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Abstract: Rapid urbanization can lead to significant environmental contamination with potentially
toxic elements (PTEs). This is of concern because PTEs are accumulative, persistent, and can have
detrimental effects on human health. Urban soil samples were obtained from parks, ornamental
gardens, roadsides, railway terminals and locations close to industrial estates and dumpsites within
the Lagos metropolis. Chromium, Cu, Fe, Mn, Ni, Pb and Zn concentrations were determined using
inductively coupled plasma mass spectrometry following sample digestion with aqua regia and
application of the BCR sequential extraction procedure. A wide range of analyte concentrations was
found—Cr, 19–1830 mg/kg; Cu, 8–11,700 mg/kg; Fe, 7460–166,000 mg/kg; Mn, 135–6100 mg/kg; Ni,
4–1050 mg/kg; Pb, 10–4340 mg/kg; and Zn, 61–5620 mg/kg—with high levels in areas close to indus-
trial plants and dumpsites. The proportions of analytes released in the first three steps of the sequential
extraction were Fe (16%) < Cr (30%) < Ni (46%) < Mn (63%) < Cu (78%) < Zn (80%) < Pb (84%), indi-
cating that there is considerable scope for PTE (re)mobilization. Human health risk assessment
indicated non-carcinogenic risk for children and carcinogenic risk for both children and adults.
Further monitoring of PTE in the Lagos urban environment is therefore recommended.

Keywords: soil contamination; heavy metals; sequential extraction; health risk assessment

1. Introduction

Urban soil pollution has become a major environmental concern in recent decades.
Increased migration from rural to urban areas, in particular in the developing world, has
resulted in high population density and rapid increase in anthropogenic activities [1].
Over half of the world’s population now lives in urban areas [2], and this puts substantial
pressure on environmental resources, such as soil and water.

With a population of at least 20 million people and an estimated population growth rate
of about 600,000 persons per annum, Lagos is one of the most densely populated cities in the
world [3]. Within the metropolis, there is rapid industrialization, continuous infrastructural
development, and a high prevalence of vehicular traffic congestion. Incessant demand for
land means that recreational open spaces can be found in proximity to dumpsites, and
schools and housing are often co-located with industrial estates. Therefore, Lagos residents
are subjected to an array of potential pollution sources that may have adverse effects on
their health.

Numerous studies have reported evidence of anthropogenic inputs of potentially
toxic elements (PTE) to urban soils. Extensive work has been carried out in developed
countries [4–7]. Less attention has been paid to urban soils of developing nations, although
their importance is increasingly being recognized [8–12]. Potentially toxic elements are
one of the most studied soil contaminants because they are ubiquitous and persistent.
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Metals are non-biodegradable and accumulative in nature; emission and deposition over
a long period of time can lead to enrichment in surface environments. The prolonged
presence of PTEs in urban soils, together with their proximity to human populations,
can lead to exposure via inhalation, ingestion, and dermal contact [13,14]. Because these
contaminants become hazardous when present in soil above certain concentrations, this
can have significant health implications.

Measurement of total or pseudo-total (aqua-regia soluble) PTE concentrations in soil
can provide important information about distribution and enrichment, but it is likely to
overestimate human health risk because only a fraction of the total content is usually
bioavailable [15]. The mobility and availability of PTEs in soil depends on complex in-
teractions between multiple factors, including solubility, the availability of binding sites,
complexation, pH and redox processes [16]. Sequential extraction involves the treatment of
solid environmental samples with a series of reagents to partition PTE content into vari-
ous fractions, nominally corresponding to major soil mineral phases but more accurately
representing operationally defined reservoirs with the potential to become mobile under
changes in environmental conditions, such as pH and redox potential. Several sequential
extraction schemes have been developed and applied [17–20]. Amongst the most popular
is the harmonized Community Bureau of Reference of the European Commission (BCR)
sequential extraction procedure [21], summarised in Table 1. Advantages of this protocol
are that it incorporates an internal quality check—comparison of the sum of the steps,
Σ(step 1–4), with results of a separate pseudo-total digestion—and that dedicated certified
reference material (CRM)—BCR 701—is available.

Table 1. BCR sequential extraction [21].

Step Label Reagents Nominal Target Phase(s)

1 Exchangeable 0.11 mol L−1 CH3COOH Exchangeable, water- and acid-soluble PTE
2 Reducible 0.5 mol L−1 NH2OH.HCl at pH 1.5 PTE bound to iron and manganese oxyhydroxides

