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Abstract: Retinal vessel segmentation is extremely important for risk prediction and treatment of
many major diseases. Therefore, accurate segmentation of blood vessel features from retinal images
can help assist physicians in diagnosis and treatment. Convolutional neural networks are good at
extracting local feature information, but the convolutional block receptive field is limited. Transformer,
on the other hand, performs well in modeling long-distance dependencies. Therefore, in this paper, a
new network model MTPA_Unet is designed from the perspective of extracting connections between
local detailed features and making complements using long-distance dependency information, which
is applied to the retinal vessel segmentation task. MTPA_Unet uses multi-resolution image input to
enable the network to extract information at different levels. The proposed TPA module not only
captures long-distance dependencies, but also focuses on the location information of the vessel pixels
to facilitate capillary segmentation. The Transformer is combined with the convolutional neural
network in a serial approach, and the original MSA module is replaced by the TPA module to achieve
finer segmentation. Finally, the network model is evaluated and analyzed on three recognized retinal
image datasets DRIVE, CHASE DB1, and STARE. The evaluation metrics were 0.9718, 0.9762, and
0.9773 for accuracy; 0.8410, 0.8437, and 0.8938 for sensitivity; and 0.8318, 0.8164, and 0.8557 for Dice
coefficient. Compared with existing retinal image segmentation methods, the proposed method in
this paper achieved better vessel segmentation in all of the publicly available fundus datasets tested
performance and results.

Keywords: retinal vessel segmentation; convolutional neural network; transformer; attention mechanism

1. Introduction

Automatic segmentation of the retinal vessels plays an important role in the clinical
evaluation and diagnosis of many ocular-related diseases. Since the fundus is the only part
of the human body where arterioles and capillaries can be directly and centrally observed
with the naked eye, morphological information of these retinal vessels, such as thickness,
curvature and density, can reflect the occurrence of disease to some extent [1,2]. Studies have
shown that the thickness and curvature of retinal vessels are associated with some extent
with hypertension and diabetes mellitus. For example, primary hypertension causes spasms
and narrowing of the retinal vessels, thickening of the vessel walls, and in severe cases,
exudates, hemorrhages, and cotton wool spots [3]. As can be seen in Figure 1, the fundus
of the patient’s eye shows symptoms such as exudates and hemorrhagic spots to varying
degrees compared to normal fundus images. The degree of fundus lesions is closely related
to the duration of hypertension and its severity. Hypertensive retinopathy will show general
arterial stenosis to varying degrees in different disease stages, as shown in Figure 1d, which
shows the stenosis of the entire venous tree. Diabetic retinopathy is manifested as retinal
hemorrhage, exudation, thinning or even blocking of small blood vessels, leading to retinal
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anemia and hypoxia, thus promoting the appearance of regenerated blood vessels. The
existence of new capillaries is an important sign of the further deterioration of diabetic
retinopathy. Simultaneously, diabetic retinopathy and macular mutations are also the main
causes of vision loss [4]. Therefore, early detection and diagnosis of these lesions are an
important tool to prevent the onset and progression of the disease.

Figure 1. Retinal fundus images. (a) normal fundus image; (b) background diabetic retinopathy,
pigment epithelial atrophy; (c) choroidal lesion; (d) narrowing, entire venous tree.

However, in current clinical practice, the manual examination is usually relied upon
to obtain information on these retinal fundus lesions. This task is not only time-consuming
and laborious but also requires a high level of medical skills from the physician. Therefore,
the automatic and accurate segmentation of retinal vessels from retinal fundus images to
assist physicians in examination and diagnosis is very important and meaningful work.
Many researchers have applied machine learning methods to retinal vessel segmentation
tasks, such as using high-pass filtering for vessel enhancement [5] and Gabor wavelet
filters to segment retina vessels [6]. Some researchers have applied the EM maximum
likelihood estimation algorithm [7] and the GMM expectation-maximization algorithm [5]
to the retinal vessel and background pixel classification as well. All of these methods have
contributed in retinal vessel segmentation, but further improvements are needed in the
accuracy and efficiency of retinal vessel segmentation.

With the rapid development in the field of computer vision, deep learning techniques
have played an important function in the field of image processing. Compared with
traditional machine learning methods, deep convolutional neural networks [8] have a
high capability of extracting effective features of data [9]. Based on the classical UNet [10],
FCN [11], and ResNet [12], researchers have proposed many improved convolutional
neural network methods. UNet++ [13] uses multiple layers of skip connections to capture
features at different levels on the structure of encoder–decoder. Wang et al. [14] proposed
dual encoding UNet (DEUNet), which significantly enhanced the ability of the network to
segment retinal vessels in an end-to-end and pixel-to-pixel manner. Res-UNet [15] added a
weighted attention mechanism to the UNet model to better discriminate between retina
vessel and background pixel features.

Although convolutional neural networks (CNN) have a strong feature extraction capa-
bility, they still suffer from the problem of a limited convolutional kernel field of receptiive.
Therefore, CNN is limited to processing local information but cannot focus on global con-
textual information. In addition, the difficulty of the retinal vessel segmentation task is how
to obtain to perform accurate pixel-level classification rather than image-level classification.
To solve the above problems, some researchers have introduced the Transformer [16] frame-
work to computer vision tasks. Vision Transformer (ViT) [17] pioneered the use of a pure
Transformer architecture to handle image recognition tasks. Based on the ViT architecture,
Deit [18] introduced several training strategies which enable ViT to be trained on ImageNet
datasets as well. Pyramid Vision Transformer (PVT) [19], which inherits the advantages
of CNN and Transformer, uses a convolution-free backbone to handle computer vision
tasks. In addition, more research works are dedicated to combine Transformer with CNN
to achieve higher accuracy, such as the work of Chen J. [20], Chen B. [21], Valanarasu [22],
and others’ work. Currently, Transformer performs well on medical image processing tasks
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but usually requires pre-trained networks to make the model perform better, as well as a
large amount of data to train the model. Although Transformer is good for acquiring long-
distance dependencies in images, it is not good at capturing detailed information about the
blood vessels in the fundus of the eye. Just a single-minded pursuit of using Transformer
may not be suitable for retinal fundus datasets with small amounts of data. Therefore,
this paper takes a look at the convolutional neural network and Transformer mechanisms
and their respective focuses. Considering that convolutional neural networks are good at
capturing detailed local information, Transformer can complement global information as
well as contextual information. In the actual feature extraction and recovery process, the
connection between local detail information is more beneficial for extracting features, and
the long-distance dependent information plays more of a role of information supplement.

