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Abstract: For several decades, natural products have been widely researched and their native
scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an
interesting biologically attractive natural parent molecule with a high safety profile and can easily
undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular
hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed
strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN)
from betulin through simple transformations in high yields. The obtained results showed that the
presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and
increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50

of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal
carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties
against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis
ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin’s parent
backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers
of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of
natural substances.

Keywords: betulin; triphenylphosphonium cation; anticancer; antibacterial activity

1. Introduction

Advancements in medical science have allowed for the treatment of a wide range of
diseases, however, many disorders lack necessary pharmaceuticals. The high systemic
toxicity of medicinal preparations and increasing resistance of tumor cells to a significant
number of drugs often limits anticancer therapy success. According to World Health
Organization (WHO) reports, cancerous diseases are one of the biggest problems of modern
medicine and are one of the main causes of death in the world in the 21st century [1].
Therefore, drug design is an important issue in modern medicinal chemistry. Despite
many innovative tools that allow for the development of extremely advanced methods
of treatment, many therapies are still based on active substances of natural origin. These
substances act as basic structures that can be subjected to various chemical modifications in
order to improve their physicochemical and pharmacokinetic properties.
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For several decades, natural products (NPs) have been widely researched in terms of
searching for new drugs. It is NPs that are an invaluable source of native scaffolds, which
are the basis for the design and development of new potential therapeutic agents. Naturally
occurring pentacyclic lupane-type triterpenoids have attracted a lot of attention including
betulin (BN, 3-lup-20(29)-ene-3,28-diol), which is one of the most available terpenoids in
the plant kingdom. BN is a cheap, easily accessible natural active substance that can be
readily extracted from the bark of several species of trees, especially white birch (Betula
pubescens) [2,3]. Due to the presence of simply transformable functional groups in its
skeleton (including C3-OH, C28-OH), BN has high synthetic potential for numerous semi-
synthetic derivatives. BN is an interesting example of a biologically attractive natural parent
molecule with a high safety profile and the possibility of making a variety of structural
modifications (Figure 1) [3–5].
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The multidirectional biological activity of natural BN has been confirmed by numerous
research articles. Additionally, the reported derivatives of BN have shown a broad spectrum
of bio-activity in terms of anticancer [4,6–10], antimalarial activity [11], antibacterial [12–14],
antiviral [4,15–17], anti-inflammatory [18,19], or hepatoprotective properties [3]. Moreover,
BN has a positive effect on the treatment of atopic dermatitis [20]. However, despite the
abundance of BN, well-developed isolation methods from plant material as well as many
studies confirming its very good biological properties, its use as a potential therapeutic
agent is limited due to its low bioavailability, high hydrophobicity, and insufficient intracel-
lular accumulation. The pentacyclic molecule and hydrophobic nature of the skeleton of
BN hinders its ability to reach the target in vivo and obtain the desired therapeutic effect in
acceptable therapeutic doses [21].

One of the most promising strategies for the design and synthesis of effective thera-
peutic agents is the conjugation of a native skeleton (e.g., BN) with triphenylphosphonium
cation (TPP⊕) of low molecular weight, which promotes accumulation inside the cell’s mi-
tochondria. Furthermore, the presence of the TPP⊕ group in a molecular hybrid improves
the pharmacokinetic properties including solubility, bioavailability, and intermembrane
transport as well as selectivity in targeting drugs for a specific purpose. The high lipophilic-
ity and large ionic radius of TPP⊕ effectively reduce the activation energy required for
membrane passage. The presence of a delocalized lipophilic cation can accelerate the
transport of biologically active molecules across the mitochondrial membrane [22]. Stud-
ies have shown that, in contrast to other cellular organelles, mitochondria have a high
negative transmembrane potential (∆ψm). This potential is much higher for tumor cells,
providing an opportunity for the selective delivery and accumulation of anticancer agents
in mitochondria-targeted therapies [21–24].