3 Oxidisable H2O2 (85 ◦C) then 1.0 mol L−1

CH3COONH4 at pH 2
PTE bound to organic matter and sulphides

4 Residual aqua regia Remaining PTE not bound within
refractory/primary silicates

Previous studies have investigated PTE in urban soils of Lagos State. However, their
scope has either been limited to a particular land use—for example, roadside soils [22,23] or
soils from school playgrounds [8,24]—or featured assessment of contamination in proximity
to specific industrial plants [25], dumpsites [26] or electronic waste (e-waste) processing
sites [27–29]. Much of the work is at least a decade old [22–25] and therefore may not
accurately reflect the current status of the rapidly growing metropolis. Few works have
considered PTE mobility. Adeyi et al. [30] applied Tessier sequential extraction [17] to
residential soils from Lagos and Ibadan as part of their study of the potential health impacts
of Cd and Pb associated with the use of metal-rich paints. Oyeyiola et al. [31] employed
the BCR procedure [21] in their investigation of partitioning, mobility and ecotoxicology of
Cd, Cr, Cu, Pb and Zn in sediment from the Lagos Lagoon and three trans-urban rivers.
However, there is a need for more comprehensive evaluation of both levels and potential
mobility of PTE in Lagos urban soils, in particular soils that local citizens are most likely to
interact with.

The aims of the current study were therefore to determine the concentrations and
potential mobilities of Cr, Cu, Fe, Mn, Ni, Pb and Zn in soils from public-access areas across
the Lagos metropolis and to evaluate the risks associated with human exposure to PTE in
Lagos urban soils.
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2. Materials and Methods
2.1. Study Area

Lagos lies in the Nigerian sector of the Dahomey (or Benin) basin. The area is charac-
terized by sediments of Cretaceous to recent origin underlain by Precambrian basement
rocks of granitic composition [32]. The Cretaceous and Tertiary sediments include sands,
marine shales and limestone. Quaternary sediments consist of coastal plain sands (>100 m
in thickness) with alluvial deposits in the river valleys. Lagos is Nigeria’s most populous
city and the seventh fastest-growing city in the world. Lagos State Government estimated
the population of Lagos as 17.5 million during a parallel census conducted in 2006, with
more than 12 million people living in the urban areas. A more recent report [3] estimated its
population as 21 million, making Lagos the largest city in Africa. Lagos experiences rainy
and dry seasons, with the latter accompanied by hot, dry and dusty winds. It represents
the most industrialized area in Nigeria, with over 60% of total industrial activities.

2.2. Sampling and Sample Preparation

We selected 20 urban from a larger set of 92 samples collected as part of a previous
study [33]. Sampling locations are shown in Figure 1. These included examples of differ-
ent types of public-access areas (parks and open spaces, ornamental gardens, roadsides,
industrial estates, railway terminals and locations in the vicinity of dumpsites). At each
sampling location, a composite soil sample was collected to a depth of 10 cm. This consisted
of 4–8 sub-samples taken 2 m apart in a square grid (the number of sub-samples depending
on the shape of the area). Grass, leaves, paper and plastic debris present in the samples
were discarded. Wet soil samples were air-dried for 3 days in the laboratory of the Lagos
Ministry of Environment. Then, approximately 500 g of each soil was placed in a sealed, la-
belled polythene bag and transported from Lagos, Nigeria to the University of Strathclyde,
Scotland, UK under a Scottish Government soil import license (IMP/SOIL/24/2014) for
further processing and analysis.

Figure 1. Map of the Lagos area showing sampling points (prepared using Google Maps).

On arrival, the soil samples were air-dried for 14 days, and then sieved through a
2 mm nylon mesh sieve before grinding and homogenization with mortar and pestle. Test
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portions for digestion or extraction were obtained by coning and quartering. All glass
and plasticware was soaked in 5% (v/v) nitric acid overnight (general-purpose-grade
reagent, Sigma Aldrich, Gillingham, UK) and then washed thoroughly with distilled water
before use.

2.3. Microwave-Assisted Pseudo-total Digestion

Samples were digested with aqua regia prepared by mixing extra-pure hydrochloric
(HCl) and nitric (HNO3) acids (Sigma-Aldrich, Gillingham, UK) in the ratio 3:1 (v/v).
Each soil sample (1 g) was weighed into a high-pressure vessel, and 20 mL of freshly
prepared aqua regia was added. This was left to stand overnight in a fume cupboard to
allow any vigorous reaction to subside. Then, the vessels were placed in a MarsXpressTM

(CEM Microwave Technology, Ltd., Middle Slade, Buckingham, UK) microwave digestion
system and heated to 160 ◦C using 1600 W power for 40 min (comprising 20 min ramp
to temperature and 20 min hold at temperature). Digests were then allowed to cool and
were filtered. Filtrates were made up to 100 mL with deionised water and stored at 4 ◦C
in a refrigerator prior to analysis. Replicate samples (n = 3) were digested, along with
procedural blanks.

2.4. Sequential Extraction

The BCR sequential extraction procedure was carried out as described by Rauret et al. [21].
The experimental protocol is summarised below. Samples were analysed in triplicate, along
with procedural blanks.

