

Received 25 September 2014 Accepted 9 October 2014

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: indole; crystal structure; MRI contrast agent

CCDC reference: 1028397 **Supporting information**: this article has supporting information at journals.iucr.org/e

ions

Crystal structure of dimethyl 3,3'-[(3-nitrophenyl)methylene]bis(1*H*-indole-2-carboxylate) ethanol monosolvate

CrossMark

Hong-Shun Sun,* Yu-Long Li, Hong Jiang, Ning Xu and Hong Xu

Chemical Engineering Department, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China. *Correspondence e-mail: njutshs@126.com

In the title compound, $C_{27}H_{21}N_3O_6\cdot C_2H_5OH$, the indole ring systems are approximately perpendicular to each other, with a dihedral angle of 89.3 (5)°; the plane of the benzene ring is oriented with respect to the indole ring systems at 49.9 (5) and 73.4 (3)°. In the crystal, molecules are linked by N-H···O and O-H···O hydrogen bonds and weak C-H··· π interactions into a threedimensional supramolecular architecture. A void of 33.0 (7) Å³ is observed in the crystal structure. The solvent ethanol molecule acts as a donor, forming an O-H···O hydrogen bond, reinforcing the framework structure.

1. Chemical context

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter *et al.*, 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be potentially bioactive compounds (Chang *et al.*, 1999; Ge *et al.*, 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of the bis-indolymethane derivatives as a precursor for MRI contrast agents (Ni, 2008). We report herein the synthesis and crystal structure of the title compound.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = $89.3 (5)^{\circ}$] while the benzene ring (C1–C6) is twisted to the N1/C8–C15 and N2/C18–C25 indole ring systems with dihedral angles of 49.9 (5) and 73.4 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of attached indole ring system are 10.0 (3) and 4.0 (4)°. The nitro group is also nearly coplanar with the attached benzene ring, the dihedral angle being 7.7 (7)°. A void of 33.0 (7) Å³ is observed

OPEN d ACCESS

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots O7^{i}$	0.86	2.17	2.924 (3)	146
N3-H3A····O4 ⁱⁱ	0.86	2.02	2.861 (4)	166
$O7 - H7B \cdots O5$	0.82	2.13	2.892 (4)	154
C10-H10ACg3	0.93	2.87	3.633 (4)	140
$C11 - H11A \cdots Cg5^{iii}$	0.93	2.76	3.634 (4)	156
$C17 - H17B \cdots Cg4^{i}$	0.96	2.89	3.813 (5)	163
$C27-H27B\cdots Cg5^{ii}$	0.96	2.75	3.496 (4)	135
~				
Symmetry codes: (i)	-x + 2, -y, -y	-z + 1; (ii)	-x + 2, -y + 1	, -z + 1; (iii)
-x + 2, -y, -z.				

in the crystal structure. The solvent ethanol molecule acts as a donor, forming an $O-H \cdots O$ hydrogen bond, reinforcing the framework structure.

3. Supramolecular features

In the crystal, the organic molecules and ethanol solvent molecules are linked by classic $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds and weak $C-H\cdots \pi$ interactions involved the benzene rings, forming the three-dimensional supramolecular architecture (Table 1).

4. Database survey

Several similar structures have been reported previously, *i.e.* diethyl 3,3'-(phenylmethylene)bis(1*H*-indole-2-carboxylate)

Figure 1

The molecular structure of the title molecule. showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the hydrogen bond between the main molecule and the ethanol solvent molecule.

Crystal data	
Chemical formula	$C_{27}H_{21}N_{3}O_{6}\cdot C_{2}H_{6}O$
Mr	529.54
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	11.074 (2), 11.585 (2), 12.898 (3)
α, β, γ (°)	114.09 (3), 106.68 (3), 99.20 (3)
$V(\dot{A}^3)$	1372.5 (5)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Enraf-Nonius CAD-4
Absorption correction	ψ scan (North <i>et al.</i> , 1968)
T_{\min}, \hat{T}_{\max}	0.973, 0.991
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5313, 5032, 3254
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.604
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.166, 1.04
No. of reflections	5032
No. of parameters	352
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.19, -0.26

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

(Sun *et al.*, 2012) and dimethyl 3,3'-(phenylmethylene)bis(1*H*-indole-2-carboxylate) (Sun *et al.*, 2013). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles are 82.0 (5) and 84.5 (5)°, respectively.

