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The National Institutes of Health (NIH) plays a critical role in funding
scientific endeavors in biomedicine. Funding innovative science is an
essential element of the NIH’s mission, but many have questioned
the NIH’s ability to fulfill this aim. Based on an analysis of a com-
prehensive corpus of published biomedical research articles, we
measure whether the NIH succeeds in funding work with novel
ideas, which we term edge science. We find that edge science is
more often NIH funded than less novel science, but with a delay.
Papers that build on very recent ideas are NIH funded less often
than are papers that build on ideas that have had a chance to
mature for at least 7 y. We have three further findings. First, the
tendency to fund edge science is mostly limited to basic science.
Papers that build on novel clinical ideas are not more often NIH
funded than are papers that build on well-established clinical
knowledge. Second, novel papers tend to be NIH funded more often
because there are more NIH-funded papers in innovative areas of
investigation, rather than because the NIH funds innovative papers
within research areas. Third, the NIH’s tendency to have funded
papers that build on the most recent advances has declined over
time. In this regard, NIH funding has become more conservative
despite initiatives to increase funding for innovative projects. Given
our focus on published papers, the results reflect both the funding
preferences of the NIH and the composition of the applications it
receives.
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With an annual budget of more than $37 billion, the National
Institutes of Health (NIH) funds the work of 300,000 sci-

entists across the globe, and seeks to improve health outcomes by
facilitating “fundamental creative discoveries, innovative research
strategies, and their applications” (1, 2). As such, the NIH plays a
pivotal role in setting the incentives that biomedical scientists have
to try out novel ideas in their work, a vital aspect of fruitful sci-
entific investigation (3, 4). The regular exercise of trying out new
ideas, which we term edge science, is a crucial contributor to the
advance of scientific disciplines (5–8). For scientists, however,
edge science is inherently risky, since it can be difficult to predict
whether a new idea will produce fruitful results. Working scientists
often point to failure as a precursor to success, but there is no
guarantee that a particular idea will work (9–12). Public support
for edge science, even if failure is likely, can help establish ap-
propriate incentives for novel work in biomedical science. How-
ever, when setting its priorities, the NIH considers many factors,
including scientific opportunity, disease burden, and availability of
private funding (13, 14), and many have questioned the NIH’s
ability to fund groundbreaking work and innovative science in
particular (15–22). Both scientific and political considerations may
lead the NIH to underfund the trying out of new ideas. First,
because the NIH visibly spends public money, it needs to show
discrete manifestations of improvements in health, as well as
technological breakthroughs, arising from its supported research.
This consideration can lead to a preference to support ideas that
have already shown promise, rather than edge science. Second,
NIH scientific review panels, for reasons related to their consti-
tution, tend to reward projects that are evidently feasible over
novel projects. Despite the importance of NIH support of edge
science, there has been little research quantifying its extent. Prior

research has examined the effect of funding decisions on the
productivity of scientists, as measured by grants, publications, ci-
tation counts, and patents (23–32). Although these outputs are
important, they are not quantifiable measures of edge science. In
this article, we provide a quantitative assessment of the extent
to which NIH policies encourage or impede edge science. Our
strategy is to focus on research papers, a key product of NIH
funding, rather than grant applications, which are inputs to this
end goal. We first determine which research papers try out rela-
tively new ideas, based on a text analysis of a comprehensive
corpus of biomedical publications. We then compare the fre-
quency of NIH funding for contributions that represent edge sci-
ence against the frequency of NIH funding for contributions that
represent more conventional science.
Our analysis covers more than 24 million research articles in