In this paper, we propose an MTPA_Unet(Multi-scale Transformer-Position Atten-
tion_Unet) network model for retinal vessel segmentation. It consists of a serial combination
of Transformer and CNN. Specifically, we first propose a TPA module to replace the tradi-
tional Transformer’s multi-headed attention module. Considering that the Transformer
structure is not well adapted to retinal datasets with a small number of samples. Therefore,
a lightweight positional attention module is added behind TMSA, which is designed to
capture the positional information of retinal vessel pixels more precisely. Secondly, the
selection of multi-scale information input makes the network sensitive to different scales
to achieve better segmentation. After the Transformer for feature extraction, we feed the
extracted information into the encoder of the U-shaped network structure for further fine-
grained segmentation of the feature map. A multilayer pooling module is added at the end
of downsampling to expand the receptive field. At the same time, the information from
each stage of downsampling is fused and provided to the higher levels to compensate for
the shallow information. A residual connection is used between the encoder and decoder
to reduce noise. Finally, the features are recovered and reconstructed by decoders to enable
the network structure to output the segmentation results of retinal vessels. We used three
public retinal fundus datasets to evaluate MTPA_Unet, respectively, DRIVE, CHASE DB1,
and STARE. Experimental results show that the network achieves better segmentation
performance. The main research of the paper is as follows:

1. A TPA module is proposed to replace the MSA structure in the traditional Transformer,
which not only considers the relationship between long-distance pixels but also
focuses on the acquisition of blood vessel pixel position information. The network
model is adapted to the fine segmentation task of retinal blood vessels with a small
number of samples.

2. The MTPA_Unet network model is proposed, and the Transformer and convolutional
neural network are combined to design and apply it to the retinal blood vessel segmen-
tation task. MTPA_Unet can alleviate the limitations exhibited by CNN in modeling
long-term dependencies and achieve higher retinal vessel segmentation accuracy.

3. Perform ablation experiments and comparative experiments on three datasets, DRIVE,
CHASE DB1 and STARE, and analyze the results. The results show that the network
model proposed in this paper achieves better vessel segmentation performance.

The rest of this paper is organized as follows: Section 2 describes the work related
to convolutional neural networks and Transformer. Section 3 describes the MTPA_Unet
network model for retinal vessel segmentation. The dataset, implementation details, and
evaluation metrics of the experiments are described in Section 4. The ablation experiments
and comparison experiments are designed, and the results are analyzed in Section 5. The
full text is summarized in Section 6.

2. Related Work
2.1. Related Work of CNN on Image Segmentation

In recent years, CNN-based methods have achieved great success in the field of seman-
tic segmentation and medical image segmentation due to their efficient feature extraction ca-
pability and powerful feature representation. In addition to the classic U-Net [10], FCN [11],
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ResNet [12], and other methods, the ability of the attention mechanism to efficiently extract
feature information has attracted many researchers to do a lot of work on this basis. The
classic CBAM [23] network combines channel attention and spatial attention as a classical
connection. The CA-Net [9] goes further by combining channel, spatial, and location atten-
tion and is an integrated attention convolutional neural network for interpretable medical
image segmentation. Non-local blocks [24] have the advantage of capturing long-range
dependencies and the disadvantage of increased computational volume.

In addition, it is also an important work to make improvements between the accuracy
and cost of the attention mechanism; CC-Net [25] uses a novel cross-attention module to
capture contextual information and improve computational efficiency. The APNB network
proposed by Zhu et al. [26] introduces a pyramidal sampling module into the nonlocal
block, which greatly reduces computation and memory consumption and obtains high
semantic segmentation results. The DANet [27] is proposed to use self-adaptive integration
of local features and their global dependencies. The output of the two attention modules is
summed to further improve the feature representation. Recently, Lian et al. [28] improved
the residual network and designed a global and locally enhanced residual U-shaped
network for accurate segmentation of retinal blood vessels. Zhu et al. [29] proposed the
ACE Net, which applied an extended contraction path segmentation network applied to
both cell segmentation and retinal vessel segmentation tasks.

Zhang et al. [30] proposed a novel deep network architecture named Bridge-net, which
combines recurrent neural network (RNN) and convolutional neural network (CNN) to
effectively utilize the context of retinal vessels. Tan et al. [31] introduced skeletal prior and
contrast loss and proposed a new network named SkelCon, which is able to improve the
integrity and continuity of thin blood vessels. Arsalan et al. [32] designed a dual-stream
fusion network (DSF-Net) and a dual-stream aggregation network (DSA-Net) for the task
of semantic segmentation of retinal fundus images. Following this, Arsalan et al. proposed
a pooling-free residual segmentation network PLRS-Net [33] with stepped convolution
to provide a pooling effect for better retinal vessel segmentation sensitivity. DF-Net [34]
proposes a feature fusion module to fuse deep features with vessel responses extracted
from Frangi filters. This end-to-end network is not only easy to train, but also has good
segmentation performance.

The above methods have contributed to different tasks of retinal blood vessels, in-
novating the method from different perspectives. However, the segmentation of retinal
blood vessels with higher accuracy is the goal that researchers have been pursuing, which
is also the starting point of the method in this paper. Compared with these methods using
convolutional neural networks, the advantage of this paper is that it pays more attention
to the complementary meaning of global information, so Transformer is introduced in the
method to assist better segmentation.