5. Synthesis and crystallization

Methyl indole-2-carboxylate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-nitrobenzaldehyde (7.6 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by thin-layer chromatography (CHCl₃-hexane = $1:1 \nu/\nu$). The yield was 90%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

H atoms were positioned geometrically, with N-H = 0.86Å and O-H = 0.82Å, and C-H = 0.93, 0.96, 0.97 or 0.98 Å for aromatic, methyl, methene and methine H atom, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = xU_{\rm eq}({\rm C,N,O})$, where x = 1.5 for methyl and hydroxy, and x = 1.2 for all other H atoms.

Acknowledgements

Diffraction data were collected in the Center of Testing and Analysis, Nanjing University. The work was supported by the Funding of Nanjing College of Chemical Technology, China (NHKY-2013–02).

References

Chang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). *Biochem. Pharmacol.* 58, 825–834.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203.

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, 02764.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, 01516.
- Sundberg, R. J. (1996). *The Chemistry of Indoles*, p. 113. New York: Academic Press.

supporting information

Acta Cryst. (2014). E70, 370-372 [doi:10.1107/S1600536814022296]

Crystal structure of dimethyl 3,3'-[(3-nitrophenyl)methylene]bis(1*H*-indole-2carboxylate) ethanol monosolvate

Hong-Shun Sun, Yu-Long Li, Hong Jiang, Ning Xu and Hong Xu

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

3,3'-[(3-Nitrophenyl)methylene]bis(1H-indole-2-carboxylate) ethanol monosolvate

Crystal data

 $C_{27}H_{21}N_{3}O_{6}C_{2}H_{6}O$ $M_{r} = 529.54$ Triclinic, *P*I Hall symbol: -P 1 a = 11.074 (2) Å b = 11.585 (2) Å c = 12.898 (3) Å $a = 114.09 (3)^{\circ}$ $\beta = 106.68 (3)^{\circ}$ $\gamma = 99.20 (3)^{\circ}$ $V = 1372.5 (5) Å^{3}$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.973, T_{\max} = 0.991$ 5313 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.166$ S = 1.045032 reflections 352 parameters Z = 2 F(000) = 556 $D_x = 1.281 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

5032 independent reflections 3254 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = 0 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 14$ 3 standard reflections every 200 reflections intensity decay: 1%

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0769P)^2 + 0.4188P]$	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4712 (3)	-0.2518 (3)	0.0074 (4)	0.0901 (11)	
N2	1.1545 (2)	0.0075 (2)	0.4249 (2)	0.0438 (6)	
H2A	1.2151	0.0123	0.4870	0.053*	
N3	0.9859 (2)	0.4742 (2)	0.3448 (2)	0.0414 (5)	
H3A	0.9740	0.5507	0.3650	0.050*	
O1	0.4711 (3)	-0.2634 (3)	0.0977 (4)	0.1266 (13)	
O2	0.3872 (3)	-0.3273 (3)	-0.0959 (3)	0.1360 (14)	
O3	1.1911 (2)	0.21184 (19)	0.64357 (18)	0.0599 (6)	
O4	1.0053 (2)	0.25277 (18)	0.55999 (17)	0.0506 (5)	
O5	0.71167 (19)	0.2865 (2)	0.36509 (19)	0.0548 (5)	
O6	0.77081 (18)	0.49394 (18)	0.39092 (18)	0.0504 (5)	
07	0.6624 (2)	0.0902 (2)	0.4450 (2)	0.0733 (7)	
H7B	0.7018	0.1489	0.4354	0.110*	
C1	0.6788 (3)	-0.0661 (3)	0.1405 (3)	0.0490 (7)	
H1A	0.6817	-0.0846	0.2047	0.059*	
C2	0.5754 (3)	-0.1429 (3)	0.0248 (3)	0.0565 (8)	
C3	0.5662 (3)	-0.1189 (3)	-0.0723 (3)	0.0616 (9)	
H3B	0.4956	-0.1715	-0.1484	0.074*	
C4	0.6637 (3)	-0.0153 (3)	-0.0543 (3)	0.0607 (9)	
H4A	0.6603	0.0025	-0.1190	0.073*	
C5	0.7674 (3)	0.0629 (3)	0.0598 (3)	0.0497 (7)	
H5A	0.8323	0.1337	0.0710	0.060*	
C6	0.7767 (3)	0.0382 (2)	0.1580 (2)	0.0395 (6)	
C7	0.8906 (2)	0.1240 (2)	0.2847 (2)	0.0361 (6)	
H7A	0.8495	0.1390	0.3451	0.043*	
C8	0.9896 (2)	0.0532 (2)	0.3134 (2)	0.0354 (6)	
C9	1.0194 (3)	-0.0546 (2)	0.2304 (2)	0.0389 (6)	
C10	0.9715 (3)	-0.1346 (3)	0.1015 (3)	0.0484 (7)	
H10A	0.9044	-0.1207	0.0497	0.058*	
C11	1.0243 (3)	-0.2330 (3)	0.0530 (3)	0.0598 (8)	
H11A	0.9910	-0.2870	-0.0321	0.072*	
C12	1.1276 (3)	-0.2544 (3)	0.1288 (3)	0.0609 (9)	