the MEDLINE database on biomedical research papers. To
determine the ideas upon which each paper builds, which we
refer to as idea inputs, we employ the Unified Medical Language
System (UMLS) metathesaurus, a curated vocabulary of more
than 5 million biomedical terms. We determine which UMLS terms
appear in the abstract or title of each paper in the MEDLINE
database. This reveals a list of idea inputs for each paper. We then
determine the vintage of each term based on the year that the term
first appears in the MEDLINE database; we refer to this year of
first appearance as the cohort of the idea. We classify each term
into one of 127 idea types based on the UMLS semantic category
for each term. These categories include “Gene and Genome,”
“Neoplastic Process,” and “Quantitative Concept.” We determine
the research area of each paper (synonymous here with a scientific
field) based on the journal in which the paper was published, using
the National Library of Medicine’s (NLM’s) subject category for
each journal. There are 125 journal categories, including “Cardi-
ology,” “General Surgery,” and “Molecular Biology.” Delineating
idea types and research areas allows us to characterize the novelty–
NIH funding link in different settings. While the delineations we
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use have some overlap, the entries in the UMLS ontology provide
a reasonable proxy for what type of idea each term represents, and
the entries in the NLM ontology provide a reasonable proxy for
research areas.
A paper is linked to a particular idea type if it mentions any

term of that idea type. At the same time, a paper is linked to a
particular research area based on the category of the journal in
which it was published. A paper contributes to the scientific
discussion regarding the function of that idea type within that
research area. Accordingly, we define a contribution as a link
from a paper to an (idea type, research area) pair. We count
mentions of terms of the same idea type in a paper as one
contribution, and we count a paper that mentions ideas from
multiple idea types as multiple separate contributions. We adopt
a contribution-level approach because it allows us to more fully
characterize how a scientific paper contributes to edge science by
permitting each paper to advance knowledge on multiple di-
mensions. On average, a paper published in the 2010s is linked to
7.03 idea types, 1.45 research areas, and 10.28 (idea type, re-
search area) pairs, and is thus counted as 10.28 contributions.
With this approach, we can also perform statistical calculations
that isolate specific idea type and research areas when comparing
NIH funding status and novelty of contributions across different
settings. For each contribution, we determine the cohort of the
newest idea input of that specific idea type in the paper and refer
to this cohort as idea input vintage. We consider contributions
that build on at least one relatively recent idea to be novel. By
elaborating on a new idea, such work potentially enhances sci-
entists’ understanding of the idea’s usefulness within a field, and
thus represents edge science. In contrast, contributions that build
only on well-established ideas represent more traditional science.
Having determined the idea input vintage for each contri-

bution, we then examine how the share of contributions that
are in papers with NIH funding varies by idea input vintage.
We use paper-level funding acknowledgments information in
MEDLINE to construct an indicator variable capturing whether a
paper has NIH funding. We limit our analysis to papers for which
the (first) author has a US affiliation. This restriction is impor-
tant because scientists working in the United States are more
likely to build on new ideas than the average in biomedicine (33),
and because the NIH disproportionately funds US scientists.
Hence, if we were to include non-US papers in the analysis, the
results would, in part, reflect the relative scientific frontier po-
sition of US scientists, as well as the NIH’s greater propensity to
fund American scientists. By focusing on US papers, our results
will reflect a comparison of the vintage of ideas that NIH-funded
scientists tend to build on in their work and the vintage of the
ideas that comparable scientists without NIH funding tend to
build on in their work. We focus on the NIH, as it is by far the
largest funder of biomedical work, and as such, plays a large role
in setting research priorities in biomedicine. In MEDLINE data,
among US research papers published in the 2010s, 46% report
NIH funding (of which 98% report extramural support for re-
searchers not directly employed by the NIH), and less than 6%
report non-NIH funding, mostly from private foundations and
other government agencies. Biomedical research papers are also
produced by academic researchers with funding from their uni-
versity, and by researchers working in pharmaceutical, biotech-
nology, and other companies, as well as foundations and hospitals.
It bears repeating that we analyze publications rather than

NIH grant proposals. An advantage of publications data is that
they give information on actually completed projects with NIH
funding. This distinction matters because of a potential discon-
nect between funding proposals and actual research. Regarding
the social benefits of science, the work scientists actually do is
more important than the work scientists promise to do when
applying for funding. The focus on published papers also implies
that our results reflect not only the funding preferences of the

NIH and its review committees but also the composition of ap-
plications it receives, a distinction that is important when inter-
preting our results. Our approach is also observational rather
than a randomized experiment. The findings point to a need for
complementary randomized studies on how changes in NIH
funding mechanisms and review structures affect the pursuit of
edge science in biomedicine, in terms of novelty of publications
and novelty of funded versus unfunded grant applications.

