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Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala

(EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Heli-

cobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells

by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA

motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously inter-

acts with SH2 domain-containing mammalian proteins such as the Src homology

2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-term-

inal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Prag-

min also forms a physical complex with Csk. In the present study, we found that

Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The

complex formation potentiates kinase activity of Csk, which in turn phosphory-

lates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin com-

prises the EPIYA motif, Pragmin–Csk interaction creates a feed-forward

regulatory loop of Csk activation. Together with the finding that Pragmin and

Csk are colocalized to focal adhesions, these observations indicate that the Prag-

min–Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimu-

lates the kinase activity of Csk at focal adhesions, which direct cell-matrix

adhesion that regulates cell morphology and cell motility. As a consequence,

expression of Pragmin and/or Csk in epithelial cells induces an elongated cell

shape with elevated cell scattering in a manner that is mutually dependent on

Pragmin and Csk. Deregulation of the Pragmin–Csk axis may therefore induce

aberrant cell migration that contributes to tumor invasion and metastasis.

P ragmin, also known as Sgk223, was originally identified as
a downstream effector of Rnd2, a member of the Rho fam-

ily small GTPases, in neuronal cells.(1) Pragmin associates
with Rnd2 and thereby stimulates RhoA to induce cell contrac-
tion, which then inhibits neurite outgrowth by nerve growth
factor. Pragmin also possesses a kinase domain in the C-term-
inal region. However, the kinase domain does not seem to
have Mg2+-binding activity due to substitutions in key motifs
that are characteristics of active kinases. Accordingly, Pragmin
has been considered to be a pseudokinase.(2,3) Several studies
have shown a functional link between Pragmin and oncogene-
sis. Increase in the level of Pragmin promotes invasion of
advanced colon carcinoma cells.(4) Pragmin is overexpressed
in pancreatic ductal adenocarcinoma (PDAC) cells and ectopic
expression of Pragmin in human pancreatic duct epithelial cells
gives rise to an elongated mesenchymal-like cell morphology,
which is concomitantly associated with increased cell migra-
tion and invasion.(5)

Pragmin is one of the few mammalian (human) proteins that
possess the Glu-Pro-Ile-Tyr-Ala (EPIYA) sequence motif.(6)

The EPIYA motif was originally discovered as a tyrosine

phosphorylation motif present in variable numbers (from three
to five) in the C-terminal region of the Helicobacter pylori
CagA oncoprotein.(7,8) Following delivery into gastric epithe-
lial cells by the bacterial type IV secretion system, CagA
undergoes tyrosine phosphorylation at the EPIYA motifs by
Src family kinases (SFKs) or c-Abl kinase.(9) Once tyrosine-
phosphorylated, the CagA EPIYA motifs serve as docking sites
for various Src homology 2 (SH2) domain-containing host pro-
teins such as SHP2 and the C-terminal Src kinase (Csk).(10–12)

Aberrant activation of SHP2, a pro-oncogenic tyrosine phos-
phatase, is associated with a variety of human malignan-
cies.(13,14) The CagA–SHP2 interaction has also been
considered to play a critical role in H. pylori-associated gastric
carcinogenesis.(15) Csk is a protein kinase that specifically
phosphorylates the C-terminal tyrosine residue conserved
among SFK members to inactivate their kinase activity.(16) On
its own, Csk is located predominantly in the cytoplasm as it
does not contain the SH4 fatty-acid acylation domain that
mediates membrane anchoring. As all of the SFK members are
membrane-anchored, cytoplasmic Csk needs to be translocated
to the plasma membrane in order to inhibit SFKs through

Cancer Sci | July 2016 | vol. 107 | no. 7 | 972–980 © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-
commercial and no modifications or adaptations are made.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


phosphorylation. The membrane tethering of Csk is primarily
mediated by binding to membrane-associated proteins such as
Csk binding protein (Cbp)/phosphoprotein associated with
GEMS.(17) Due to its inhibitory role on the pro-oncogenic SFK
members, Csk has been considered a tumor suppressor.(16)

However, recent studies suggest that Csk could also contribute
to oncogenesis by phosphorylating non-SFK substrates.(18–23)