U12A	1 1624	_0.2211	0.0030	0.072*
C12	1.1024 1 1778 (2)	-0.1780(2)	0.0930	0.073°
	1.1776 (5)	-0.1789(3)	0.2342 (3)	0.0524 (6)
ПІЗА	1.2402	-0.1951	0.3044	0.003
C14	1.1231 (3)	-0.0798(3)	0.3043(2)	0.0410 (6)
	1.0/33 (3)	0.08/2 (2)	0.4314 (2)	0.0390 (6)
C16	1.0840 (3)	0.1913 (3)	0.5490 (2)	0.0425 (7)
C17	1.2112 (4)	0.3165 (3)	0.7644 (3)	0.0695 (10)
H17A	1.2900	0.3234	0.8255	0.104*
H17B	1.1360	0.2952	0.7838	0.104*
H17C	1.2208	0.3999	0.7635	0.104*
C18	0.9553 (2)	0.2606 (2)	0.3046 (2)	0.0359 (6)
C19	1.0709 (3)	0.3062 (2)	0.2854 (2)	0.0378 (6)
C20	1.1640 (3)	0.2491 (3)	0.2473 (3)	0.0477 (7)
H20A	1.1577	0.1615	0.2292	0.057*
C21	1.2643 (3)	0.3253 (3)	0.2377 (3)	0.0624 (9)
H21A	1.3258	0.2880	0.2123	0.075*
C22	1.2763 (3)	0.4570 (3)	0.2648 (3)	0.0631 (9)
H22A	1.3456	0.5054	0.2570	0.076*
C23	1.1893 (3)	0.5166 (3)	0.3023 (3)	0.0529 (8)
H23A	1.1980	0.6047	0.3208	0.064*
C24	1.0863 (3)	0.4401 (3)	0.3120 (2)	0.0399 (6)
C25	0.9066 (2)	0.3671 (2)	0.3405 (2)	0.0366 (6)
C26	0.7876 (3)	0.3752 (3)	0.3664 (2)	0.0394 (6)
C27	0.6529 (3)	0.5128 (3)	0.4122 (3)	0.0663 (9)
H27A	0.6516	0.6011	0.4285	0.099*
H27B	0.6530	0.5013	0.4819	0.099*
H27C	0.5757	0.4485	0.3405	0.099*
C28	0.5250 (4)	0.0591 (4)	0.3849 (4)	0.0870 (12)
H28A	0.4800	-0.0202	0.3845	0.104*
H28B	0.5049	0.0384	0.2998	0.104*
C29	0.4715 (4)	0.1671 (5)	0.4421 (5)	0.1096 (17)
H29A	0.3772	0.1388	0.3969	0.164*
H29B	0.5131	0.2452	0.4404	0.164*
H29C	0 4894	0.1872	0 5260	0 164*
11270	0.1071	0.10/2	0.0200	0.101