Results
We first examine how the share of NIH-funded contributions
varies by idea input vintage. Recall that idea input vintage cap-
tures the year that the newest idea that the contribution builds
on was introduced in the literature. Fig. 1 shows the overall re-
sults for contributions across all idea types and research areas for
contributions published between 2010 and 2016. The figure de-
picts the fraction of contributions that are in papers with NIH
funding (the vertical axis) as a function of the idea input vintage
(the horizontal axis). The horizontal dashed line in Fig. 1 rep-
resents the average share of contributions funded by the NIH
over all cohorts.
The results in Fig. 1 suggest an inverted U shape to the re-

lationship between NIH funding and the novelty of idea inputs.
The share of research supported by the NIH is the highest for
papers that build on ideas that are relatively new but not too
recent; there appears to be a substantial time lag for funding
work on a new idea. The NIH funding rate is lower for contri-
butions that build on the most recent ideas (post-2005 cohorts)
than it is for contributions that build on a bit more mature ideas
(1990 to 2005 cohorts). The share of NIH support is low also for
contributions that only reference well-established knowledge
(i.e., ideas introduced to the literature a long time ago; pre-1970
cohorts). Specifically, contributions that build on very recent
ideas are less often NIH funded than contributions that build on
ideas that have had a chance to mature for at least 7 to 10 y. The
magnitude of these idea input vintage-related NIH funding dif-
ferences is also considerable: the NIH funding rate is over 60%
for contributions that make use of 10- to 25-y-old ideas, whereas

Fig. 1. Share of NIH funding by novelty of idea inputs (2010 to 2016): all
idea types. Calculated based on 992,633 biomedical research papers pub-
lished during 2010 to 2016. The horizontal axis captures the idea input
vintage (the cohort of a contribution is the year when the newest idea input
used in the contribution was introduced to the literature). Later (earlier)
cohort years represent more novel (more conventional) science. The vertical
axis captures the rate of NIH funding. The markers capture the mean NIH
funding rate for each idea input vintage. The solid line represents a non-
parametric regression line estimate. The dashed line represents the average
funding rate across all cohorts.
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it is only about 50% for contributions that either build on only
well-established knowledge or build on some very recent ideas.
Fig. 2 shows the same relationship for a cohort of contributions

published during 2 earlier decades, namely, the 1990s (Fig. 2, Top
Left) and the 2000s (Fig. 2, Top Right), as well as for two subpe-
riods of the current decade, namely, 2010 to 2014 (Fig. 2, Bottom
Left) and 2015 to 2016 (Fig. 2, Bottom Right). The results in Fig. 2
show that even in earlier decades, the NIH funded novel science at
higher rates than it funded traditional science. However, unlike in
the current decade, in the 1990s, the funding rate for work on very
recent ideas was not yet lower than the funding rate for work on
well-established ideas. The tendency to fund the most novel work
at a lower rate appears to be a recent phenomenon. SI Appendix,
Table S7 shows that the secular decline in funding rates for work
that builds on very recent ideas is also statistically significant
(P < 0.001).
We next examine variation in the novelty–NIH funding link

across idea types. For this analysis, we first classify each of the
127 idea types to one of three broad idea type groups: “Basic
Science,” “Clinical,” and “Miscellaneous.” In Fig. 3, the top left,
top right, and bottom left panels show the funding rates by idea
input vintage when included contributions are limited to each of
these three broad idea type groups. For ease of comparison, the
bottom left panel of Fig. 3 shows the overall result again. The
results show that among contributions that build on basic science
ideas, the NIH funds edge science considerably more often than
it funds more traditional science, although the pattern again
follows an inverted U-shape. The U-shape pattern is present also
for clinical ideas, but the rising part of the link is very weak. SI
Appendix, Table S1 summarizes results for individual idea types.
The positive novelty–NIH funding link is generally present for
basic science ideas, but not for clinical ideas. For example, work
that references genes or proteins is much more likely to be NIH
funded when it mentions newer gene or protein ideas relative to
work that only mentions gene or protein ideas first introduced to
the literature a long time ago. In contrast, contributions that