Following tyrosine phosphorylation by Csk, eukaryotic elonga-
tion factor 2 undergoes SUMOylation and subsequent cleav-
age, thereby causing chromosomal instability that stimulates
neoplastic transformation of cells.(22) Csk also mediates signals
generated by the G protein-coupled receptor, which induces
actin stress fiber formation that regulates cell motility indepen-
dently of SFKs.(23) More recently, Src was found to act as a
negative regulator of Ras, suggesting a stimulatory role of Csk
in Ras signaling.(24) Given these observations, it is likely that
Csk exerts both pro-oncogenic or anti-oncogenic actions,
depending on cell context.
In the present study, we investigated the biochemical and

biological consequences of Pragmin–Csk complex formation.
We found that Csk phosphorylates Pragmin on the EPIYA
motif. We also found that Csk directly interacts with Prag-
min through the tyrosine-phosphorylated EPIYA motif and
this interaction potentiates the kinase activity of Csk. The
phospho-EPIYA-dependent Pragmin–Csk interaction creates a
positive feedback loop of Csk activation at focal adhesions
and thereby induces cell-morphological transformation with
elevated cell motility, deregulation of which provokes
aberrant cell migration and invasion that contribute to
oncogenesis.

Materials and Methods

Cell lines. AGS and MKN7 human gastric epithelial cells
were cultured in RPMI-1640 medium supplemented with 10%
FBS. SYF cells, mouse embryonic fibroblast cells established
from c-src, yes, and fyn triple knockout mice(25) were obtained
from American Type Culture Collection (ATCC, Manassas,
VA, USA) and were cultured in DMEM with 10% FBS. AGS
cells were transfected with expression vectors using Lipofec-
tamine 2000 reagent (Invitrogen, Carlsbad, CA, USA). MKN7
cells were treated with siRNA using Lipofectamine 3000
reagent (Invitrogen). SYF cells were treated with siRNA using
Lipofectamine 2000 reagent (Invitrogen).

Expression vectors. Expression vectors used in this study are
shown in Table S1. Recombinant lentiviruses that express
Myc-Pragmin-WT, Myc-Pragmin-Y391F, and Csk-WT-Flag
were generated using Lentivector Expression Systems (System
Biosciences, Mountain View, CA, USA).

RNA interference. Csk-specific siRNAs (target sequences 50-
AGTACCCAGCAAATGGGCA-30 [100% identical between
human and mouse Csk] and 50-ACTCGCCTTCTTAGAGTTT-
30 [unique to human Csk]) were used to knock down Csk
expression.(26,27) Pragmin-specific siRNAs (target sequences
50-GTCACAGGCCAAGATAGAA-30(6) and 50-CTGTTTTCTT
CTGTAATTATA-30 designed using siDirect version 2.0;
http://sidirect2.rnai.jp) were used to knock down human
Pragmin expression. Control siRNA Luciferase (GL2) was pur-
chased from Cosmo Bio (Tokyo, Japan).

Antibodies. Anti-Pragmin polyclonal antibody A302-675A
(Bethyl Laboratories, Montgomery, TX, USA) was used as a
primary antibody for immunoprecipitation, immunoblotting,
and immunostaining. Anti-Myc mAb 9E10 (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-DDDDK

polyclonal antibody PM020 (Medical & Biological Laborato-
ries, Aichi, Japan), anti-vinculin mAb hVIN-1 (Sigma-Aldrich,
St. Louis, MO, USA) and anti-Csk polyclonal antibody C-20
(Santa Cruz Biotechnology) were used as primary antibodies
for immunoblotting and immunostaining. Anti-FLAG mAb M2
(Sigma-Aldrich), anti-phosphotyrosine mAb 4G10 (Millipore,
Temecula, CA, USA), anti-GST mAb B-14 (Santa Cruz
Biotechnology), anti-His mAb 6C4 (Medical & Biological
Laboratories), anti-His mAb OGHis (Medical & Biological
Laboratories), anti-actin polyclonal antibody C-11 (Santa Cruz
Biotechnology), and anti-p-c-Src (Y530) polyclonal antibody
(Santa Cruz Biotechnology) were used as primary antibodies
for immunoblotting.