Thus, the TPP⊕ moiety not only affects the physical properties, but also the mechanism
of action of a potential drug. In addition, it increases the selectivity, which often reduces
the drug dose, and in turn diminishes the harmful side effects [24,25]. Therefore, research



Molecules 2022, 27, 5156 3 of 20

into mitochondria-targeted anticancer drugs is an attractive prospect [24–28]. The strategy
of modification of the native skeleton via conjugating with the TPP⊕ group has been used
successfully for anticancer drugs such as doxorubicin [29], cisplatin [26], chlorambucil [30],
metformin [31], and tamoxifen [32] because it facilitates their transport and selective
accumulation in cancer cells (Figure 2).
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Mitochondria play a vital role in a wide range of physiological and pathological
processes. They are the main source of reactive oxygen species, and at the same time, are
particularly susceptible to oxidative damage, contributing to the development of many
diseases. Due to their functions, mitochondria may be an important molecular target for
anticancer drugs as well as in the treatment of cardiovascular diseases or neurodegenerative
diseases (e.g., Alzheimer’s disease or Parkinson’s disease) [36]. Non-targeted antioxidant
therapeutics show low effectiveness, therefore, attempts have been made to modify them
to increase the drug accumulation in the mitochondrial matrix. For example, Mito-Q10,
(coenzyme Q10) has been described as a potential agent for the treatment of sepsis or
Parkinson’s disease (Figure 2) [24,36].

A relatively novel group of potential mitocans (acronym derived from the terms mi-
tochondria and cancer) is conjugates of pentacyclic lupane-type triterpenoids including
BN or betulinic acid (BA) with the lipophilic cation TPP⊕ [28]. Spivak et al. [21,28,37–39],
Tsepaeva et al. [23,40,41], Ye et al. [42], and Xu et al. [43] reported the preparation of BA or
BN conjugates, in which one or two TPP⊕ moieties were linked to the triterpenoid skeleton
at positions C-2, C-3, C-28, or C-30 by the carbon–carbon or ester bonds, as shown in
Figures 3 and 4. The cytotoxic effect of these TPP⊕-analogs against various types of tumor
cells toward Schistosoma Mansoni and antibacterial activity was analyzed [21,23,28,37–44].
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Figure 3. The chemical structures of the TPP⊕-conjugated with BA.

In the library of known triphenylphosphonium derivatives of pentacyclic lupane-type
triterpenoids, betulinic acid derivatives definitely dominate (TPP⊕-conjugated with BA,
about 30 compounds, Figure 3). Both BN and BA are common in the plant kingdom,
especially in the outer layer of the birch bark (Betulaceae, Betula, Betula pendula). However,
BN is considerably more available (BN content was up to 34%, and BA was only 0.3% of
dry weight [6]), which may be an advantage in terms of the economic analysis of methods
in obtaining potential therapeutic agents.
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Although BN derivatives have been extensively explored, to date, no structures have
demonstrated the desired biological properties at a satisfactory dosage that would allow
them to be used as drugs. The aim of the presented study was to evaluate the relationships
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between the biological effects and the structure of the new triphenylphosphonium deriva-
tives of BN. Hence, we designed and synthesized molecular hybrids of BN by covalently
linking a lipophilic alkyltriphenylphosphonium moiety (shown in dark red, Scheme 1) to
the parent skeleton of BN through a linker (shown in blue, Scheme 1). In addition, in order
to obtain a library of compounds intended for the initial assessment of biological activity
(e.g., cytotoxicity, antibacterial activity), structural modifications of the BN skeleton were
conducted via the introduction of one or two TPP⊕ moieties at the C-28 or C-3 and C-28
positions. We prepared a series of the mono- and bisTPP⊕ derivatives of BN through the
multi-step synthesis (3 or 5 step) and their bio-activity was analyzed.
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2. Results and Discussion
2.1. Synthesis of BN Analogs (2–5)

Starting materials 3,28-O,O’-diacetylbetulin 2 and 3-O-acetylbetulin 3 were synthe-
sized according to the protocol described by Thibeault et al. (Scheme 2) [45]. In the first
step, betulin was esterified with an excess of acetic anhydride in pyridine (Py) in the pres-
ence of 4-(dimethylamino)pyridine (DMAP) to give ester 2 in 98% yield. Then, the C-28
position of the BN backbone was selectively deprotected by treating crystalline ester 2 with
aluminum isopropoxide ((i-PrO)3Al) in i-PrOH. After 2 h at 80 ◦C, followed by column
chromatography purification, analog 3 was obtained in 78% yield.