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.062 (2)	0.059 (2)	0.101 (3)	-0.0028 (16)	0.000 (2)	0.025 (2)
N2	0.0404 (13)	0.0425 (13)	0.0432 (14)	0.0130 (11)	0.0046 (10)	0.0235 (11)
N3	0.0425 (13)	0.0313 (11)	0.0503 (14)	0.0153 (10)	0.0173 (11)	0.0187 (10)
01	0.096 (2)	0.107 (3)	0.129 (3)	-0.0288 (19)	0.014 (2)	0.057 (2)
O2	0.102 (2)	0.087 (2)	0.109 (3)	-0.0398 (19)	-0.024 (2)	0.0179 (19)
03	0.0643 (14)	0.0489 (12)	0.0396 (12)	0.0150 (10)	-0.0031 (10)	0.0140 (10)
04	0.0582 (13)	0.0395 (11)	0.0457 (12)	0.0168 (10)	0.0147 (10)	0.0163 (9)
O5	0.0454 (12)	0.0523 (12)	0.0729 (15)	0.0170 (10)	0.0255 (11)	0.0333 (11)
06	0.0448 (11)	0.0443 (11)	0.0645 (13)	0.0227 (9)	0.0227 (10)	0.0243 (10)
07	0.0597 (14)	0.0859 (17)	0.0859 (17)	0.0228 (13)	0.0164 (13)	0.0598 (15)

supporting information

C1	0.0440 (16)	0.0369 (15)	0.0531 (18)	0.0118 (13)	0.0097 (14)	0.0166 (13)
C2	0.0388 (16)	0.0382 (16)	0.064 (2)	0.0084 (13)	0.0055 (15)	0.0110 (15)
C3	0.0479 (19)	0.054 (2)	0.0476 (19)	0.0224 (16)	-0.0033 (15)	0.0054 (15)
C4	0.060 (2)	0.065 (2)	0.0404 (17)	0.0271 (18)	0.0054 (15)	0.0173 (15)
C5	0.0463 (17)	0.0507 (17)	0.0430 (17)	0.0149 (14)	0.0090 (14)	0.0203 (14)
C6	0.0372 (14)	0.0332 (14)	0.0385 (15)	0.0163 (12)	0.0081 (12)	0.0114 (12)
C7	0.0359 (14)	0.0326 (13)	0.0357 (14)	0.0115 (11)	0.0112 (11)	0.0142 (11)
C8	0.0331 (14)	0.0305 (13)	0.0385 (15)	0.0076 (11)	0.0090 (11)	0.0171 (11)
C9	0.0396 (15)	0.0355 (14)	0.0413 (15)	0.0124 (12)	0.0117 (12)	0.0207 (12)
C10	0.0544 (18)	0.0459 (16)	0.0425 (17)	0.0196 (14)	0.0143 (14)	0.0208 (14)
C11	0.077 (2)	0.0561 (19)	0.0492 (18)	0.0301 (18)	0.0282 (17)	0.0225 (15)
C12	0.073 (2)	0.0516 (18)	0.071 (2)	0.0364 (17)	0.0347 (19)	0.0298 (17)
C13	0.0521 (18)	0.0464 (17)	0.063 (2)	0.0234 (14)	0.0187 (16)	0.0296 (16)
C14	0.0419 (15)	0.0367 (14)	0.0438 (16)	0.0112 (12)	0.0134 (13)	0.0215 (13)
C15	0.0394 (15)	0.0315 (13)	0.0419 (15)	0.0086 (12)	0.0096 (12)	0.0189 (12)
C16	0.0462 (16)	0.0325 (14)	0.0395 (16)	0.0052 (13)	0.0062 (13)	0.0185 (12)
C17	0.086 (3)	0.0516 (19)	0.0377 (18)	0.0107 (18)	-0.0004 (17)	0.0122 (15)
C18	0.0348 (14)	0.0337 (13)	0.0319 (14)	0.0104 (11)	0.0062 (11)	0.0141 (11)
C19	0.0365 (14)	0.0350 (14)	0.0348 (14)	0.0113 (12)	0.0090 (12)	0.0139 (12)
C20	0.0458 (17)	0.0403 (15)	0.0557 (18)	0.0156 (13)	0.0210 (14)	0.0205 (14)
C21	0.053 (2)	0.063 (2)	0.074 (2)	0.0243 (17)	0.0356 (18)	0.0269 (18)
C22	0.0520 (19)	0.056 (2)	0.083 (2)	0.0128 (16)	0.0345 (18)	0.0313 (18)
C23	0.0534 (18)	0.0423 (16)	0.065 (2)	0.0129 (15)	0.0245 (16)	0.0278 (15)
C24	0.0390 (15)	0.0374 (14)	0.0397 (15)	0.0115 (12)	0.0118 (12)	0.0179 (12)
C25	0.0358 (14)	0.0320 (13)	0.0357 (14)	0.0108 (11)	0.0088 (11)	0.0141 (11)
C26	0.0351 (14)	0.0378 (15)	0.0394 (15)	0.0115 (12)	0.0085 (12)	0.0174 (12)
C27	0.0509 (19)	0.071 (2)	0.085 (3)	0.0347 (17)	0.0318 (18)	0.035 (2)
C28	0.062 (2)	0.098 (3)	0.091 (3)	0.010 (2)	0.005 (2)	0.059 (3)
C29	0.070 (3)	0.117 (4)	0.187 (5)	0.039 (3)	0.061 (3)	0.103 (4)