Pragmin purification. Escherichia coli Rosetta2 (DE3) was
transformed with pGEX6P2-Pragmin-WT-His or pGEX6P2-
Pragmin-Y391F-His and was cultured with LB medium.
Protein expression was induced by addition of 0.1 mM iso-
propyl-1-thio-b-D-galactopyranoside (IPTG) at 18°C for 16 h.
GST-fused Pragmin-WT-His or Pragmin-Y391F-His was puri-
fied using Ni Sepharose excel (GE Healthcare, Uppsala, Swe-
den). For tyrosine-phosphorylated Pragmin purification, E. coli
BL21 (DE3) was cotransformed with pGEX6P2-Pragmin-WT-
His or pGEX6P2-Pragmin-Y391F-His and pACYCDuet1-v-
Src.(28) The subsequent procedure was the same as non-phos-
phorylated Pragmin. The Ni-binding buffer contained 0.2 mM
Na3VO4.

C-terminal Src kinase purification. E. coli BL21 (DE3) was
transformed with pGEX6P2-Csk-WT-His and was cultured
with LB medium. Protein expression was induced by addition
of 0.1 mM IPTG and additional culture at 25°C for 16 h.
GST-fused Csk-His was purified using glutathione Sepharose
4B (GE Healthcare). The GST tag was excised by treating the
GST-Csk-His protein with PreScission Protease (GE Health-
care).

Src-tail purification. E. coli BL21 (DE3) was transformed
with pGEX6P2-Src-tail and cultured with LB medium. Protein
expression was induced by addition of 0.4 mM IPTG for 7 h
at 37°C. The GST-fused Src-tail was purified using glutathione
Sepharose 4B (GE Healthcare).

Glutathione S-transferase pull-down assay. The GST pull-
down assay was carried out as described previously.(28) The
mixtures were washed with GST pull-down buffer (50 mM
Tris-HCl [pH 7.5], 150 mM NaCl, 10 mM b-mercaptoethanol,
and 0.01% Triton X-100).

In vitro kinase assay. Recombinant proteins were mixed with
indicated combinations in kinase buffer (50 mM HEPES–
NaOH [pH 8.0], 100 mM NaCl, 10 mM MgCl2, 0.1 mM
Na3VO4, and 20 mM ATP-Na).(11) The reaction mixtures were
incubated at 30°C and were subjected to SDS-PAGE, followed
by immunoblotting.

Immunoprecipitation and immunoblotting. Cells were lysed in
lysis buffer (50 mM Tris-HCl [pH 7.5], 100 mM NaCl, 5 mM
EDTA, 1% Brij-35, 2 mM Na3VO4, 10 mM NaF, 10 mM b-gly-
cerophosphate, 10 lg/mL leupeptin, 10 lg/mL trypsin inhibitor,
10 lg/mL aprotinin, and 2 mM PMSF)(10) or (50 mM Tris-HCl
[pH 7.5], 200 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10%
glycerol, 2 mM Na3VO4, 10 mM NaF, 10 mM b-glyceropho-
sphate, 10 lg/mL leupeptin, 10 lg/mL trypsin inhibitor, 10
lg/mL aprotinin, and 2 mM PMSF). Immunoprecipitation,
immunoblotting, and quantification of chemiluminescence on
the immunoblotted membrane were carried out as described
previously.(10,11)

Immunostaining. Immunostaining was carried out by modify-
ing the protocol described previously.(10,28) Briefly, cells were
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fixed with Mildform 10N (Wako, Osaka, Japan) for 10 min
and permeabilized with 0.25% Triton X-100 for 10 min. The
cells were then treated with primary antibodies and were visu-
alized with Alexa Fluor-conjugated secondary antibodies
(Invitrogen). The nuclei were stained with DAPI. Images were
obtained using the FV1200 confocal microscope system
(Olympus, Tokyo, Japan).

Analysis of cell morphology. MKN7 cells were infected with
recombinant lentiviruses and were observed at 48 h after infec-
tion by light microscope (Nikon, Tokyo, Japan).