2.2. Related Work of Transformer in Computer Vision

Transformer [16] first played a role in the field of natural language processing, and
Vision Transformer (ViT) [17] first applied a pure Transformer architecture directly to a
series of image blocks for classification tasks and achieved excellent results. Since then,
Transformer has been increasingly used in the field of computer vision. There are two ap-
proaches to the design of network architectures, namely, the pure Transformer architecture
approach and the combination of Transformer and convolutional neural networks. In terms
of networks with pure Transformer structure, DETR [18] successfully used the Transformer
as the main building block in the pipeline to obtain a more flexible and simple target detec-
tion framework. ConViT [35] mimicked the local dependency of the convolutional layer
by introducing a gated positional self-attentive module. A compelling current work, Swin
Transformer [36], uses a hierarchical vision Transformer with shifted windows that can be
applied as a general backbone for computer vision for tasks such as image classification,
target detection, and semantic segmentation. More designs combine the Transformer with
CNN for better results. Transunet [20] is a hybrid coding network based on Transformer
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and CNN, which designs the Transformer in the downsampling part and focuses more on
the acquisition of global information. It is highly competitive for medical segmentation
tasks such as multi-organ segmentation and heart segmentation. RTNet [37] proposed a
relational Transformer module (RTB) with Transformer as the basic unit and designed a net-
work for diabetic retinopathy segmentation. Heo et al. [38], based on ViT, designed a new
pooling-based visual Transformer (PiT) with higher model performance and generalization
performance. The Swin Transformer was combined with U-Net to obtain a U-Net-like
network structure for medical image segmentation, called Swin-Unet [39]. Gao et al. [40]
proposed a multiscale Transformer for medical image segmentation, and the proposed
bidirectional attention and global multiscale feature fusion made the model perform well
on both 2D and 3D datasets. Since Transformer can compensate for the inherent limitations
of convolution, the Transformer structure will be able to continue to be advantageous in
the field of computer vision.

3. Muti-Transformer-Position Attention_Unet Method

Since CNN has great advantages in extracting local information, it is insufficient for
feature extraction of long-distance dependencies. Therefore, in order to balance between
long-distance dependencies and short-distance dependencies, this paper uses a combination
of traditional CNN and Transformer architectures to achieve high-precision segmentation
of retinal fundus vessels. The general structure of our proposed MTPA_Unet network
model is discussed as follows.

The input to the network is derived from slices of the original retinal vessel images.
Due to the high detail information of fundus vessel endings, feature map inputs of different
scales are used to enhance the feature extraction capability of the network. These feature
maps were input layer by layer into each stage of the Transformer structure, with each layer
having image input sizes of 64× 64, 32× 32, 16× 16, and 8× 8 pixels. Each stage consists of
Patch embedding, position encoding, and TPA modules. Furthermore, the results extracted
by the Transformer are passed to the encoder in the corresponding CNN network, i.e.,
the output of each stage corresponds as the input of the encoder block. After the initial
extraction of the image features by the Transformer, the advantages of the Transformer for
long-distance dependency acquisition are exploited and the shortcomings of the encoder
are compensated. Since short-distance dependencies occupy a more important proportion
in retinal vessel segmentation, we perform further fine-grained segmentation of the feature
map. The encoder block consists of a feature extraction module and a downsampling
module. Here, the output of each layer of the encoder block is fused and passed into
the underlying multilayer pooling module together with the encoder block of the last
layer in order to make use of the information in the shallow layers and to assist in better
segmentation. Residual connections are used between the corresponding encoder and
decoder blocks in each layer to reduce noise interference. Finally, the processed feature
maps are then fed to the decoder for feature reconstruction and recovery by upsampling
operations. The parts are described in detail as follows. The overall structure of the network
is shown in Figure 2.

3.1. Encoder Block

The encoder block consists of a feature extraction module (FE) and a downsampling
module (DS). For the input retinal vessel image, it is first passed through the feature extrac-
tion module. The FE module is designed to extract the retinal image vessel features, while
the number of channels of the input feature map is adjusted, doubling from 32 channels of
the input layer by layer to 256 channels of the fourth layer. The process is as follows: for the
input feature maps, a 1 × 1 convolutional layer is first used for dimensionality reduction.
The image information is extracted using a 3× 3 convolution and a 3× 3 transposed convo-
lution for the reduced-dimensional feature map, respectively, and the extracted information
is fused. A 1 × 1 bottleneck layer is subsequently used, and the normalization layer is
selected for batch normalization and finally activated by the ReLU function. The feature
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map is output before it is output with the previous input superimposed. The detailed
structure is shown in Figure 3.

Figure 2. Figure of downsampling module.

Figure 3. Feature extraction module.

Since the pooling layer has the advantage of good feature degradation and feature
invariance, we introduce a downsampling module (DS) after the FE module, which allows
the model to extract a wider range of features and serves for further feature extraction
and downsampling of the image. The DS module consists of an adaptive pooling, three
consecutive batch normalization layers, a ReLU activation function, and a Conv layer. The
detailed structure is shown in Figure 4.

Figure 4. Downsampling module.

3.2. Transformer-Position Attention Module

The Transformer-Position Attention (TPA) module consists of a modified multi-headed
attention TMSA and a position attention module. The Patch Embedding layer and the
Positional encoding layer, as necessary structures of the Transformer, are described in detail
in the TMSA structure description section. The TMSA and location attention modules are
described in detail in turn as follows.
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3.2.1. TMSA Structure Description

Patch Embedding layer: The PE layer is used to serialize the input image. Specifically,
the input image dimension is H ×W × C, and H, W, and C denote the height, width, and
number of channels, respectively. Firstly, the input image is divided into N blocks of size
P2×C, and then it is reshaped into blocks of dimension N× P2×C.

Since each stage of the TPA module works on a different size of the input feature map,
the PE layer is able to downsample the feature map and gradually expand the channel
dimension to achieve a hierarchical feature representation. We use PE before each layer of
the TPA module except for the first stage, with the aim of using the PE module to scale the
feature map spatial dimension and channel dimension. The spatial dimension is reduced
by a factor of 4 and the channel dimension is increased by a factor of 2. This process is
implemented using a 3× 3 convolution with a step size of 2 and a padding of 1. The output
of each PE layer can be formalized as Equations (1) and (2), where x and x′ denote the
feature maps before and after processing, respectively:

x′ = BN(x · Pr oj(x)) (1)

PE(x) = Sigmoid(Conv2d(x′)) · x′ (2)

Positional encoding layer: to make the positional encoding more flexible, we refer
to the setting of positional encoding in [41]. Unlike the traditional positional encoding in
ViT [17], we use a deep convolution operation of size 3 × 3 with a padding of 1 to obtain
the weights in the pixel direction. The weights are then normalized and scaled by a sigmoid
function. The positional encoding process can be expressed as Equation (3):

x̂ = Sigmoid(DeepConv2d(x)) · x (3)