Geometric parameters (Å, °)

N1—02	1.218 (4)	C10-C11	1.369 (4)	
N101	1.226 (5)	C10—H10A	0.9300	
N1-C2	1.459 (5)	C11—C12	1.404 (4)	
N2-C14	1.362 (3)	C11—H11A	0.9300	
N2-C15	1.383 (3)	C12—C13	1.364 (4)	
N2—H2A	0.8600	C12—H12A	0.9300	
N3—C24	1.358 (3)	C13—C14	1.395 (4)	
N3—C25	1.372 (3)	C13—H13A	0.9300	
N3—H3A	0.8600	C15—C16	1.458 (4)	
O3—C16	1.339 (3)	C17—H17A	0.9600	
O3—C17	1.456 (4)	C17—H17B	0.9600	
O4—C16	1.214 (3)	C17—H17C	0.9600	
O5—C26	1.211 (3)	C18—C25	1.385 (3)	
O6—C26	1.337 (3)	C18—C19	1.433 (4)	
O6—C27	1.441 (3)	C19—C20	1.409 (4)	
O7—C28	1.402 (4)	C19—C24	1.414 (4)	

O7—H7B	0.8200	C20—C21	1.372 (4)
C1—C6	1.380 (4)	C20—H20A	0.9300
C1—C2	1.393 (4)	C21—C22	1.393 (4)
C1—H1A	0.9300	C21—H21A	0.9300
C2—C3	1.370 (5)	C22—C23	1.359 (4)
C3—C4	1.369 (5)	C22—H22A	0.9300
С3—Н3В	0.9300	C23—C24	1.397 (4)
C4—C5	1.384 (4)	C23—H23A	0.9300
C4—H4A	0.9300	C25—C26	1.457 (4)
C5—C6	1.388 (4)	С27—Н27А	0.9600
C5—H5A	0.9300	С27—Н27В	0.9600
C6—C7	1.529 (4)	С27—Н27С	0.9600
C7—C18	1.511 (3)	C28—C29	1.482 (6)
C7—C8	1.521 (3)	C28—H28A	0.9700
C7—H7A	0.9800	C28—H28B	0.9700
C8—C15	1.384 (3)	С29—Н29А	0.9600
C8—C9	1.435 (4)	С29—Н29В	0.9600
C9—C10	1.408 (4)	C29—H29C	0.9600
C9—C14	1.420 (4)		
O2—N1—O1	122.4 (4)	N2—C15—C8	109.5 (2)
O2—N1—C2	118.9 (4)	N2-C15-C16	121.9 (2)
O1—N1—C2	118.7 (3)	C8—C15—C16	128.6 (2)
C14—N2—C15	109.2 (2)	O4—C16—O3	123.8 (3)
C14—N2—H2A	125.4	O4—C16—C15	123.9 (2)
C15—N2—H2A	125.4	O3—C16—C15	112.2 (2)
C24—N3—C25	109.1 (2)	O3—C17—H17A	109.5
C24—N3—H3A	125.4	O3—C17—H17B	109.5
C25—N3—H3A	125.4	H17A—C17—H17B	109.5
C16—O3—C17	115.9 (2)	O3—C17—H17C	109.5
C26—O6—C27	117.0 (2)	H17A—C17—H17C	109.5
С28—О7—Н7В	109.5	H17B—C17—H17C	109.5
C6—C1—C2	118.6 (3)	C25—C18—C19	105.9 (2)
C6—C1—H1A	120.7	C25—C18—C7	124.8 (2)
C2—C1—H1A	120.7	C19—C18—C7	129.2 (2)
C3—C2—C1	122.8 (3)	C20—C19—C24	117.8 (2)
C3—C2—N1	118.8 (3)	C20—C19—C18	135.2 (2)
C1—C2—N1	118.3 (3)	C24—C19—C18	107.0 (2)
C4—C3—C2	118.2 (3)	C21—C20—C19	118.7 (3)
C4—C3—H3B	120.9	С21—С20—Н20А	120.6
С2—С3—Н3В	120.9	С19—С20—Н20А	120.6
C3—C4—C5	120.2 (3)	C20—C21—C22	121.8 (3)
C3—C4—H4A	119.9	C20—C21—H21A	119.1
C5—C4—H4A	119.9	C22—C21—H21A	119.1
C4—C5—C6	121.5 (3)	C23—C22—C21	121.6 (3)
C4—C5—H5A	119.2	C23—C22—H22A	119.2
C6—C5—H5A	119.2	C21—C22—H22A	119.2
C1—C6—C5	118.6 (3)	C22—C23—C24	117.3 (3)

