virus relationship would
permit us to construct pathogenic HIV-1mt in future studies.

CONCLUSIONS AND FUTURE DIRECTIONS
Most HIV-1mts were constructed with the aim of evading
from TRIM5 and APOBEC3-mediated restriction. In the future
research, as discussed above, we should also focus on other factors
such as BST-2 and SAMHD1. It will be promising to modify viral
genome in order to overcome these restrictions. We expect that
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such procedure will lead to the construction of a new HIV-1mt
with the ability to infect various macaques persistently.

Also, as discussed in the “History of HIV-1 animal models”
chapter, an R5-tropic virus would be promising to reproduce the
transmission, latency, and pathogenicity of HIV-1 in macaques.
In the future study, the construction of an R5-tropic virus on the
HIV-1mt backbone would encourage us to examine the antiviral
agents, vaccines, and microbicides in macaques. Moreover, HIV-
1mt that robustly replicate and induce pathogenicity in monkeys
will make feasible to investigate the role and mechanism of HIV-1

accessory genes in the HIV-1 lifecycle, persistence, and pathogen-
esis. In summary, although the road to the containment of HIV-1
epidemic may be long and steep, we have been moving forward
slowly but steadily.
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