Cell scatter assay. MKN7 cells were seeded at 1 9 103 cells
in 3.5-cm dishes and were cultured for 96 h. Cells were then
infected with recombinant lentiviruses and their morphology
was analyzed as described above.

Statistical analysis. Statistical analyses were carried out by
Student’s t-test.

Results

Direct interaction of Pragmin with Csk through tyrosine-phos-

phorylated EPIYA motif. We previously reported that Pragmin
forms a physical complex with Csk in mammalian cells and
that the interaction is dependent on the EPIYA motif of Prag-
min and the SH2 domain of Csk.(6) To test whether the Prag-
min–Csk interaction is direct or not, we undertook an in vitro
binding assay using bacterially produced recombinant tyrosine-

phosphorylated Pragmin and Csk proteins. In E. coli, both
GST-Pragmin-His and the EPIYA mutant (Y391F) were tyro-
sine-phosphorylated in bacteria (Fig. S1a), indicating that tyro-
sine residues other than the EPIYA motif were also
phosphorylated by v-Src in E. coli. Next, recombinant Csk
was purified (Fig. S1b). Using the purified GST-Pragmin-His
and Csk-His proteins, we undertook a GST pull-down experi-
ment and found that Csk specifically associates with tyrosine-
phosphorylated WT Pragmin but not with the Y391F Pragmin
(Fig. S1c). From these observations, we concluded that Prag-
min directly interacted with Csk in an EPIYA phosphoryla-
tion-dependent manner.

C-terminal Src kinase influences the level of Pragmin tyrosine

phosphorylation in cells. Next, to investigate the impact of
Pragmin on the kinase activity of Csk in cells, we transiently
transfected a Flag-tagged Csk vector together with a Myc-
tagged Pragmin vector into AGS human gastric epithelial cells.
The cell lysates were then subjected to immunoblotting analy-
sis with the use of an anti-phosphotyrosine antibody. As a
result, ectopic co-expression of Pragmin and Csk increased the
tyrosine phosphorylation levels of several cellular proteins
including Pragmin (Fig. 1a). To determine whether the
observed increase in Pragmin tyrosine phosphorylation was
dependent on Csk kinase activity, we generated an expression
vector for a mutant Flag-tagged Csk (Csk-K222R-Flag) in
which ATP-binding K222 was replaced by arginine. When co-
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Fig. 1. C-terminal Src kinase (Csk) affects the level of Pragmin tyrosine phosphorylation (pTyr) in cells. (a) Immunoblot analysis of tyrosine-phos-
phorylated proteins in AGS human gastric epithelial cells. Arrowhead indicates Myc-Pragmin. (b) Immunoblot analysis of tyrosine-phosphorylated
Myc-Pragmin in AGS cells. (c) Sequential immunoprecipitation (IP)–immunoblot (IB) analysis of tyrosine-phosphorylated Pragmin in AGS cells. (d)
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expressed with Pragmin, the kinase-dead Csk had little effect
on the level of Pragmin tyrosine phosphorylation, whereas WT
Csk greatly increased the level of phosphorylation (Fig. 1b).
Pragmin and its one and only homolog Sgk269/pseudopodium-
enriched atypical kinase 1 (PEAK1) possess a pseudokinase
domain that lacks the Mg2+-binding motif.(2) As Sgk269/
PEAK1 was recently found to have kinase activity,(29) it was
possible that the weak increase in the tyrosine phosphorylation
level of Pragmin in cells expressing the kinase-dead Csk (Csk-
K222R-Flag) was due to autophosphorylation of Pragmin
through activation of its kinase activity after Csk binding. To
test this idea, we generated an expression vector for a Pragmin
mutant (Myc-Pragmin-K997R) in which K997, a putative
ATP-binding site, was replaced by arginine. Co-expression of
the K997 mutant together with the kinase-dead Csk still gave
rise to a weak increase in the level of Pragmin tyrosine phos-
phorylation (Fig. 1b), arguing against the idea that Pragmin
possesses kinase activity. Although the mechanism by which
kinase-dead Csk slightly elevated the level of Pragmin tyrosine
phosphorylation remained unknown, the kinase-dead Csk
might have competitively inhibited endogenous Csk–Cbp inter-
action and thereby attenuated Csk-mediated SFK inhibition,
which in turn induced a slight increase in the level of Pragmin
tyrosine phosphorylation.
We previously reported that SFKs are capable of Pragmin