Step 1: Exchangeable phase

Approximately 1 g of soil was weighed into a 100 mL centrifuge tube, and 40 mL
of 0.11 M acetic acid added. The mixture was shaken for 16 h (overnight) using a GFL
3040 mechanical end-over-end shaker (GFL, Burgwedel, Germany). The extract was sepa-
rated from the residue by centrifuging at 3000× g for 20 min in an Allegra 21 centrifuge
(Beckman Coulter Ltd., High Wycombe, UK). The supernatant was decanted and stored in
a polyethylene bottle at 4 ◦C in a refrigerator prior to analysis. The residue was washed
by adding 20 mL of distilled water and shaking for 15 min. Following centrifugation, the
supernatant was decanted and discarded.

Step 2: Reducible phase

A volume of 40 mL of freshly prepared 0.5 M hydroxylamine hydrochloride solution
was added to the washed residue from step 1 in the same centrifuge tube. The mixture was
shaken and centrifuged, the supernatant was recovered, and the residue was washed, as
described in step 1.

Step 3: Oxidisable phase

A volume of 10 mL of 8.8 M hydrogen peroxide solution was added slowly, in small
aliquots to avoid losses due to possible violent reaction, to the washed residue from step 2.
The centrifuge tube was loosely covered with its cap, and the contents were digested at
room temperature for 1 h with occasional manual shaking. The digestion was continued
for another 1 h at 85 ± 2 ◦C in a water bath, with occasional manual shaking for the first
30 min. Then, the sample mixture was reduced in volume to about 3 mL by further heating
the uncovered tube. Another 10 mL of hydrogen peroxide solution (8.8 M) was added, and
the covered sample was heated for a further 1 h at 85 ± 2 ◦C. Subsequently, the cap of the
centrifuge tube was removed, and the volume was reduced to about 1 mL, with care not to
take to complete dryness. A volume of 50 mL of 1.0 M ammonium acetate solution was
added to the cool, moist residue, and the mixture was shaken for 16 h (overnight). The
sample was centrifuged, and the supernatant was recovered as described in step 1.

Step 4: Residual phase

A volume of 20 mL of aqua regia was used to wash the residue from step 3 into a
pressure vessel, where it was digested as described in Section 2.3.
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2.5. Analysis of Sample Digests and Extracts

Analyte concentrations were measured in soil digests and extracts using a Model 7700x
inductively coupled plasma mass spectrometry system (Agilent Technologies, Cheadle, UK).
Commercially available stock solutions (from Qmx Laboratories, Thaxted, UK) were used
to prepare reagent-matched multielement standard solutions for instrument calibration in
the range of 0–1600 µg/L for Cr, Cu, Mn, Pb, Ni and Zn and 0–100,000 µg/L for Fe. The
internal standard was 115In. Before each batch of analyses, the instrument was tuned to
verify mass resolution and maximise sensitivity. Collision cell technology mode was used
for the determination of 52Cr, 63Cu, 56Fe, 55Mn, 60Ni, 208Pb and 64Zn. During analysis, a
mid-range calibration standard (800 µg/L) was checked after every tenth sample measured.
The calibration curves for the determined PTEs gave a linear fit with regression coefficient
of at least 0.999.

2.6. Determination of Soil pH and Organic Matter

pH was determined in a suspension of 5 g soil in 25 mL of deionised water using
a pH meter (SG2-ELK-SevenGOTM pH, Mettler Toledo, Leicester, UK) according to the
British standard method [34]. Soil organic matter was estimated by loss on ignition of
dry matter [35]. A muffle furnace (Elite Thermal Systems Box Furnace, model number
BSF12/6-2416CG, Market Harborough, UK) ramped at 10 ◦C per min and held at 550 ◦C
for 8 h was used for this purpose.

2.7. Quality Control

Analytical quality was assessed using CRMs BCR 143R (sewage sludge amended soil)
for pseudo-total digestion and BCR 701 (lake sediment) for sequential extraction (Table 2).

Table 2. Analysis of certified reference materials BCR 143R and BCR 701 (mg/kg dry weight).

Step Parameter Cr Cu Fe Mn Ni Pb Zn

BCR 143R
Found 422 ± 27 137 ± 3 29,700 ± 12 863 ± 7 297 ± 4 178 ± 3 1110 ± 10

Certified † 426 ± 12 131 ± 2 858 ± 11 296 ± 4 174 ± 5 1063 ± 16
Recovery (%) 99 105 101 100 102 104

BCR 701
Step 1 Found 2.0 ± 1 42 ± 9 66 ± 8 186 ± 25 14 ± 9 3 ± 1 187± 25

Exchangeable Certified 2.26 ± 0.16 49.3 ± 1.7 15.4 ± 0.9 3.18 ± 0.21 205 ± 6
Recovery (%) 88 85 91 94 91

Step 2 Found 45 ± 4 124 ± 15 370 ± 3 5 ± 1 25 ± 1 125 ± 8 104 ± 4
Reducible Certified 45.7 ± 2.0 124 ± 3 26.6 ± 1.3 126 ± 3 114 ± 5