The next step involved the introduction of a linker terminated with a carboxyl group
(O(CO)CH2CR2COOH, R = H or Me) at position C-28 (mono-substituted BN analog 4) or C-3
and C-28 (disubstituted BN analog 5) of BN. The carboxyacyl moiety seemed to be an ideal
linker component as it allowed for further structural modifications. In addition, numerous
literature reports have suggested that the combination of the triterpene skeleton with this
type of moiety improved the biological properties including anti-HIV, antibacterial, or
antifungal activity [46,47]. In accordance with the published procedures [48,49] with some
modifications, analog 3 was reacted with succinic anhydride (SA) or 2,2-dimethylsuccinic
anhydride (DMSA) in dry pyridine in the presence of DMAP at reflux for 18–20 h. The
synthesis of 3,28-O,O’-bis(3-carboxypropanoyl)betulin 5 was performed in a similar manner,
but the reagents were used in a molar ratio of BN:SA (1:10) at reflux for 9 h. The crude
products were purified by chloroform extraction and washed with the water and HCl
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solution. The BN analogs were obtained in excellent yields (4a: 99%, 4b: 99%, 5: 65%,
Scheme 2).
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Scheme 2. The synthesis of the BN analogs (2–5). Reagents and conditions: (i) Ac2O, DMAP, Py, r.t.,
24 h; (ii) (i-PrO)3Al, i-PrOH, 80 ◦C, 2 h; (iii) SA or DMSA, DMAP, Py, reflux, 18–20 h; (iv) SA, Py,
reflux, 9 h.

2.2. Synthesis of 28-TPP⊕-Conjugates Derivatives of BN

The synthesis method of new molecular BN hybrids (28-TPP⊕ BN) with one TPP
moiety attached via the linker C28-O(CO)CH2CR2COO(CH2)n developed by our group
consists of a few steps, as shown in Scheme 3. The desired analogs were synthesized
via alkylation of the carboxyl group of (carboxyacyl)betulin 4 with dibromoalkanes in a
molar ratio of 4:Br(CH2)nBr (1:3) in a DMF/MeCN system in the presence of K2CO3 at 50
◦C for 18–20 h. 1,3-Dibromopropane, 1,4-dibromobutane, and 1,5-dibromopentane were
employed to examine the influence of the chain length on bio-activity. 3-O-Acetyl-28-O’-(3’-
(bromoalkoxycarbonyl)propanoyl)betulin (6a–6c) and 3-O-acetyl-28-O’-(3’,3’-dimethyl-3’-
(bromoalkoxycarbonyl)propanoyl)betulin (6d–6f) were isolated by extraction with ethyl
acetate and subsequent purification by column chromatography to produce the products in
satisfactory yields (42–86%).
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Scheme 3. The synthesis of the 28-TPP⊕ BN derivative 7. Reagents and conditions: (i) Br(CH2)nBr,
DMF/MeCN (10/1, v/v), K2CO3, 50 ◦C, 18–20 h; (ii) Ph3P, argon, 120 ◦C, 6–12 h.
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The final step of the 28-TPP⊕ BN synthesis was the substitution of the bromide anion of
analog 6 with the TPP group by heating a homogenous mixture of 28-(bromoalkoxycarbonyl)
propanoyl)betulin 6 and triphenylphosphine without a solvent under an Ar atmosphere.
Optimization of the procedure consisted of examining the proportions of reagents, the
temperature and reaction time, where at a molar ratio of analog 6/triphenylphosphine (1:2)
at 120 ◦C for 6–12 h, the highest yields were obtained. Additionally, column chromatogra-
phy was not necessary for all analogs, but all required extraction with diethyl ether and
then crystallization from the diethyl ether/ethyl acetate (1:4, v/v), resulting in a high yield
(72–99%, Scheme 3).

2.3. Synthesis of 3,28-bisTPP⊕-Conjugates Derivatives of BN

We also investigated the influence of two TPP⊕ groups in the molecular hybrids of
BN toward their pharmacokinetic properties. The synthetic route of 3,28-bisTPP⊕ BN is
depicted in Scheme 4.
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Scheme 4. The synthesis of 3,28-bisTPP⊕ BN 9. Reagents and conditions: (i) Br(CH2)nBr, DMF/MeCN
(10/1, v/v), K2CO3, 50 ◦C, 18–20 h; (ii) triphenylphosphine, Ar, 120 ◦C, 12–24 h.