TMSA structure: The main advantage of the Transformer is that it enables the model
to focus on semantic information from the global context and to capture contextual informa-
tion in both absolute and relative positions. Structurally, the Transformer consists mainly
of L-layer Multiheaded Self-Attention (MSA) and Multilayer Perceptron (MLP) blocks. The
TMSA used in this paper is similar to the traditional MSA. For the input feature map, a set
of projections is first used to obtain Q, Q ∈ Rn×dm . A given Q, K and V can be shared among
all attention layers. To reduce the computational effort as well as memory pressure, the
input x ∈ Rn×dm is reshaped into a three-dimensional x̂ ∈ Rdm×h×w, and then the spatial
resolution is reduced by convolution operations and normalized using layer normalization.
For the newly obtained x̂ ∈ Rdm×h/s×w/s, two sets of projections are used to obtain K and
V, K, V ∈ Rdm×h/s×w/s, respectively. For the obtained Q, K and V, the 1 × 1 convolution
operation is applied to the transpose of Q and K for simulating the interaction between
different heads. A normalization operation is done using softmax to generate the matrix of
the contextual attention map. To obtain the set of values weighted by the attention weights,
the contextual attention map will be multiplied by V. Finally, after layer normalization of
the output, TMSA can be expressed as Equation (4):

TMSA = LN
[

So f t max
[

Conv
(

Q · KT
√

dk

)]
V
]

(4)

where
√

dk is the dimensionality of Q, K, and V. Finally, we linearly project the optimized
feature mapping, after Equations (5) and (6), and add FFN after TMSA to achieve feature
transformation and nonlinearity to obtain the final output of TMSA:

x1
L = TMSA(xL−1) + xL−1 (5)

Y = x1
L + FFN(LN(x1

L)) (6)
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3.2.2. Description of Location Attention Structure

Due to the presence of more capillaries in retinal fundus images, more details need
to be captured in the information extraction. Therefore, we do not simply use TMSA to
process the images but add the location attention module afterward. Under the role of
modeling with strong contextual information, the global semantic information description
is obtained by establishing the connection between long-distance features of fundus vessel
pixels. In turn, a more refined retinal vessel segmentation is achieved. Specifically, for a
given feature map F, M, N, V, {M, N, V} ∈ RC×W×H can be obtained after 1 × 1 convolution
layers, respectively. For the obtained feature maps M, N, there is a vector Qx at any pixel
position x in M. In order not to increase extra computational effort, when calculating the
correlation of a pixel in the whole image with position x, the feature vectors that are in the
same row and column as position x are first searched in the feature map N and saved in
the set Dx ∈ R(H×W−1)×C. The correlation between the pixel position x and the feature
vector associated with it is obtained by the calculation as shown in Equation (7), and the
softmax function is further applied on the multiplication result to generate the attention
map SZ ∈ R(H+W−1)×H×W :

Sz = so f t max
(

QxDT
i,x

)
(7)

The attention map and the set ψx ∈ R(H×W−1)×C of feature vectors in the same column
as x in the feature map V are then multiplied to obtain the new feature map Y′. Finally,
the Y′ is added to the input feature map F to generate the final output feature map Y. See
Equation (8):

Y =
H+W−1

∑
i=0

Sz · ψi.x + F (8)

By using this feature correlation calculation twice, it is possible to obtain global contex-
tual information about each pixel location. This more comprehensive information extraction
enhances the Transformer and introduces little computational effort. The structure of the
TPA module is shown in Figure 5.

Figure 5. Structure of TPA module.

3.3. Loss Function

In order to correct the segmentation error which exists between the segmentation
results and the given true value, in this paper, we use the Dice loss function to enhance the
retinal vessel segmentation results. The Dice coefficient is an ensemble similarity measure
function which takes values in the range [0, 1]. It is used in this paper to calculate the
difference between the predicted retinal vessel segmentation result (denoted as P) and the
true value (denoted as G), and the Dice coefficient formula is defined as Equation (9):

DiceCoe f f icient= 2× |P ∩ G|
|P|+ |G| (9)
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where |P ∩ G| denotes the intersection of the predicted retinal vessel segmentation result
and the true value, and |P| and |G| denote their pixel counts, respectively. The Dice
loss function is then deduced from the Dice coefficient, denoted as DiceLoss = 1DiceCo-
efficient, which is defined as in Equation (10). A constant w is introduced in the concrete
implementation to prevent the denominator from being zero. Because the real goal in the
semantic segmentation task is to maximize the Dice Coefficient, in order to improve the
segmentation accuracy, it is to minimize the DiceLoss. In addition, since DiceLoss is a
region-related loss, that is, the loss of the current pixel is also related to the values of other
points. It can also be seen from the definition form of DiceLoss that the loss calculated by
the fixed-size positive sample area is the same, and the supervision effect on the network
will not change with the size of the image. Therefore, in the training process, DiceLoss
is more inclined to mine the foreground area, and the effect may be better for the class
imbalance problem:

DiceLoss = 1− 2× |P ∩ G|+ w
|P|+ |G|+ w

(10)

4. Dataset and Evaluation Criteria
4.1. Dataset

The retinal images used in this paper are from three publicly available datasets, re-
spectively, the DRIVE, CHASEDB1, and STARE dataset. The DRIVE dataset [42] consists of
40 color images of retinal fundus vessels, of which seven images suffer from different de-
grees of lesions. It also contains groundtruth images and corresponding mask images that
were manually segmented by two experts. The size of each image is 565 × 584, and the first
twenty fundus images are set as the test set. The last twenty images are set as the training
set. The experimental comparison labels were chosen from the manual segmentation results
of the first expert.

The STARE dataset [43] consists of 20 color images of retinal fundus vessels, 10 of
which suffer from different degrees of lesions. It also contains the groundtruth images
manually segmented by two experts and consists of the corresponding mask images. The
size of each image was 700 × 605 pixels. The experimental comparison labels were selected
from the manual segmentation results of the first expert.

The CHASE DB1 dataset [44] consists of 28 color images of the retinal fundus vessels,
with images acquired from the left and right eyes of 14 affected children. It also contains the
groundtruth images manually segmented by two experts and consists of the corresponding
mask images. The image size was 999 × 960. Twenty images were used as the training set,
and the remaining eight images were used as the test set. The experimental comparison
labels are chosen from the manual segmentation results of the first expert.