C1—C6—C7	119.3 (2)	С22—С23—Н23А	121.4
C5—C6—C7	122.1 (2)	С24—С23—Н23А	121.4
C18—C7—C8	113.3 (2)	N3—C24—C23	129.1 (2)
С18—С7—С6	112.2 (2)	N3—C24—C19	108.2 (2)
C8—C7—C6	113.1 (2)	C23—C24—C19	122.8 (3)
С18—С7—Н7А	105.8	N3—C25—C18	109.9 (2)
С8—С7—Н7А	105.8	N3—C25—C26	120.3 (2)
С6—С7—Н7А	105.8	C18—C25—C26	129.7 (2)
C15—C8—C9	106.5 (2)	Q5—C26—Q6	123.4 (2)
C15—C8—C7	124.1 (2)	O5—C26—C25	125.2 (2)
C9—C8—C7	129.4 (2)	O6—C26—C25	111.4 (2)
C10—C9—C14	117.5 (2)	O6—C27—H27A	109.5
C10—C9—C8	135.7 (2)	06—C27—H27B	109.5
C14—C9—C8	106.8 (2)	H27A—C27—H27B	109.5
C11—C10—C9	119.5 (3)	06—C27—H27C	109.5
C11—C10—H10A	120.3	H27A—C27—H27C	109.5
C9—C10—H10A	120.3	H27B— $C27$ — $H27C$	109.5
C10-C11-C12	121.5 (3)	07-C28-C29	114.0 (4)
C10—C11—H11A	119.2	07—C28—H28A	108.8
C12—C11—H11A	119.2	C29—C28—H28A	108.8
C13 - C12 - C11	121.1 (3)	07—C28—H28B	108.8
C13—C12—H12A	119.4	C29—C28—H28B	108.8
C11—C12—H12A	119.4	H28A—C28—H28B	107.7
C12-C13-C14	117.7 (3)	C28—C29—H29A	109.5
C12—C13—H13A	121.2	C28—C29—H29B	109.5
C14—C13—H13A	121.2	H29A—C29—H29B	109.5
N_{2} - C14 - C13	129.2 (3)	C_{28} C_{29} H_{29C}	109.5
N2-C14-C9	1081(2)	H_{29A} C_{29} H_{29C}	109.5
C_{13} C_{14} C_{9}	122.7(3)	H29B - C29 - H29C	109.5
			10010
C6—C1—C2—C3	-0.5 (4)	C7—C8—C15—N2	-177.3(2)
C6-C1-C2-N1	-179.1 (3)	C9—C8—C15—C16	179.5 (3)
O2—N1—C2—C3	8.1 (5)	C7—C8—C15—C16	1.0 (4)
O1—N1—C2—C3	-171.5 (4)	C17—O3—C16—O4	-1.0(4)
O2—N1—C2—C1	-173.3 (3)	C17—O3—C16—C15	178.6 (2)
O1—N1—C2—C1	7.1 (5)	N2-C15-C16-O4	-171.1(2)
C1—C2—C3—C4	0.6 (5)	C8—C15—C16—O4	10.7 (4)
N1—C2—C3—C4	179.1 (3)	N2-C15-C16-O3	9.3 (4)
C2-C3-C4-C5	-0.7(5)	C8-C15-C16-O3	-168.9(3)
C3—C4—C5—C6	0.9 (5)	C8—C7—C18—C25	-149.2(2)
$C_2 - C_1 - C_6 - C_5$	0.6 (4)	C6-C7-C18-C25	81.3 (3)
C2-C1-C6-C7	179.7 (2)	C8-C7-C18-C19	34.6 (4)
C4-C5-C6-C1	-0.8(4)	C6-C7-C18-C19	-95.0(3)
C4—C5—C6—C7	-179.9 (2)	C25—C18—C19—C20	-178.9(3)
C1—C6—C7—C18	-157.0 (2)	C7—C18—C19—C20	-2.1(5)
C5-C6-C7-C18	22.1 (3)	C_{25} C_{18} C_{19} C_{24}	0.5(3)
C1 - C6 - C7 - C8	73.4 (3)	C7-C18-C19-C24	177.3 (2)
C_{5} C_{6} C_{7} C_{8}	-1076(3)	C_{24} C_{19} C_{20} C_{21}	-0.2(4)
	10/10 (0)	017 020 021	0.2 (7)