reference new ideas in the neoplastic process category have a
lower share with NIH funding than contributions that rely on
older ideas in that category, and contributions that mention a
new drug have a much lower share of NIH funding than con-
tributions that only mention older drugs.
The NIH thus tends to fund novel published work more, but

only for some idea types, not for others. There is also substantial
variation in the average NIH funding rate across idea types, as
can be seen from Fig. 1 and SI Appendix, Table S3. The aggre-
gate novelty–NIH link might thus be driven by the NIH’s ten-
dency to fund certain idea types where a lot of progress is taking
place, rather than by the NIH’s tendency to disproportionately
fund novel work within idea types. Perhaps, for example, the
overall result is mainly driven by the fact that the NIH has funded
at a high rate any research that makes use of either novel or well-
established advances in genomics.
To investigate this possibility, we calculate NIH funding rate

by idea input vintage, while holding the average funding rate the
same across all (idea type, research area) pairs. In this calculation,
we thus allow the funding rate to vary only across cohorts within
each (idea type, research area) pair. That is, our procedure holds
fixed variation in NIH funding rates due to the idea type and
research area of a contribution, while continuing to reflect varia-
tion in funding due to differences in the age of idea inputs. Fig. 4
reports the results of this calculation.
Fig. 4 still indicates an inverted U-shaped relationship be-

tween the novelty of idea inputs and NIH funding, but the results
are quantitatively different. The highest NIH funding rate for
novel work is now only a little above the funding rate for work
that builds on well-established ideas, and the funding rate for
work that builds on the most recent ideas is now markedly below
the average funding rate across all cohorts. Together with the
unadjusted results shown in Fig. 1, this result suggests that while
the NIH has been successful in funding innovative science, this
success has been mostly due to its differential support for certain
idea types where progress has been faster in recent decades, in

Fig. 2. Share of NIH funding by novelty of idea inputs: for 1990s (Top Left), 2000s (Top Left), 2010 to 2014 (Bottom Left), and 2015 to 2016 (Bottom Right).
Results in these panels are calculated based on 763,079, 1,155,199, 735,460, and 257,173 biomedical research papers published during 1990 to 1999, 2000 to
2009, 2010 to 2014, and 2015 to 2016, respectively. In each panel, the horizontal axis captures the idea input vintage, with later (earlier) cohort years
representing more novel (more conventional) science, and the vertical axis captures the rate of NIH funding. The markers capture the mean NIH funding rate
for each idea input vintage. The solid line represents a nonparametric regression line estimate. The dashed line represents the average funding rate across
all cohorts.
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the sense that the ideas used as building blocks in research tend
to be relatively novel (such as genomics). Conversely, the results
imply that on average, within research areas and idea types, the
NIH funds have not gone to the most novel projects.

Discussion
Scientific progress depends on the openness of a scientific
community to try out new ideas systematically and continuously
(5–8, 34–36). When new ideas are first born, they are often raw
and poorly understood and only develop into transformative ideas
(if at all) through revision and debate on their merits. One of the
primary goals of the NIH is to support innovative biomedical re-
search, including work that tries out new ideas. However, identi-
fying novel projects that are likely to be successful is difficult.
Facilitating novel work is also often in tension with other factors,
including public health needs, that the NIH considers when setting
its priorities. The NIH faces pressure to deliver short-term suc-
cesses that can be at odds with a systematic commitment to edge
science. A particular temptation is to focus funding priorities
based on the likelihood of producing high-impact publications (as
measured by citations) without regard for whether the work rep-
resents novel or more traditional science (15–22). But a focus on
high-impact science alone runs the risk of undermining more ex-
plorative work that often fails, in the sense that it is not rewarded
with many citations, but which lays the foundation for break-
throughs that arrive later as the ideas mature. From this per-
spective, public funding agencies should strive to fund both edge
science and high-impact science. The NIH’s aim and initiatives
to increase funding for innovative science signal that it holds
this view.
Our analysis of published biomedical research articles finds

qualified support for the idea that the NIH supports innovative
work. Despite this, our findings suggest that there is substantial
room for the NIH to do more to promote edge science. We find
that in the current funding environment, there is a time lag for
NIH funding of contributions that rely on new ideas. The NIH
funds work that builds on very recent ideas at a lower rate than

work that builds on ideas that have had a chance to mature for at
least 7 y. Moreover, contributions that rely on very recent ideas
are NIH funded less often even than work on mature ideas. This
pattern has not always been true of NIH-funded work. In the
1990s, contributions that tried out very recent advances were not
at a disadvantage. In this regard, the NIH has thus become more
conservative over time, despite a variety of policies that the NIH