Figure 6 shows three example dataset images, from top to bottom, the CHASE DB1,
DRIVE, and STARE dataset, respectively. From left to right are the original retinal fun-
dus vessel medical image, the masked image, and the true value of the expert’s manual
segmentation, respectively.

4.2. Image Preprocessing

In this paper, we also use the necessary preprocessing to enhance the vessel contours
in the original retinal images. In this paper, we used the preprocessing methods proposed
by Jiang et al. [45], which are data normalization, adaptive histogram equalization (CLAHE)
processing, and gamma correction methods, respectively. It was experimentally verified
that the blood vessels in the grayscale images were clearest after fusing the G, R, and B
channels in the ratio of 29.9%, 58.7%, and 11.4%. Normalization was used to improve the
convergence speed of the model, and CLAHE processing was used to enhance the contrast
between the blood vessels and the background in the original images. Finally, gamma
correction is used to improve the quality of retinal fundus vessel images. The images
processed by the four strategies are shown in Figure 7b–e. Obviously, the blood vessels in
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the retinal images are clearer, and the contrast with the background is more obvious after
the above preprocessing operations.

Figure 6. Example images of three datasets (a) original retinal fundus vessel medical image,
(b) masked image, and (c) expert manual segmentation of the groundtruth.

Figure 7. Pre-processing results of (a) original retinal fundus vessel medical image, (b) RGB three-
channel scaled fusion image, (c) data normalized image, (d) CLAHE processed image, and (e) gamma
corrected image.

4.3. Experimental Evaluation Metrics

To quantitatively evaluate the accuracy of the method in this paper for the retinal
vessel segmentation task, the performance of the evaluation metrics such as Dice coeffi-
cient, Accuracy, Sensitivity, and Specificity were analyzed using a confusion matrix. The
corresponding equations for each evaluation metric are expressed in Equations (11)–(15). In
image segmentation tasks, the Dice coefficient is usually used to express the proportional
relationship between sensitivity and accuracy, and its value is closer to 1.0 to indicate better
segmentation. Accuracy indicates the ratio of the sum of correctly segmented vessel pixels
and background pixels to the total pixels of the whole image. The sensitivity indicates
the ratio of correctly segmented vessel pixels to the total real vessel pixels, and its value
is Specificity, indicating the proportion of correctly segmented background pixels to the
total real background pixels, and the value is closer to 1.0, which means the fewer pixels
are incorrectly segmented:

Dice =
2× TP

2× TP + FN + FP
(11)
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Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Sensitivity =
TP

TP + FN
(13)

Speci f icity =
TN

TN + FP
(14)

Precision =
TP

TP + FP
(15)

where true positive (TP) is the number of vessel pixels that are correctly segmented, true
negative (TN) is the number of background pixels that are correctly segmented, false
positive (FP) is the number of background pixels that are incorrectly segmented as vessel
pixels, and false negative (FN) is the number of vessel pixels that are incorrectly segmented
as background pixels.

5. Experimental Results and Analysis
5.1. Experimental Environment and Parameter Settings

The method in this paper is implemented using the Pytorch framework for deep
learning. The model training was implemented on a Quadro RTX 6000 server with a GPU
memory size of 24 GB and an operating system of Ubuntu64. The initial learning rate of
0.001 was used for training. We used the model with the best validation performance in the
test, and the Dice loss function was used for the loss function.

For the DRIVE and CHASE DB1 datasets, the number of iterations of the model is set to
100, the training batch size is 32, and the threshold is set to 0.5. Since there are only 20 images
in the STARE dataset, the experiments are conducted using the leave-one-out method to
make the training effect as good as possible. That is, one image is used for training at a time,
and the remaining 19 samples are used for testing. The training batch size was set to 64, the
number of iterations of the model was set to 100, and the threshold value was set to 0.48.

5.2. Experimental Comparison of Ablation Structures

In order to verify the effectiveness of the utilization of the shallow information in the
model MTPA_Unet, the TPA module, and the Transformer for the retinal vessel segmen-
tation task in this paper, in the same experimental setting, we performed retinal vessel
segmentation experiments in DRIVE, CHASE DB1, and STARE datasets, respectively, using
the U-network as the baseline model. The performance of these modules was quantified by
designing ablation experiments. First, the baseline network is based on a modification of
the U-Net incorporating residual connectivity and a multiscale pooling module, denoted
as BaseLine. Based on this, the output of each encoder block is fused and passed to the
multiscale pooling module to utilize shallow coarse-grained feature information. Next, the
Transformer is added to the BaseLine+SCI to compensate for the contextual information,
and a multi-scale network input is used. Finally, the MSA is replaced by the TPA structure,
which is the model MTPA_Unet in this paper. MTPA_Unet (w/o pre) means operating
directly on the original image without any preprocessing.

The structure of the ablation experiments performed on the DRIVE and CHASE DB1
datasets are presented in Tables 1 and 2, respectively. The bolded data in the tables indicate
the maximum values achieved by the different network models on the corresponding
evaluation metrics. As far as the performance of BaseLine is concerned, the Dice coefficient
and sensitivity reached 0.8136 and 0.8266, 0.8324, and 0.8060 on the DRIVE and CHASE
DB1 datasets, respectively. Model BaseLine+SCI reached 0.8289 and 0.8278 on the DRIVE
dataset for Dice coefficient and sensitivity, respectively. The sensitivity increased by 1.18%.
On the CHASE DB1 dataset, the Dice coefficient and sensitivity reached 0.8143 and 0.8296,
respectively, with some decrease in sensitivity but a small increase in Dice coefficient, while
the rest of the metrics were basically the same. This proves that the inclusion of shallow
information is beneficial to segment the vessel pixels from the background pixels and can
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capture more details of the vessels. In order to combine the long-distance dependency
extraction capability of Transformer with the local information extraction capability of
CNN, we added a Transformer structure based on the BaseLine+SCI model and used
multi-scale input in order to exploit the multi-resolution feature of retinal vessel images.
It can be seen that the Dice coefficient and sensitivity reach 0.8300 and 0.8249 on the
DRIVE dataset, and 0.8139 and 0.8434 on the CHASE DB1 dataset, respectively. This
proves that Transformer is helpful for the vessel segmentation task. However, retinal
vessel segmentation has more vessel branches as well as terminal parts compared with
other medical image segmentation tasks. The acquisition of vessel location information
is insufficient using only the Transformer structure. Therefore, after adding the location
attention, the Dice coefficient and sensitivity of model MTPA_Unet on DRIVE, CHASE
DB1 datasets reach 0.8318 and 0.8164, 0.8410 and 0.8437, respectively, which are improved
by 0.18% and 0.21%, 1.65% and 0.04%, respectively. It is further demonstrated that our
proposed module is effective in extracting the contextual information of retinal images.
Multiple retinal vessel section images at different scales also enable the model to learn
different characteristics as well as fine vessel features.