C18—C7—C8—C15	73.3 (3)	C18—C19—C20—C21	179.1 (3)
C6—C7—C8—C15	-157.5 (2)	C19—C20—C21—C22	0.2 (5)
C18—C7—C8—C9	-104.8 (3)	C20—C21—C22—C23	0.0 (5)
C6—C7—C8—C9	24.3 (4)	C21—C22—C23—C24	-0.4 (5)
C15—C8—C9—C10	179.2 (3)	C25—N3—C24—C23	179.3 (3)
C7—C8—C9—C10	-2.4 (5)	C25—N3—C24—C19	0.2 (3)
C15—C8—C9—C14	-0.7 (3)	C22—C23—C24—N3	-178.7 (3)
C7—C8—C9—C14	177.7 (2)	C22—C23—C24—C19	0.4 (4)
C14—C9—C10—C11	0.8 (4)	C20-C19-C24-N3	179.1 (2)
C8—C9—C10—C11	-179.1 (3)	C18—C19—C24—N3	-0.4 (3)
C9—C10—C11—C12	-1.4 (5)	C20—C19—C24—C23	-0.1 (4)
C10-C11-C12-C13	1.1 (5)	C18—C19—C24—C23	-179.6 (3)
C11—C12—C13—C14	-0.1 (5)	C24—N3—C25—C18	0.1 (3)
C15—N2—C14—C13	-179.4 (3)	C24—N3—C25—C26	-177.3 (2)
C15—N2—C14—C9	0.8 (3)	C19—C18—C25—N3	-0.4 (3)
C12—C13—C14—N2	179.7 (3)	C7—C18—C25—N3	-177.4 (2)
C12—C13—C14—C9	-0.5 (4)	C19—C18—C25—C26	176.8 (2)
C10—C9—C14—N2	-180.0 (2)	C7—C18—C25—C26	-0.2 (4)
C8—C9—C14—N2	-0.1 (3)	C27—O6—C26—O5	-2.3 (4)
C10-C9-C14-C13	0.2 (4)	C27—O6—C26—C25	177.0 (2)
C8—C9—C14—C13	-179.9 (3)	N3—C25—C26—O5	-179.9 (2)
C14—N2—C15—C8	-1.2 (3)	C18—C25—C26—O5	3.2 (4)
C14—N2—C15—C16	-179.7 (2)	N3-C25-C26-O6	0.8 (3)
C9—C8—C15—N2	1.2 (3)	C18—C25—C26—O6	-176.1 (2)

Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.

D—H···A	D—H	H···A	D····A	D—H···A
N2—H2A····O7 ⁱ	0.86	2.17	2.924 (3)	146
N3—H3 <i>A</i> ···O4 ⁱⁱ	0.86	2.02	2.861 (4)	166
О7—H7 <i>B</i> …О5	0.82	2.13	2.892 (4)	154
C10—H10A····Cg3	0.93	2.87	3.633 (4)	140
C11—H11 <i>A</i> … <i>Cg</i> 5 ⁱⁱⁱ	0.93	2.76	3.634 (4)	156
C17—H17 <i>B</i> ···· <i>Cg</i> 4 ⁱ	0.96	2.89	3.813 (5)	163
C27—H27 <i>B</i> ··· <i>Cg</i> 5 ⁱⁱ	0.96	2.75	3.496 (4)	135

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*, -*z*.