Recovery (%) 98 100 94 99 91
Step 3 Found 109 ± 9 39 ± 7 246 ± 43 21 ± 0.1 14 ± 0.2 3 ± 0.3 33 ± 1

Oxidisable Certified 143 ± 7 55 ± 4 15.3 ± 0.9 9.3 ± 20 46 ± 4
Recovery (%) 76 71 89 32 71

Step 4 Found 80 ± 0.3 44 ± 3 21,400 ± 81 261 ± 20 40 ± 1 13 ± 2 118 ± 9
Residual Indicative 63 ± 8 39 ± 12 41 ± 4 11 ± 6 95 ± 13

Recovery (%) 128 114 96 122 124
Σ(steps 1–4) Found 236 249 22,000 474 93 144 442

Indicative 253 267 98.7 149 461
Recovery (%) 93 93 94 97 96

† CRM 143R certified vales are for aqua regia-soluble PTE content, except for Cu, for which only the total content
is available.

Agreement between found and certified values for BCR 143R was excellent (100 ± 5%).
For BCR 701, the recoveries of PTEs in exchangeable and reducible phases were 100 ± 15%,
whereas recoveries in the oxidisable and residual phases were generally 100 ± 30%, except
for Pb in step 3 (32%). In his review of results reported for BCR 701 over a 10-year period,
Sutherland [36] highlighted other instances of low Pb recovery (<50% of the certified value)
in step 3, together with the high degree of imprecision associated with the measurement
of Pb in this step during the BCR 701 certification process. Overall, recoveries tended to
be low in step 3, relative to certified or indicative values, but high in step 4. However,
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summations of the amounts of analyte released in steps 1 to 4 of the sequential extraction
agreed (within ±20%) with results of pseudo-total measurement in BCR 701. This suggests
that the quality of the extraction was adequate.

2.8. Potential Health Risk of PTE

Potential non-carcinogenic and carcinogenic health risks were determined using
United States Environmental Protection Agency [37–40] methods and exposure parameters
recommended for management of contaminated land in South Africa [41]. Exposure assess-
ment was carried out by calculating the average daily intake (ADI) of each PTE through
ingestion, inhalation and dermal contact for adults and children (Equations (1)–(3)). Adults
and children are considered separately because of their behavioural and physiological
differences [42].

ADIing =
C × IR × EF × ED

BW × AT
× 10−6 (1)

ADIinh =
C × Inh × EF × ED

PEF × BW × AT
(2)

ADIdermal =
C × SA × AF × ABS × EF × ED

BW × AT
× 10−6 (3)

where ADIing is the average daily intake of a PTE from soil via ingestion in mg per kg per
day (mg/kg/day), C is the concentration of PTE in the soil in mg/kg, IR is the ingestion
rate, EF is the exposure frequency, ED is the exposure duration, BW is the body weight of
the exposed individual and AT is the time period over which the dose is averaged. ADIinh is
the average daily intake of PTE from soil via inhalation in mg/kg/day, Inh is the inhalation
rate and PEF is the particulate emission factor. ADIdermal is the average daily intake of PTE
from soil via dermal contact in mg/kg/day, SA is the skin surface area, AF is the soil-to-skin
adherence factor and ABS is the fraction of the applied dose absorbed across the skin.

Hazard quotient (HQ) and hazard index (HI) were used to estimate the non-carcinogenic
risk of PTEs in soil [40]. HQ characterizes the health risk of non-carcinogenic adverse effects
due to exposure to toxicants and is defined as the quotient of ADI or dose divided by
the toxicity threshold value, which is referred to as the chronic reference dose (RfD) in
mg/kg/day for a specific PTE, as shown in Equation (4).

HQ = ADI/RfD (4)

To assess the overall potential of non-carcinogenic effects posed by a PTE, the calcu-
lated values of HQ are summed to give HI (Equation (5)).

HI = HQing + HQinh + HQdermal (5)

For carcinogens, the risks are estimated as the incremental probability of an individual
developing cancer over a lifetime (assumed to be 70 years) because of exposure to the
potential carcinogen, CR, calculated using Equation (6).

CR = ADI × CSF (6)

where CSF (mg/kg/day) is the cancer slope factor, which converts the estimated daily
intake of a PTE to an incremental risk of an individual developing cancer [39]. The total
excess lifetime cancer risk for an individual is ultimately calculated from the average
contribution of the individual PTE across all exposure pathways using Equation (7).

CRtotal = CRing + CRinh + CRdermal (7)

where CRing, CRinh, and CRdermal are risk contributions through ingestion, inhalation, and
dermal pathways, respectively.

Values for all of the parameters used in the risk calculations are presented in Table 3.
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Table 3. Parameters used in risk calculations.