Table 1. Ablation experiments on the DRIVE dataset.

Model Accuracy Specificity Sensitivity Dice AUC_ROC

U-Net [10] 0.9531 0.9820 0.7537 0.8142 -
BaseLine 0.9705 0.9865 0.8060 0.8266 0.9728

BaseLine+SCI 0.9702 0.9841 0.8278 0.8289 0.9766
BaseLine+SCI+MT 0.9705 0.9848 0.8245 0.8300 0.9785

MTPA_Unet
(w/o pre) 0.9702 0.9856 0.8116 0.8275 0.9875

MTPA_Unet 0.9718 0.9836 0.8410 0.8318 0.9877
The bold data in the table represent the maximum value achieved on each evaluation index.

For the STARE dataset, the same ablation experiments were designed. For clarity,
the test results of the MTP_Unet model on 20 images are listed in Table 3. The results
of the 20 tests on the five metrics are averaged as the test results of MTPA_Unet on the
STARE dataset.

For the models BaseLine, BaseLine+SCI, and BaseLine+SCI+MT were trained and
tested on the STARE dataset using the leave-one-out method. For the sake of simplicity, only
the average values obtained on the five evaluated metrics are shown here. The experimental
results are shown in Table 4, with the highest value for each metric in bold. Comparing the
performance of BaseLine, Dice and sensitivity improved by 0.46% and 0.71%, respectively,
after adding the shallow information. Combining the multiscale Transformer with it
increases Dice and sensitivity by 0.09% and 0.3%, respectively. The method MTPA_Unet in
this paper improves Dice and sensitivity by 1.23% and 1.26%, respectively, on this basis.
The combined performance shows that the method in this paper can improve in each index
and is very effective for more accurate segmentation of vessel pixels.

Table 2. Ablation experiments on the CHASE DB1 dataset.

Model Accuracy Specificity Sensitivity Dice AUC_ROC

U-Net [10] 0.9578 0.9701 0.8288 0.7783 -
BaseLine 0.9759 0.9857 0.8324 0.8136 0.9884

BaseLine+SCI 0.9761 0.9861 0.8296 0.8143 0.9878
BaseLine+SCI+MT 0.9757 0.9848 0.8434 0.8139 0.9861

MTPA_Unet
(w/o pre) 0.9758 0.9857 0.8299 0.8122 0.9900

MTPA_Unet 0.9762 0.9858 0.8437 0.8164 0.9905
The bold data in the table represent the maximum value achieved on each evaluation index.
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Table 3. Test results on STARE dataset using the leave-one-out method.

Image Accuracy Specificity Sensitivity Dice AUC_ROC

0 0.9742 0.9825 0.8856 0.8483 0.9908
1 0.9753 0.9812 0.8916 0.8276 0.9892
2 0.9805 0.9859 0.8964 0.8468 0.9931
3 0.9694 0.9787 0.8525 0.8052 0.9866
4 0.9715 0.9824 0.8621 0.8455 0.9886
5 0.9778 0.9831 0.9061 0.8503 0.9921
6 0.9732 0.9744 0.9602 0.8521 0.9934
7 0.9775 0.9799 0.9484 0.8634 0.9941
8 0.9827 0.9872 0.9302 0.8948 0.9958
9 0.9755 0.9799 0.9257 0.8591 0.9923
10 0.9811 0.9876 0.8962 0.8713 0.9947
11 0.9812 0.9828 0.9620 0.8881 0.9954
12 0.9805 0.9864 0.9205 0.8939 0.9947
13 0.9803 0.9883 0.8997 0.8923 0.9946
14 0.9787 0.9871 0.8906 0.8783 0.9929
15 0.9684 0.9814 0.8542 0.8468 0.9879
16 0.9761 0.9864 0.8707 0.8671 0.9915
17 0.9866 0.9935 0.8571 0.8664 0.9926
18 0.9839 0.9903 0.8417 0.8191 0.9922
19 0.9721 0.9825 0.8254 0.7974 0.9883

Average 0.9773 0.9841 0.8938 0.8557 0.9920
The bold data in the table represent the maximum value achieved on each evaluation index.

Table 4. Ablation experiments on the STARE dataset.

Model Accuracy Specificity Sensitivity Dice AUC_ROC

U-Net [10] 0.9690 0.9842 0.8270 0.8373 -
BaseLine 0.9747 0.9833 0.8701 0.8379 0.9901

BaseLine+SCI 0.9754 0.9834 0.8772 0.8425 0.9905
BaseLine+SCI+ MT 0.9766 0.9835 0.8802 0.8434 0.9908

MTPA_Unet 0.9773 0.9841 0.8938 0.8557 0.9920
The bold data in the table represent the maximum value achieved on each evaluation index.

In addition to using these evaluation metrics to measure the effectiveness of the
models, to see more clearly the segmentation effect of the retinal fundus vessels, the seg-
mentation effect of each model on the same data set is shown in Figure 8. The visualization
of the segmentation results shows details that are not reflected in the numerical data.
Columns (a)–(f) in Figure 8 show the original retinal vessel image, the true value of manual
segmentation by professionals, the segmentation result of BaseLine, and the segmentation
result of BaseLine+SCI, the segmentation result of BaseLine+SCI+ MT, and the segmen-
tation result of MTPA_Unet, respectively. From top to bottom, the segmentation results
of medical images on CHASE DB1, DRIVE, and STARE datasets are shown in order. To
highlight the model segmentation effect, the capillary segmentation region is highlighted
in the visualization comparison. Some regions in the original retinal image, the baseline
image, and each model segmentation result map are shown enlarged and marked with
red boxes.