tyrosine phosphorylation.(6) Given the above-described obser-
vation, we next investigated the contribution of Csk to tyrosine
phosphorylation of Pragmin. To do so, AGS cells were trans-
fected with an expression vector for Csk-Flag and the cell
lysates were immunoprecipitated with an anti-Pragmin anti-
body. The tyrosine phosphorylation level of endogenous Prag-
min was increased following ectopic expression of Csk
(Fig. 1c). Then, we examined the effects of Csk knockdown
on the phosphorylation status of Pragmin. However, it is possi-
ble that Csk inhibition would induce strong SFK activation,
resulting in hyperphosphorylation of Pragmin, which would
hamper analysis of the contribution of Csk to Pragmin phos-
phorylation. To avoid this problem, we used SYF mouse
embryonic fibroblast cells, which do not express SFKs.(25) As
there is currently no antibody that recognizes mouse Pragmin,
SYF cells treated with Csk-specific siRNA were also trans-
fected with a Myc-Pragmin vector to monitor the level of
Pragmin tyrosine phosphorylation. The results of the experi-
ment revealed that Csk knockdown reduced the level of Prag-
min tyrosine phosphorylation (Fig. 1d). From these
observations, we concluded that, in addition to SFKs, Csk is
capable of tyrosine-phosphorylating Pragmin.

Pragmin is a new substrate for Csk tyrosine kinase. These
observations suggested that Pragmin is a new substrate of Csk
for tyrosine phosphorylation. To directly test this idea, we
expressed GST-fused WT Pragmin or the Y391F Pragmin
mutant in E. coli and affinity-purified them (Fig. S2). Using
the GST–Pragmin fusions, we carried out an in vitro kinase
assay. As a result, Csk phosphorylated Pragmin, and the major
site of Csk phosphorylation was the EPIYA motif, although
non-EPIYA sites were also tyrosine-phosphorylated with less
efficiency (Fig. 1e). Pragmin contains 21 tyrosine residues
other than the tyrosine residue (Y391) in the EPIYA motif
(Fig. S3). To determine actual tyrosine phosphorylation sites
of Pragmin by Csk in cells, we used mammalian expression
vectors for the Myc-tagged N-terminal Pragmin fragment
(1–829), which contains nine tyrosine residues including the
EPIYA motif, and the Myc-tagged C-terminal Pragmin frag-
ment (830–1368), which contains 13 tyrosine residues.(1) AGS

cells were transiently transfected with the Csk vector together
with the Myc-Pragmin, Myc-Pragmin (1–829), or Myc-Prag-
min (830–1368) vector. Immunoblotting analysis of the cell
lysates revealed that Csk efficiently phosphorylated full-length
Pragmin and the N-terminal Pragmin fragment but not the
C-terminal Pragmin fragment (Fig. 1f). Consistently, pheny-
lalanine substitutions of the nine tyrosine residues present in
the N-terminal Pragmin fragment abolished Pragmin tyrosine
phosphorylation by Csk (Fig. 1g). Given this, we next gener-
ated Y66/119/146F, Y238/343/368F, and Y391/465/599F
mutants of Pragmin and expressed them together with Csk in
AGS cells. Immunoblot analysis of the cell lysates showed that
the level of Pragmin tyrosine phosphorylation was substantially
reduced in the Y238/343/368F and Y391/465/599F mutants
but not in the Y66/119/146F mutant (Fig. 1h). Thus, there is at
least one tyrosine residue in Y238/343/368 and at least one
tyrosine residue in Y391/465/599 that undergoes tyrosine phos-
phorylation by Csk. We next generated Y238F, Y343F,
Y368F, Y238/391F, Y343/391F, and Y368/391F mutants of
Pragmin, as Y391 constitutes the EPIYA motif and has been
shown to undergo tyrosine phosphorylation. Expression of
these Pragmin mutants together with Csk in AGS cells
revealed that Y391 was the major site of Pragmin tyrosine
phosphorylation, while Y238 and Y343 were also tyrosine
phosphorylated (Fig. 1i). To consolidate the observation, we
generated a Y238/343/391F mutant and found that the mutant
did not undergo tyrosine phosphorylation by Csk in AGS cells
(Fig. 1j). From these observations, we concluded that Csk
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phosphorylates Pragmin on Y238, Y343, and Y391; of these,
Y391 is a primary site of phosphorylation.