Fig. 3. Share of NIH funding by novelty of idea inputs by idea type group: basic science (Top Left), clinical (Top Right), miscellaneous (Bottom Left), and all
idea types (Bottom Right). Calculated based on 992,633 biomedical research papers published during 2010 to 2016. In each panel, the horizontal axis captures
the idea input vintage, with later (earlier) cohort years representing more novel (more conventional) science, and the vertical axis captures the rate of NIH
funding. The markers capture the mean NIH funding rate for every idea input vintage. The solid line represents a nonparametric regression line estimate. The
dashed line represents the average funding rate across all cohorts.

Fig. 4. Share of NIH funding by novelty of idea inputs: if funding rates were
the same across idea types and research areas. Calculated based on 992,633
biomedical research papers published during 2010 to 2016. The horizontal
axis captures the idea input vintage, with later (earlier) cohort years repre-
senting more novel (more conventional) science. The vertical axis captures
the rate of NIH funding. The markers capture the mean NIH funding rate for
each idea input vintage. The solid line represents a nonparametric regression
line estimate. The dashed line represents the average funding rate across all
cohorts. In this analysis, funding rates are adjusted so that all variation in
funding rates is due to variation across cohorts within each (idea type,
research area) pair.
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has implemented in the past 2 decades to reward innovative and
high-risk project proposals (37–40).
Because not all biomedical research projects seek NIH fund-

ing, our findings reflect the funding preferences of the NIH and
its review committees regarding research proposals it actually
receives. As a consequence, our findings may reflect, in part,
funding opportunities for novel ideas by non-NIH funders. For
example, it may be that the pursuit of novel work opens up
generous non-NIH funding opportunities, and that for this rea-
son, contributions that build on very recent ideas are less often
NIH funded than contributions that build on a bit more mature
ideas. It may also be that non-NIH funding opportunities have
improved relative to NIH funding opportunities in recent de-
cades, explaining the apparent decline in how often very novel
papers are NIH funded. It should be noted that the NIH’s stated
aim and initiatives regarding innovative science suggest that the
NIH itself does not see sufficient non-NIH funding opportunities
for novel work. Furthermore, the sheer size of the NIH relative
to others makes it likely that whatever the NIH does sets the
agenda in an important way. If the NIH were found not to fund
innovative science, it would be hard to imagine the other funding
agencies could compensate for this to an extent that would result
in a favorable overall funding environment for edge science.
With these considerations in mind, our finding that the NIH

has become more conservative is consistent with at least three
potential explanations. First, it may be that review committees
have become more cautious in terms of funding the most novel
work, or that reviewers today are unable to discern which re-
search projects are edge science. This interpretation is supported
by our finding that, after controlling for variations in funding
rates across idea types and research areas, there is no strong link
between novelty and NIH funding, and by reports that bio-
medical researchers themselves have become more conservative
in their research choices (41). Second, ideas generated in the
2000s may have been considered less fruitful by the scientific
community than ideas generated during the 1990s. Concerns
about stagnation in technological progress in medicine (42) are
supported by empirical evidence showing that health advances
have become less common and harder to achieve in recent de-
cades (43). Third, while in our understanding many NIH grant-
ees do not feel obligated to adhere to their research plans in light
of new results [geneticist Mario Capecchi is a famous example
(44)], it may be possible that some NIH grantees feel locked into
their funded research aims, which have aged by the time of
funding. Lock-in may render funded scientists unable to work on
emerging ideas. An intriguing direction for future work is to
examine to what extent such lock-in occurs and whether the NIH
should seek to eliminate it.
Our evidence also points to considerable heterogeneity in the