In the first step, 3,28-O,O’-bis(3-carboxypropanoyl)betulin 5 was reacted with 1,3-
dibromopropane, 1,4-dibromobutane or 1,5-dibromopentane at a molar ratio of 5/Br(CH2)nBr
(1:6) in a DMF/MeCN system with K2CO3 at 50 ◦C for 20 h. The analog 8 was obtained in
satisfactory yields (64–70%) according the procedure described above. Then, the homoge-
nous mixture (8 and triphenylphosphine) was heated at 120 ◦C without solvent under an
Ar atmosphere. The final product 9 was isolated by extraction (diethyl ether, and diethyl
ether/ethyl acetate) at elevated temperature in good yields (80–88%, Scheme 4). Only
analog 9a required column chromatography (53% yield).

The structures of all of the synthesized compounds (2–9) were confirmed by spec-
troscopic methods (1H, 13C, 31P NMR, FTIR, and HRMS, Supplementary Materials). The
31P NMR spectra of analogs 7 and 9 showed signals confirming the presence of TPP⊕

in the range of 19.4–24.8 ppm. A characteristic feature in the 13C NMR spectra of the
organophosphorus compounds was the splitting of specific signals into doublets caused
by coupling the phosphorus atom with selected carbon atoms. Chemical shifts and JC-P
coupling constants of great diagnostic value observed for the TPP⊕ group are summarized
in Table 1.
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Table 1. The chemical shifts and coupling constants characteristic of TPP⊕ moiety in the synthesized
triphenylphosphonium analogs of BN (7 and 9).

13C NMR (CDCl3, TMS, δ (ppm)/JC-P (Hz)

TPP⊕

CH2P⊕ Cipso Cmeta Cortho Cpara

7a 19.8/52.3 118.1/85.7 130.5/12.1 133.8/9.8 135.0/3.0
7b 22.2/50.6 118.3/84.9 130.4/12.1 133.8/9.9 134.9/3.0
7c 22.7/49.4 118.4/85.0 130.5/12.1 133.7/9.8 134.9/3.0
7d 19.4/51.8 118.3/86.3 130.4/12.6 133.8/10.4 134.9/0.5
7e 22.1/49.3 118.3/88.1 130.4/12.6 133.7/10.4 134.9/0.5
7f 22.7/50.1 118.4/85.8 130.4/12.4 133.7/9.9 134.9/3.0
9a 19.7/51.8 118.1/86.3 130.5/12.8 133.8/9.2 135.1/0.5
9b 22.2/50.0 118.2/88.8 130.4/12.9 133.7/9.9 135.0/3.0
9c 22.8/49.3 118.4/85.0 130.5/12.2 133.8/9.8 135.0/3.0

δ, ppm 19.4–22.8 118.1–118.4 130.4–130.5 133.7–133.8 134.9–135.0
JC-P, Hz 49.3–52.3 84.9–88.1 12.1–12.9 9.2–10.4 0.5–3.0

2.4. Cytotoxicity Studies

The obtained new molecular hybrids of BN were screened in order to initially inves-
tigate their cytotoxicity as well as examine the relationships between the structure and
biological effect. The common element of all of the tested compounds was the presence of
a lipophilic moiety (CH2)nTPP⊕ (n = 3, 4, 5). The research was conducted on two groups
of compounds: 28-TPP⊕ BN and 3,28-bisTPP⊕ BN. Their cytotoxicity was investigated
on two cancer cell lines: HCT 116 (colorectal carcinoma cell line) and MCF-7 (human
breast adenocarcinoma cell line). The proliferation of tumor cells treated with the tested
compounds (7 and 9) at 12.5–3.125 µM concentrations were determined after 24 h of incuba-
tion. Additionally, all compounds were tested against the NHDF cell line (Normal Human
Dermal Fibroblast cells) to assess their safety. The effect of these compounds was compared
with that of BN doses, as shown in Figure 5. Half-maximal inhibitory concentrations (IC50)
of triphenylphosphonium analogs of BN were determined using a CCK-8 assay and are
summarized in Table 2.
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Table 2. A summary of the cytotoxic effects of BN, 28-TPP⊕ BN (7), and 3,28-bisTPP⊕ BN (9) on the
HCT 116 and MCF-7 cancer cell lines and NHDF.