It can be seen from the performance of each model on the three datasets in Figure 8.
The difficulty of retinal fundus vessel segmentation is the accurate segmentation of the
surrounding fine vessel branches and some interlacing locations of vessels. In contrast,
segmentation of the thicker veins or slightly thinner arteries in the center of the retina
is easier for the common model. The addition of the Transformer structure brings more
information to the network and enables more detailed segmentation of the blood vessels,
which is not possible with the baseline model. The model in this paper obtains better
segmentation results compared with the above ablation structures. This fully demonstrates
that considering the information of vessel pixel location can enhance the information
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extraction ability of Transformer structure and make the network have better segmentation
ability. It is clearly observed from the comparison of the regions marked with red boxes in
the figure that the segmentation of the border part and capillary part of the blood vessels is
more accurate and clear. The above facts show that the network structure proposed in this
paper is feasible and effective in a real segmentation task. The improved network model is
able to obtain better segmentation results on all three datasets.

Figure 8. Visualization of ablation experiments on three datasets. (a) original image, (b) groundtruth
image, (c) BaseLine, (d) BaseLine+SCI, (e) BaseLine+SCI+ MT, (f) MTPA_Unet.

5.3. Comparison with Existing Models

To further illustrate the model validity, the method in this paper conducts compari-
son experiments with some existing state-of-the-art methods on three datasets. Classical
advanced methods such as U-Net++ [13], R2U-Net [46], CA-Net [9], and SCS-Net [47]
within the last five years were selected. The evaluation was carried out according to four
evaluation metrics, namely Dice, Accuracy, Sensitivity, and Specificity. Tables 5–7 show the
evaluation results of different models on the DRIVE, STARE, and CHASE DB1 datasets,
respectively, for the retinal vessel segmentation task.

As can be seen from Table 5, on the DRIVE dataset, the method MTPA_Unet in this
paper performs the best on the three metrics of accuracy, sensitivity, and Dice. Compared
with the suboptimal method, the improvement is 0.08%, 1.21%, and 0.16%, respectively.
As can be seen in Table 7, on the CHASE DB1 dataset, the method in this paper performs
better in terms of accuracy and Dice. The improvement is 0.02% and 0.25%, respectively.
From Table 6, it can be seen that, on the STARE dataset, the method in this paper performs
best on two metrics, Sensitivity and Dice. Compared with the suboptimal method, it
improves 2.52% in sensitivity and 0.82% in Dice. The improvement of the evaluation index
results verifies the effectiveness of the method in this paper. The superior sensitivity metric
results prove the better accuracy of the method in this paper for the correct classification of
vessel pixels.
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Table 5. Comparison with other methods on the DRIVE dataset.

Type Methods Year Acc Sp Se Dice

Non-learning based methods

Azzopardi et al. [48] 2015 0.9442 0.9704 0.7655 -
Miao et al. [49] 2015 0.9597 0.9748 0.7481 -
Chen et al. [50] 2017 0.9390 0.9680 0.7358 -
Shah et al. [6] 2019 0.9470 0.9724 0.7760 -

Deep learning
based methods

Original image

U-Net [10] 2018 0.9531 0.9820 0.7537 0.8142
Guo et al. [51] 2020 0.9691 0.9839 0.8149 0.8222
AG-UNet [52] 2020 0.9558 0.9810 0.7854 0.8216
FANet [53] 2021 0.8189 0.9826 - 0.8183
Tong et al. [54] 2021 0.9684 0.9870 0.8117 0.8174

Only pre-processing SCS-Net [47] 2021 0.9697 0.9838 0.8289 0.8189
PLRS-Net [33] 2022 0.9682 0.9817 0.8269 -

Patch+ Pre-processing

RVSeg-Net [55] 2020 0.9681 0.9845 0.8107 -
R2U-Net [46] 2018 0.9556 0.9813 0.7792 0.8171
UNet++ [13] 2018 0.9710 0.9861 0.8120 0.8302
DUNet [56] 2019 0.9566 0.9800 0.7963 0.8237
CA-Net [9] 2020 0.9605 0.9788 0.7727 0.7733
Huang et al. [57] 2021 0.9701 0.9849 0.8011 -
Ours 2021 0.9718 0.9836 0.8410 0.8318

The bold data in the table represent the maximum value achieved on each evaluation index.

Table 6. Comparison with other methods on the STARE dataset.

Type Methods Year Acc Sp Se Dice

Deep learning
based methods

Original image U-Net [10] 2018 0.9690 0.9842 0.8270 0.8373
Tong et al. [54] 2021 0.9805 0.9927 0.8072 0.8270

Only pre-processing SCS-Net [47] 2021 0.9736 0.9839 0.8207 -
PLRS-Net [33] 2022 0.9715 0.9803 0.8635 -

Patch+ Pre-processing

UNet++ [13] 2018 0.9753 0.9843 0.8646 0.8393
R2U-Net [46] 2018 0.9712 0.9862 0.8298 0.8475
Iter-Net [58] 2020 0.9782 0.9919 0.7715 0.8146
CA-Net [9] 2020 0.9703 0.9705 0.8685 0.8397
Ours 2022 0.9773 0.9841 0.8938 0.8557

The bold data in the table represent the maximum value achieved on each evaluation index.
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Table 7. Comparison with other methods on the CHASE DB1 dataset.

Type Methods Year Acc Sp Se Dice

Non-learning based methods Azzopardi et al. [48] 2015 0.9387 0.9587 0.7585 -

Deep learning
based methods

Original image

U-Net [10] 2018 0.9578 0.9701 0.8288 0.7783
AG-UNet [52] 2020 0.9752 0.9870 0.8110 0.8116
FANet [53] 2021 0.7722 0.9830 - 0.8108
Tong et al. [54] 2021 0.9739 0.9868 0.8340 0.7911

Only pre-processing SCS-Net [47] 2021 0.9744 0.9839 0.8365 -
PLRS-Net [33] 2022 0.9731 0.9839 0.8301 -

Patch+ Pre-processing

RVSeg-Net [55] 2020 0.9726 0.9836 0.8069 -
UNet++ [13] 2018 0.9760 0.9810 0.8184 0.8139
R2U-Net [46] 2018 0.9634 0.9820 0.7756 0.7928
DUNet [56] 2019 0.9752 0.9610 0.8155 0.7883
CA-Net [9] 2020 0.9645 0.9749 0.8120 0.7409
Ours 2022 0.9762 0.9858 0.8437 0.8164