NIH’s tendency to fund novel work. Contributions that build on
a novel basic science idea, especially a recently discovered gene
or protein, are more often NIH funded than are contributions
that build on comparable older ideas. In contrast, this novelty–
NIH funding link is not present for clinical ideas. Our analysis
does not directly reveal the mechanisms behind this heteroge-
neity. While it is well known that the NIH has provided generous
support for research linked to genomics in recent decades (45),
this preference does not explain the positive link between novelty
and frequency of NIH support among contributions that build on
advances in genomics. Here, a limitation of our analysis is that
we do not explicitly consider the role of non-NIH funders, al-
though our findings suggest that they play an important role in
promoting edge science. For example, given our finding that NIH
supported work in pharmaceutical research tends toward older
ideas rather than edge science, it must necessarily be the case then
that non-NIH funders such as pharmaceutical companies play a
key role in supporting work on new drugs (and hospitals likely
fund novel clinical work more broadly). This heterogeneity may be

driven by differences in the appropriability of benefits from novel
research, as patents are more useful for pharmaceutical research
than for other settings. This division of labor may also be optimal.
Since the NIH relies on public funding, it has a unique responsi-
bility to solve market failure problems in science. Ideally, the NIH
should support both novel and impactful scientific work that
would have trouble receiving funding from private sources.
Our results suggest that the NIH’s overall tendency to fund

edge science papers is driven mostly by its funding at higher rates
rapidly advancing areas of investigation such as genomics and its
applications, rather than funding the most novel work within
each area of investigation. To the extent that rewarding novelty
within idea types and research areas is infeasible, it may be that
the only possible approach for directing funds to novel work is to
provide ample funding to entire areas of investigation that are
thought to be advancing at a faster rate than others. Of course, a
top-down approach to research resource allocation also has risks
(45–50). The NIH may end up directing the funds to areas that
turn out to be less fruitful than expected, and inertia in funding
decisions will likely keep some areas well-funded long past their
eventual stagnation. It is also questionable whether anyone can
know in advance which discipline or organism holds the key to
the next important development in biomedicine. These risks of a
less diversified funding portfolio must be weighed against its
benefits, including the ability to direct funds to novel work. A
move to a more egalitarian funding model, one that does not
favor some areas of investigation as much as current practice,
would likely lead to a significant decrease in the novelty of NIH-
supported work unless the NIH addresses the conservatism of
scientific review committees.
Our text-based approach for identifying innovative research

suggests a fruitful agenda for quantitative analyses of funding
agencies. Constructively, measuring new idea adoption can help
the NIH to better understand the impact that its review practices
and funding decisions have on the scientific enterprise, and can
help the NIH design policies to counteract the long-term trend
that we identify in the funding of work that builds on new ideas,
and thus speed scientific advance. Researchers could also apply
the approach to NIH grant application data to gain insights into
what an increase in the NIH budget would yield in terms of the
pursuit of edge science. While we have focused on work that is
novel in the sense that it builds on new ideas, the analysis could
also be extended to capture also work that tries out novel com-
binations of old ideas. Finally, the approach can be used to eval-
uate the novelty of work funded by agencies, such as the National
Science Foundation, that operate on scientific fields outside of
biomedicine.

Materials and Methods
We describe the main features of our approach in the introduction; we
describe further details here and in the SI Appendix. Coverage of the
MEDLINE database spans years 1946 to 2016 (as of February 2018). In de-
termining the ideas on which a paper builds and the vintage of each idea,
we use the title and abstract text (the latter is available only for articles
published since 1975). Our analysis of NIH funding starts in 1990 because we
limit the analysis to papers with a US first author and because coverage of
author affiliation starts in 1988. We infer the country of affiliation based on
the first author because only information on the first author is available for
articles published before 2014. SI Appendix, Table S3 lists the UMLS cate-
gories that we use as a proxy for idea type and their division to the three
broad idea type groups. SI Appendix, Table S4 lists examples of idea inputs
uncovered by our approach. SI Appendix, Table S5 lists the NLM’s journal-
level subject categories, which we use as a proxy for research area. We
counts a paper that is linked to K idea types and J research areas as K*J
contributions. Results from analyses with an alternative delineation of re-
search areas and from analyses with a paper-level approach are shown in the
SI Appendix and confirm the conclusions we report here. The depository for
data and code for the statistical analyses of this paper is available in Harvard
Dataverse (51).
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