Parameter Unit Child Adult

Ingestion rate (IR) mg/day 200 100
Exposure frequency (EF) days/year 350 350
Exposure duration (ED) years 6 24

Body weight (BW) kg 15 70
Average time (AT) days

Inhalation rate (Inh) m3/day 10 20
Particulate emission factor (PEF) m3/kg 1.3 × 109 1.3 × 109

Skin surface area (SA) cm2 2100 5800
Soil–skin adherence factor (AF) mg/cm2 0.2 0.07
Dermal absorption factor (ABS) none 1 1

For carcinogens 365 × 70 365 × 70
For non-carcinogens 365 × ED 365 × ED

3. Results and Discussion
3.1. Soil Characterstics and Pseudo-total PTE Concentrations

The pH of the soil samples ranged from 5.8 to 10, with an average of 7.5 (Table 4).
Loss on ignition (LOI) values were low (0.07–5.0, with an average of 1.5). This is consistent
with the hot and humid climatic conditions in Lagos, which typically deplete soil organic
matter [43]. Findings were in agreement with previous work on Lagos residential soils [30]
and playgrounds [24], which generally reported organic matter content <2% and slightly
alkaline pH values.

Pseudo-total PTE concentrations (Table 4) reflected varying degrees of soil contami-
nation, as expected, given the various types of land use represented. Samples A1 to A7,
obtained from gardens and open spaces, were less contaminated than samples A8 to A20,
(soil from industrial estates; A8 to A10), railway terminals (A11 to A13) and dumpsites
(A14 to A20). Soil guideline values have not yet been defined specifically for use in Nigeria.
However, compared with the frequently cited Dutch soil quality standards [44], more than
half of the samples contained Cu, Pb and Zn (the ’urban metals’) [45,46] at concentrations
greater than target values [44], whereas three soils—A10, A16 and A19—contained all three
elements at concentrations sometimes considerably in excess of the intervention values [44].
The first of these, soil A10, was from an industrial estate where high PTE levels may be
attributed to emissions from zinc smelting, steel production and metal foundry plants.
Soils A16 and A19 were from the vicinity of dumpsites. Typical dumpsites in Lagos receive
large volumes of domestic, industrial and e-waste daily, and there are also a number of
auto repair workshops in proximity to these specific locations, all of which are likely to
have contributed to the enhanced soil PTE contents observed.

As mentioned above, literature data on Lagos soils is limited to values for a few
elements measured at a few sites. However, average concentrations found in the current
study were higher than those reported in previous studies [22–26,30], which likely repre-
sents PTE accumulation over time as urbanization and industrialization have progressed.
Exceptions were some high Cu, Pb and Zn concentrations reported recently at e-waste
recycling locations in Owutu, Ikorodu [28] and Alaba International Market [29], which
were of a similar magnitude to results for sites A16 and A19. Levels of PTE in the current
study were generally substantially higher than PTE measured in urban soils of cities in
other developing countries, such as Kampala, Uganda [47]; Karachi, Pakistan [48]; and
Sunyani, Ghana [49].
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Table 4. Pseudo-total PTE concentrations in Lagos urban soils (mg/kg dry weight).

Sampling Site Land Use pH % LOI Cr Cu Fe Mn Ni Pb Zn

A1 PO 7.2 3.6 22 ± 1 25 ± 4 12,600 ± 485 233 ± 22 8 ± 1 87 ± 15 239 ± 36
A2 PO 10 5.0 25 ± 2 27 ± 8 12,000 ± 1310 179 ± 26 6 ± 0.1 26 ± 5 175 ± 4
A3 PO 8.1 1.4 30 ± 2 10 ± 2 10,000 ± 178 212 ± 59 8 ± 4 24 ± 4 99 ± 45
A4 PO 7.0 0.36 19 ± 1 8.0 ± 1 7460 ± 284 135 ± 38 4 ± 0.2 10 ± 1 61 ± 3
A5 PO 7.0 0.92 34 ± 12 29 ± 12 14,100 ± 2110 199 ± 49 8 ± 18 41 ± 12 165 ± 25
A6 PO 6.5 0.11 51 ± 1 18 ± 1 22,300 ± 480 359 ± 19 16 ± 0.2 57 ± 3 165 ± 3
A7 PO 8.3 2.2 38 ± 6 20 ± 1 11,100 ± 1680 159 ± 17 8 ± 1 29 ± 5 132 ± 17
A8 IE 7.0 1.4 49 ± 4 71 ± 6 28,600 ± 4280 375 ± 32 17 ± 5 400 ± 154 1080 ± 123
A9 IE 8.1 0.17 111 ± 18 71 ± 8 60,200 ± 1060 437 ± 73 39 ± 5 144 ± 14 433 ± 37