Catalytic activation of Csk by complex formation with Prag-

min. To determine whether the complex formation with Prag-
min influences the kinase activity of Csk, we carried out an
in vitro kinase assay of Csk using GST-fused C-terminal 13-
amino-acid sequence of c-Src (GST-Src-tail), which contains a
well-recognized tyrosine phosphorylation site of c-Src by Csk.
A bacterial expression vector for the GST-fused Src-tail was
made and the fusion protein was expressed in E. coli. After
affinity purification, GST-Src-tail was used as a substrate of
Csk in an in vitro kinase assay. The results of the experiment
convincingly indicated that the kinase activity of Csk was sub-
stantially potentiated in the presence of tyrosine phosphory-
lated WT Pragmin but not in the presence of Y391 Pragmin
mutant (Fig. 2a,b). Although Csk has been reported to exist as
a constitutively active form,(16) the results of the experiment
indicated that its enzymatic activity is further potentiated fol-
lowing complex formation with Pragmin. Interestingly, phos-
phorylation of GST-Src-tail by Csk was evident at 15 min
after the onset of the reaction in the presence of tyrosine phos-
phorylated Pragmin. In contrast, there was little phosphoryla-
tion of GST-Src-tail after 1 h of incubation in the presence of
non-phosphorylated Pragmin (Fig. 2b). This difference was
thought to be due to immediate complex formation between
Csk and tyrosine phosphorylated Pragmin, which potentiates

Csk kinase activity. In the case of non-phosphorylated Prag-
min, Csk needs to phosphorylate Pragmin before complex for-
mation, which then potentiates Csk kinase activity (Fig. 2b).
The results indicated the presence of a positive feedback regu-
latory loop of Csk activation, created by the complex forma-
tion between Csk and tyrosine phosphorylated Pragmin at the
EPIYA motif.

Biological consequence for complex formation between Prag-

min and Csk. Ectopic expression of Pragmin in AGS cells has
been reported to induce an elongated cell shape.(6) We there-
fore investigated the effect of Csk on the Pragmin-mediated
morphogenetic change of cells. To do so, MKN7 gastric
epithelial cells were co-infected with a lentivirus transducing
Csk and a lentivirus transducing WT or Y391F Pragmin,
which lacks the EPIYA motif. At 48 h after infection, cell
morphology was examined by light microscopy. Cell elonga-
tion was found in 10.8%, 4.4%, and 5.5% of cells singly
expressing WT Pragmin, Pragmin Y391F, and Csk, respec-
tively (Fig. 3a,b). Co-expression of Csk and WT Pragmin, but
not Y391F Pragmin, substantially augmented the morphologi-
cal change (27.6%) (Fig. 3a,b). We also investigated whether
the cell-morphological changes induced by the Pragmin–Csk
interaction was associated with altered cell motility. Whereas
single expression of Csk or Pragmin did not substantially
induce cell scattering, co-expressing of Csk and Pragmin did
markedly induce cell scattering in MKN7 cells (Fig. 3c),
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indicating that activation of Csk by Pragmin plays a key role
in the cell-scattering phenotype. The observation also indicated
that the cell-morphological changes induced by Csk or Prag-
min is a prerequisite for induction of cell scattering, which
required both Csk and Pragmin. Possibly, the threshold for
induction of the cell-morphological changes by Csk or Prag-
min was lower than that required for induction of cell scatter-
ing by Csk or Pragmin, respectively. To test this idea, we
investigated whether the morphological change induced by
ectopic expression of Csk and Pragmin was dependent on
endogenous Pragmin and Csk, respectively. To do so, we trea-
ted MKN7 cells with Csk-specific siRNA and then were
infected with a lentivirus transducing Pragmin. At 48 h after
infection, cell morphology was examined by light microscopy.
Cell elongation induced by overexpressing Pragmin was signif-
icantly reduced by Csk knockdown (Fig. 4a–c). In a reciprocal
experiment, we treated MKN7 cells with Pragmin-specific
siRNA and then infected a lentivirus transducing Csk. Cell
elongation induced by overexpressing Csk was again reduced
by knockdown of Pragmin (Fig. 4d–f). Taken together, these
results provided additional evidence for the presence of a posi-
tive feedback regulatory loop of Csk activation by forming a
complex between Csk and Pragmin.
To gain insights into mechanisms underlying enhanced cell