The bold data in the table represent the maximum value achieved on each evaluation index.
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Similarly, the segmentation capability of the model is visualized with visualized
images of retinal vessel segmentation results. The method in this paper is compared with
the current better performing UNet++ [13], CA-Net [9], and AG-UNet [52] network models
for the segmentation task of retinal fundus vessels for visualization. Figures 9 and 10 show
the comparison of the visualization results of different models on the DRIVE and CHASE
DB1 datasets for the retinal vessel segmentation task, respectively. Columns (a)–(f) show
the segmentation results of the original retinal vessel images, the true values manually
segmented by a professional, UNet++, CA-Net, AG-UNet, and MTPA_Unet, respectively.
On the DRIVE and CHASE DB1 datasets, we can see that CA-Net and AG-UNet can
basically segment all arteries and veins, but there are still some blood vessels that are
not segmented, and the background pixels are incorrectly segmented as blood vessel
pixels, and the noise is more obvious in the results of CA-Net segmentation, while UNet++
performs well in the evaluation metrics and visualization segmentation results. However,
the segmentation of some of the vascular details is slightly inferior. In contrast, MTPA_Unet
performs better in the segmentation of small blood vessels because it fully utilizes the inter-
pixel position relationship and multi-scale feature maps to reduce the pixel misclassification
problem. Since MTPA_Unet takes into account the information of deep and shallow layers,
the noise effect is reduced in the segmentation results.

Figure 9. Comparison of visualization results with other methods on DRIVE dataset (a) original
image, (b) groundtruth image, (c) UNet++ [13], (d) CA-Net [9], (e) AG-UNet [52], (f) Ours.

Figure 10. Comparison of visualization results with other methods on CHASE DB1 dataset (a) original
image, (b) groundtruth image, (c) UNet++ [13], (d) CA-Net [9], (e) AG-UNet [52], (f) Ours.
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Figure 11 shows the comparison of the visualization results of different models on
the STARE dataset for the retinal vessel segmentation task. Columns (a)–(e) show the
original retinal vessel images, the true values manually segmented by professionals, the
segmentation results of UNet++, CA-Net, and the segmentation results of MTPA_Unet,
respectively. The method in this paper can obtain clearer vessel segmentation results
compared with UNet++ and CA-Net. The segmentation of capillaries is more accurate. The
segmentation is more smooth in the articulation part of some vessels. This is due to the
fact that this method takes into account the long-range relationship between pixels and
the local relationship, and focuses on the location connected with the surrounding pixels
when obtaining the pixel information of blood vessels. The comparative analysis shows
that the method in this paper has better performance and advantages for the retinal vessel
segmentation task. This conclusion can be clearly derived from Figures 9 and 11.

Figure 11. Comparison of visualization results with other methods on STARE dataset (a) original
image, (b) groundtruth image, (c) UNet++ [13], (d) CA-Net [13], (e) Ours.

5.4. Analysis of the Number of Model Parameters and Evaluation of ROC Curves

We evaluate the cost of the network model to obtain better segmentation performance
from the perspective of the model parameters. Ordinary CNN networks usually do not
introduce too much computation, while Transformer leads to a higher number of parame-
ters due to the complex multi-headed attention computation. To demonstrate that our final
model MTPA_Unet does not introduce too many parameters, the obtained high precision
experimental results do not only rely on the complex model to be achieved. The model with
the introduction of the Transformer structure is compared with the number of MTPA_Unet
parameters with the addition of the position attention module. As can be seen in Table 8, the
Transformer network model with the addition of multiscale inputs brings a higher number
of parameters compared to the CNN network. However, the MTPA_Unet modification
of the Transformer not only does not introduce too many parameters but also enables the
model to achieve higher accuracy in the retinal vessel segmentation task. This proves that
the method in this paper is not complicated and effective.

Table 8. Comparison of the number of parameters of each ablation structure network model.

Model BaseBine BaseBine + SCI BaseBine
+ SCI + MT MTPA_Unet

params 12.2 M 13.0 M 15.9 M 11.8 M



Sensors 2022, 22, 4592 19 of 22

To further judge the model performance, Receiver Operating Characteristic (ROC)
curves and Precision Recall (PR) curves were calculated for each ablation structure network
model and displayed in visualization in Figure 12. The ROC curves express the information
between the incorrect segmentation of background pixels into vascular pixels and the
correct segmentation of vascular pixels. When the proportion of these two is larger, the PR
curve can better reflect the real situation of pixel classification. As far as the experimental
results are concerned, the area occupied by the ROC curve and PR curve of MTPA_Unet is
the largest in all three data sets. This indicates that the method in this paper achieves the
best results on the retinal vessel segmentation task, and is able to utilize the long-distance
dependence and local information in combination. It is also able to extract the positional
relationships between retinal vessel pixels and take into account the deep and shallow
feature information, resulting in the best performance of the model.

Figure 12. PR and ROC curves for each ablation structure.

6. Conclusions

The MTPA_Unet retinal vessel segmentation network model proposed in this paper
jointly uses Transformer and convolutional neural network to help improve the perfor-
mance of the network model. Since the connection between two distant pixels on an image
is important for more accurate retinal vessel segmentation, the convolutional neural net-
work is utilized to extract the long-distance dependencies while taking advantage of the
convolutional neural network for local information extraction. The proposed TPA module
can further enhance the acquisition of retinal vessel location information, having richer
feature information to be fully used in the refinement process. The multi-resolution image
input and the utilization of shallow feature information further alleviate the problems of
blurred boundaries of segmentation results and inaccurate capillary segmentation. We
trained and tested the MTPA_Unet network model proposed in this paper on the DRIVE,
CHASEDB1, and STARE datasets. The evaluation shows that the model has achieved
good results in terms of Accuracy and Dice. Comparison experiments were also designed
to compare and analyze the evaluation results with other popular methods to visually
demonstrate the segmentation details of each network model on the retinal vessel task.
The comparison of the segmentation results and the analytical discussion show that the
MTPA_Unet network model proposed in this paper is more advantageous compared with
other methods. Future research will aim to further improve the accuracy of the network
model for the retinal vessel segmentation task without sacrificing time and storage.
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