A10 IE 5.8 4.3 175 ± 12 759 ± 406 146,000 ± 15,600 2570 ± 311 109 ± 9 536 ± 62 3240 ± 475
A11 RT 5.9 1.6 71 ± 16 218 ± 7 46,300 ± 1780 413 ± 14 29 ± 3 182 ± 10 241 ± 37
A12 RT 7.4 2.0 94 ± 4 168 ± 2 69,100 ± 787 1220 ± 39 44 ± 3 321 ± 14 1200 ± 35
A13 RT 6.9 0.67 46 ± 3 243 ± 17 36,100 ± 8370 401 ± 70 21 ± 2 212 ± 53 1220 ± 283
A14 DS 7.0 2.6 290 ± 42 182 ± 64 47,600 ± 3810 899 ± 34 139 ± 24 76 ± 4 880 ± 202
A15 DS 7.1 0.85 79 ± 32 133 ± 19 41,100 ± 2730 566 ± 59 29 ± 8 153 ± 29 546 ± 6
A16 DS 8.0 1.2 1830 ± 76 11,700 ± 1780 166,000 ± 2530 1540 ± 62 1050 ± 240 4340 ± 974 2810 ± 70
A17 DS 8.3 0.07 202 ± 30 82 ± 20 99,900 ± 4250 1600 ± 107 38 ± 3 102 ± 26 353 ± 12
A18 DS 8.6 0.77 47 ± 19 108 ± 14 14,700 ± 1020 261 ± 75 12 ± 1 315 ± 45 511 ± 222
A19 DS 8.0 0.16 108 ± 13 611 ± 153 57,600 ± 5230 753 ± 82 50 ± 68 802 ± 305 5620 ± 362
A20 DS 8.2 0.08 602 ± 53 108 ± 21 52,600 ± 5340 6100 ± 1750 306 ± 31 22 ± 7 520 ± 20

Mean 7.5 1.5 196 755 49,600 930 97 394 985
Dutch target [44] 100 36 35 85 140

Dutch intervention [44] 380 190 210 530 720

PO = parks, gardens and open spaces; IE = industrial estates; RT = railway terminals; DS = dumpsites. The lowest concentration for each metal is indicated in italics, and the highest
concentration is indicated in bold.



Toxics 2022, 10, 154 9 of 16

3.2. Sequential Extraction and PTE Mobility

Sequential extraction was performed on the soil samples to assess the potential for PTE
(re)mobilization. Results are presented in Supplementary Tables S1–S7. To check the quality
of the data obtained, the amounts of analyte recovered—Σ(step 1–4)—were compared with
those released by aqua regia digestion. A total of 57 (of 140) of the sequential extraction
results fell within 10% of corresponding pseudo-total values. A further 63 were either
70–90% or 110–130% of pseudo-total concentrations, i.e., overall, in 86% of cases, the sum
of the steps of the sequential extractions was 100 ± 30% of the aqua regia-soluble content.
Only three recoveries were either <50% or >150% of the aqua regia-soluble content: Ni at
site A20 (39%) and Pb at sites A1 (48%) and A11 (169%). Site A20 is close to a foundry, and
it is possible that there are metal-rich particles heterogeneously distributed within it. This
may also be the case for Pb at A11. As well as a railway, this site is close to a major bus
depot where mechanical work is undertaken (including removal and servicing of vehicle
batteries). Site A1 is an open space in a wealthier part of Lagos metropolis and not highly
contaminated with PTEs. There is a relatively large uncertainty in the Pb pseudo-total
concentration (17%, n = 3) and hence in the recovery calculated.

The fractionation patterns obtained using the BCR procedure are shown in Figures 2 and 3.
Chromium was predominantly associated with step 4, the residual phase, in most of the sam-
ples (Figure 2a). Three-quarters of the soils studied contained more than 70% of their Cr
content in the residual phase. This is in agreement with other urban soil studies [50–52]. Wu
et al. [53] found 92% of Cr in the residual phase of urban soils of Guiyang City, China. The
presence of Cr in residual forms suggests that the element is strongly bound to soil minerals;
therefore, mobilization is unlikely to occur under typical environmental conditions. However,
where Cr concentrations were highest, a larger proportion was associated with the reducible
phase (step 2). This is worrisome because it indicates that were the soil to become waterlogged
and anoxic, there is potential for Cr remobilization due to reduction and dissolution of iron
and manganese oxyhydroxides.

Copper was released at various steps in the sequential extraction (Figure 2b), with the
highest proportion associated with the reducible phase in most samples. The association
of Cu with iron and manganese oxides and hydroxides—the target phase of step 2 of
the BCR protocol—has been well documented in polluted urban soils, dusts and sedi-
ments [50,54–59]. For some samples, an appreciable amount of Cu was also released in
step 2 which, again, has been reported in previous studies; for example, Szolnoki et al. [55]
found 24% of Cu in the oxidisable fraction of urban vegetable garden soils from Szeged,
Hungary. Because the majority of the overall Cu content was in non-residual forms, there
is considerable potential for Cu mobilization under changing environmental conditions.
Of particular concern is the most contaminated dumpsite, A16, where >3000 mg/kg of Cu
was found in the easily mobilized exchangeable phase.