motility by the Pragmin–Csk interaction, we examined the sub-
cellular localization of Pragmin and Csk by immunostaining.
To this end, Myc-Pragmin and Csk-Flag were co-expressed in
AGS cells by lentivirus-mediated transduction. As previously
reported, both proteins were primarily distributed to the cyto-
plasm.(6) However, a fraction of Pragmin was also co-localized

with Csk at focal adhesion spots (Fig. 5a). More importantly,
endogenous Pragmin was found to be primarily distributed to
the focal adhesion spots as determined by co-staining with an
anti-Pragmin antibody and an anti-vinculin antibody (Fig. 5b).
Given this, we tested whether Pragmin interacts with a focal
adhesion component(s) by co-precipitation experiment. Vin-
culin was co-immunoprecipitated with Pragmin in AGS cells
(Fig. 5c). Vinculin might therefore recruit the Pragmin and
Pragmin-associated Csk to focal adhesion spots, in which Prag-
min-activated Csk stimulates cell-morphological transformation
with elevated cell motility.

Discussion

In the present study, we showed that Pragmin directly interacts
with Csk, a tyrosine kinase that negatively regulates SFK activ-
ity, through the tyrosine phosphorylated EPIYA motif. Follow-
ing complex formation, Pragmin stimulates the kinase activity of
Csk, which in turn phosphorylates Pragmin on Y238, Y343, and
Y391. As Y391 constitutes the Pragmin EPIYA motif, the phos-
phorylation promotes Pragmin–Csk interaction, which further
stimulates Csk kinase activity. The Pragmin–Csk interaction
gives rise to morphological changes and induces scattering in
epithelial cells, in which a fraction of Pragmin and Csk are co-
localized to focal adhesions, integrin-containing multiprotein
structures that govern cell–ECM interaction.(30) The results of
the present study therefore uncover a novel role of the Pragmin–
Csk complex, which is dependent on tyrosine phosphorylation
of the Pragmin EPIYA motif, in the regulation of cell shape and
cell motility.
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Although Csk shows a strong substrate tropism toward the
C-terminal inhibitory tyrosine residue that is highly conserved
among the SFKs (Y530 in the case of human c-Src), it also
phosphorylates non-SFK substrates.(16) C-terminal Src kinase
phosphorylates the CD45 tyrosine phosphatase and thereby
creates a binding site for Lck, a T cell-specific SFK, while
enhancing CD45 phosphatase activity.(19) Following tyrosine
phosphorylation by Csk, platelet endothelial cell adhesion
molecule-1 (PECAM-1), an adhesion molecule expressed in

hematopoietic and endothelial cells, acquires the ability to bind
to SH2 domain-containing phosphatases, SHP1 and SHP2.(20)

C-terminal Src kinase also phosphorylates the P2X3 receptor,
which is expressed in sensory neurons, and thereby attenuates
the receptor function.(21) Drosophila Csk phosphorylates large
tumor suppressor (LATS) kinase, a key component of the
tumor-suppressive Hippo signaling pathway, indicating a role
of Csk in organ/tissue size control.(31) The present study adds
Pragmin to the list of Csk substrates, while revealing a novel
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phosphorylation-dependent functional interaction between Csk
and Pragmin. Pragmin has been reported to undergo rapid tyro-
sine phosphorylation on the EPIYA motif following stimula-
tion with growth factors such as epidermal growth factor.(6,32)

C-terminal Src kinase is considered to be constitutively active
and its biological function is primarily determined by its sub-
cellular localization through partner proteins.(16) However, sim-
ilar to Cbp,(33) Csk kinase activity is substantially augmented
following complex formation with Pragmin. As Csk phospho-
rylates Pragmin at the EPIYA motif to which Csk binds, Prag-
min–Csk complex formation and subsequent enzymatic
activation of Csk potentiate EPIYA phosphorylation of Prag-
min, creating a positive feedback regulatory loop of Csk by
Pragmin (Fig. 6). C-terminal Src kinase therefore undergoes
robust activation at sites where Pragmin–Csk interaction
occurs.
Several studies have shown a connection between Pragmin

and oncogenesis. In colon carcinoma cells, Pragmin stimulates
the invasive phenotype in an EPIYA phosphorylation-depen-
dent manner.(4) Pragmin is also overexpressed in PDAC cells,
in which Pragmin is heavily tyrosine phosphorylated at the
EPIYA motif.(5) Ectopic expression of Pragmin in human pan-
creatic ductal epithelial cells to a level that was comparable to
that in PDAC cells resulted in increased tyrosine phosphoryla-
tion of c-Src at the C-terminal inhibitory phosphorylation site
(Y530),(5) suggesting that the level of elevated Pragmin in
PDAC cells is sufficient to activate Csk. In contrast, because
of its well-described role as a negative regulator of SFKs, Csk
has been considered a tumor suppressor, despite lack of muta-
tion in human cancers.(16) In fact, downregulation of Cbp,
which recruits Csk to the plasma membrane, provokes cyto-
plasmic retention of Csk, which maintains the membrane-loca-
lized SFKs constitutively active.(18) Nevertheless, the role of
Csk in oncogenesis may be more complicated than expected.
In particular, Src has recently been reported to negatively reg-
ulate the pro-oncogenic Ras signaling pathway.(24) In this
instance, Src selectively binds to and phosphorylates the GTP-
loaded form of Ras on Y32, which inhibits Ras–Raf interaction
while promoting Ras–GAP association and subsequent GTP
hydrolysis. Thus, Csk-mediated inactivation of SFKs potenti-
ates the Ras action. C-terminal Src kinase may therefore play
both positive and negative roles in oncogenesis, depending on
cell context.

The sequential assembly and disassembly of focal adhesions
play a key role in cell migration.(34) Loss of Csk in MEF cells
impaired cell migration induced by the activation of G protein-
coupled receptor or receptor tyrosine kinase, which was con-
comitantly associated with a defect in focal adhesion turnover
(assembly/disassembly).(35) Ectopically expressed Csk was
localized to focal adhesions and caused disruption of focal
adhesion spots, redistribution of integrins, and inhibition of
cell adhesion in HeLa cells.(36) At focal adhesions, Csk may
regulate integrin-dependent cell–matrix interaction by phospho-
rylating both SFKs and non-SFK substrates that constitute the
focal adhesion machineries.(30,34) It is thus intriguing to specu-
late that spatiotemporal oscillation of the Csk activity underlies
the assembly/disassembly of focal adhesions and that the phos-
pho-EPIYA-dependent Pragmin–Csk interaction serves as a
central player that ensures adequate turnover of cell adhesions
that is crucial for cell motility. In this scenario, Pragmin is ini-
tially phosphorylated at the EPIYA motif by receptor tyrosine
kinase and/or SFK, which are activated in response to mito-
genic stimuli.(6,32) This initial Csk activation is then robustly
amplified by the autocatalytic Pragmin–Csk interaction, which
should be followed by the disruption of the Pragmin–Csk com-
plex to terminate Csk activation. Although the mechanism
underlying the complex disruption is currently unknown, it
may include tyrosine dephosphorylation of the Pragmin EPIYA
motif by phosphatases such as SHP2, which also localizes to
focal adhesions.(37) In turn, accelerated focal adhesion turnover
through deregulation of the Pragmin–Csk axis may induce
aberrant cell migration that contributes to tumor invasion and
metastasis.
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