Almost all the Fe in Lagos urban soils was associated with the reducible and residual
phases (Figure 2c), which was expected because step 2 of the BCR protocol targets iron and
manganese oxyhydroxides, and ferrous minerals constitute a major structural component
of soil. Similar findings have been reported for urban soils from public-access areas of five
European cities [52], as well as urban vegetable garden soil [60]. The predominance of Fe
in the residual phase indicates low mobility and bioavailability.

Manganese was found in all four phases (Figure 2d), with residual and reducible forms
generally dominating for similar reasons to Fe. Manganese is one of the most abundant
elements in the earth crust [57], and the hydroxylamine–hydrochloride reagent employed
in step 2 principally targets Fe-Mn oxyhydroxides. Previous work on urban soils from
five European cities reported [52] a similar manganese distribution between the fractions
defined by sequential extraction. Significant amounts of Mn were also located in the most
labile, exchangeable phase. This suggests that Mn is relatively mobile in Lagos soils.
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Figure 2. Fractionation of (a) Cr, (b) Cu, (c) Fe and (d) Mn according to BCR sequential extraction.
Note that Cr and Cu are plotted against a secondary axis for site A16.
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Figure 3. Fractionation of (a) Ni, (b) Pb and (c) Zn according to BCR sequential extraction. Note that
Ni and Pb are plotted against a secondary axis for site A16.

Nickel was mainly associated with the reducible and residual phases (Figure 3a). This
is in agreement with sequential extraction results of other studies, which found the largest
proportions of Ni in the residual phase of urban vegetable garden soils [55], urban soils [52]
and urban street dusts [51]. Similarly to Cr, the amounts of Ni found in the reducible phase
were generally larger where pseudo-total concentrations were highest, and similarly to Cu,
some of the dumpsite soils contained more exchangeable Ni than soils from other locations.

The reducible fraction was most important for Pb at all sites (Figure 3b), likely reflecting
the element’s ability to form stable complexes with Fe-Mn oxides [50,61]. Umoren et al. [54]



Toxics 2022, 10, 154 12 of 16

also found the largest percentage of extractable Pb (75%) associated with the reducible
fraction in their study of refuse dump soils in Uyo, southern Nigeria. Similar observations
have been reported in other urban areas [52,53]. However, Adeyi et al. [30] found lead
fractionation varied between residential soils from different parts of Lagos. In high-income
areas, Pb concentration was low (6–17 mg/kg), and the Fe-Mn oxide-bound fraction was
dominant; in low-income areas, Pb concentration was higher (90 mg/kg), with higher
proportions of Pb found in both more refractory and more labile phases. Particularly
large amounts of Pb in the current study were associated with the reducible phase in
dumpsite soils A16 (2460 mg/kg) and A19 (688 mg/kg), which is of concern because of the
health risk this might pose if the element were mobilized under reducing conditions. Lead
associated with the reducible phase can also be liberated by erosion processes of top soils
and transported to a new environment, such as road surfaces [62].

Zinc was mainly associated with the exchangeable phase, followed by the reducible
phase (Figure 3c). A previous study on sediment from three urban rivers and Lagos
Lagoon [31] also found that a high proportion (40 to 87%) of Zn content was released in
step 1 of the BCR sequential extraction. This is relevant to the current work because trans-
urban water bodies are likely to contain considerable amounts of soil-derived material;
therefore, trace elements may have similar speciation. A fractionation pattern similar to
that reported in the current study were reported for soils and dusts collected in other urban
areas [51,52,54,60]. Like Cu, the majority of Zn was present in non-residual forms, which is
of concern from the point of view of potential mobilization and transport.

The relative availability of the analytes based on the average proportion found in
the exchangeable phase was Fe (1.1%) < Cr (1.3%) < Ni (9.2%) < Pb (12%) < Cu (15%)
< Mn (23%) < Zn (48%). Based on the proportion found in the three most labile phases
(step 1 + step 2 + step 3), the relative availability was Fe (16%) < Cr (30%) < Ni (46%) < Mn
(63%) < Cu (78%) < Zn (80%) < Pb (84%). Elements found to be mainly of lithogenic origin
in previous urban soil studies (Fe [50,52] and Cr [4,51]) were similarly less available for
mobilization in the Lagos samples; therefore, it might be expected that they would have
lesser environmental or human health impact than elements likely of mainly anthropogenic
origin (Cu, Pb, Zn). Where concentrations of the urban metals were highest—site A16 for
Cu and Pb and site A19 for Zn—they were also more labile, which is clearly of concern.

3.3. Human Health Impact

Results obtained for human health risk assessment are presented in Table 5 and
Figure 4. For non-carcinogenic risk, comparison of HQ values indicates that ingestion was
the most significant exposure route for both children and adults, followed by dermal contact
and inhalation. The HI (summation of HQ across the three exposure pathways) values were
less than 1 for Cr, Ni and Zn, indicating that there is no significant non-carcinogenic risk
associated with exposure to the average concentrations of the above PTEs in Lagos urban
soils. In contrast, the HI for Cu, Mn and Pb were greater than 1 in children, which suggests
that there is a risk of non-carcinogenic health effects. Among the PTEs studied, Pb was
the largest contributor to non-carcinogenic risks. This is of particular concern, given the
impact that this element can have on children’s development, even at low concentrations.
Risk from the other metals followed the order Cu > Mn > Ni > Zn > Cr for children and
Mn > Cu > Ni > Zn > Cr for adults (Figure 3). Although similar trends were observed in
both groups, non-carcinogenic risk was greater in children than in adults. This is expected,
given their lower body mass and immature physiology, as has been reported in many
previous studies [63,64].

Carcinogenic risk was calculated for Cr, Ni and Pb based on their respective cancer
slope factors (the other analytes are not considered a cancer risk, so slope factor data are
not available). For Cr, a slope factor of 0.5 (the lower of the values commonly cited in
literature [41]) was used because results of the sequential extraction suggested that the
element was not readily available. Risks greater than 1 × 10−4 are considered unacceptable,
those between 10−4 and 10−6 acceptable and those less than 1 × 10−6 unlikely to lead to
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any detrimental health outcomes. In the current study, total carcinogenic risk levels for
children were greater than those for adults, and values for both Cr and Ni exceeded the
threshold for unacceptable risk in both age groups. In contrast, values were in the range
of 10−4 to 10−6 for Pb; therefore, the additional probability of developing cancer over a
70-year lifespan due to exposure to this element at the average concentration found in
Lagos soils is considered acceptable.

Table 5. Human health risk assessment for children and adults.

Element HQing HQinh HQdermal
HI

Children HQing HQinh HQdermal
HI

Adult
CRtotal

Children
CRtotal
Adult

Cr 1.67 × 10−2 3.23 × 10−5 3.51 × 10−3 5.21 × 10−3 1.79 × 10−4 1.23 × 10−5 6.49 × 10−4 8.40 × 10−4 3.33 × 10−4 2.33 × 10−4

Cu 2.60 × 100 2.96 × 10−5 5.47 × 10−1 3.15 × 100 2.79 × 10−2 1.32 × 10−5 1.18 × 10−1 1.46 × 10−1

Mn 4.95 × 10−1 3.05 × 10−6 1.04 × 100 1.53 × 100 5.30 × 10−2 9.26 × 10−7 1.52 × 10−1 2.05 × 10−1

Ni 6.19 × 10−2 7.70 × 10−6 1.30 × 10−1 1.92 × 10−1 6.63 × 10−3 2.92 × 10−6 2.38 × 10−2 3.05 × 10−2 2.76 × 10−4 1.93 × 10−4

Pb 1.39 × 100 3.56 × 10−6 2.93 × 100 4.33 × 100 1.49 × 10−1 1.60 × 10−6 6.38 × 10−1 7.88 × 10−1 1.13 × 10−5 7.96 × 10−6

Zn 4.19 × 10−2 1.28 × 10−5 8.81 × 10−2 1.30 × 10−1 4.49 × 10−3 5.64 × 10−6 1.87 × 10−2 2.32 × 10−2

Values in bold indicate an HI value > 1 or a CR value > 1 × 10−4.

Figure 4. Contribution of PTE to risk: (a) non-carcinogenic risks in children, (b) non-carcinogenic
risks in adults, (c) carcinogenic risks in children and (d) carcinogenic risks in adults.

However, it is important to emphasize that these risk calculations are based on average
PTE concentrations. Given the remarkably wide range of analyte concentrations found and
the fact that a few values markedly exceeded the mean for each element, it is probable that
results overestimate risk for the majority of Lagos residents.

4. Conclusions

Concentrations of Cr, Cu, Fe, Mn, Ni, Pb and Zn varied markedly in soils obtained
from public-access areas across the megacity of Lagos. The highest values were found
in proximity to known pollution sources, such as dumpsites, but there is evidence that
general ambient PTE levels are increasing as rapid urbanization and industrialization
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occurs. The urban metals—Cu, Pb and Zn—were generally found in more labile forms than
elements such as Cr, Fe and Ni and are therefore more susceptible to (re)mobilization and
transport under changing environmental conditions. Calculations indicated the presence
of non-carcinogenic risk for children, as well as carcinogenic risk for both children and
adults, although this is likely associated mainly with sites where PTE concentrations were
highest. Nevertheless, further monitoring and assessment of the status of Lagos urban soils
is recommended, together with the development and implementation of an appropriate
regulatory framework to protect soil quality and public health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10040154/s1, Table S1: Results for sequential extraction of
chromium (mg/kg); Table S2: Results for sequential extraction of copper (mg/kg); Table S3: Results
for sequential extraction of iron (mg/kg); Table S4: Results for sequential extraction of manganese
(mg/kg); Table S5: Results for sequential extraction of nickel (mg/kg); Table S6: Results for sequential
extraction of lead (mg/kg); Table S7: Results for sequential extraction of zinc (mg/kg).
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