No. R n
Activity IC50, µM a,b

HCT 116 MCF-7 NHDF

BN − − neg neg neg
7a H 3 5.56 ± 0.28 13.71± 0.54 9.68 ± 0.27
7b H 4 5.77 ± 0.27 14.35 ± 0.38 10.71 ± 0.25
7c H 5 6.48 ± 0.04 15.52 ± 0.92 11.29 ± 0.53
7f Me 5 12.71 ± 0.89 50.47 ± 3.92 10.03 ± 0.48

9a H 3 6.32 ± 0.27 31.30 ± 3.02 5.91 ± 0.33
9b H 4 7.97 ± 0.51 23.60 ± 0.33 8.02 ± 0.35
9c H 5 18.99 ± 0.51 53.30 ± 5.41 10.60 ± 0.34

a Cytotoxicity was evaluated using the CCK-8 assay; b Incubation time 24 h; Data are presented as the mean ±
standard deviation (n = 3); neg: no activity in the concentration range used.

As expected, triphenylphosphonium derivatives of BN showed greater cytotoxicity
than the parent BN toward all of the cell lines tested. The level of inhibition of cell viability
depended on the concentration of the tested substances and cell type. The tested analogs of
BN had the greatest effect on the viability of the HCT 116 cells (Figure 5a) and the lowest
on the viability of the MCF-7 cells (Figure 5b).

When comparing the biological effect of the mono-TPP⊕ BN derivatives (7a–7c, linker
without an additional Me group), it seemed that the length of the linker did not influence
their activity in the in vitro tests. The 28-TPP⊕ BN conjugates (7a–7c) with a variable
length, and an alkyl linker (n = 3, 4, 5) similarly inhibited the viability in both tumor cells
(HCT 116: IC50 = 5.56–6.48, MCF-7: IC50 = 13.71–15.52). The exception was analog 9c,
with two TPP⊕ cations and a pentyl chain, which, compared to compounds with a shorter
linker (propyl or butyl chain), showed lower cytotoxicity against the HCT 116 cells (IC50:
9a < 9b < 9c; Table 2). Importantly, compounds 7a–7c were almost twice less toxic to-
ward the healthy cells (NHDF), with IC50 values ranging from 9.68 to 11.29 µM, which
demonstrated their selectivity.

Unfortunately, in the course of further studies, it was revealed that the introduction of
an additional Me group into the linker 7f reduced this bio-activity compared to compound
7c against the HCT 116 and MCF-7 tumor cells whereas no significant effect of the Me
groups attached to the linker was observed on the bio-activity of compound 7f in normal
NHDF cells.

We observed that the presence of both one and two lipophilic cations improved the
solubility of the tested analogs compared to BN, which slightly increased their cytotoxicity,
especially against the colorectal carcinoma cell line (HCT 116). Among the triphenylphos-
phonium derivatives of BN tested, analossg 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM)
demonstrated the highest cytotoxicity against this cell line at low micromolar concen-
trations. This supported the hypothesis that the conjugation of the BN native backbone
with the TPP⊕ moiety allowed for its transport through the hydrophobic barriers of the
mitochondrial membrane, making it a promising strategy to improve the bioavailability of
natural substances.

2.5. Antibacterial Studies

Investigations were carried out using different concentrations of solutions from 25
to 250 µM. A 25 µM concentration of the tested derivatives was not enough to inhibit the
growth of both Gram-positive S. aureus ATCC 25923 bacteria. When the concentration of
analogs 7d–7f and 9a–9c increased to 200 µM, the growth of S. aureus ATCC 25923 and
S. epidermidis ATCC 12228 was inhibited. Furthermore, the optical density of all compounds
remained unchanged after 18 h of bacteria culture. In the case of analogs 7a–7c, the
optical density values were between 0.9 and 2.2 when they were cultured with S. aureus
ATCC 25923. The bacterial growth was slower compared to the control sample (TSB-
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culture medium). However, the studied TPP⊕-BN derivatives did not inhibit the growth of
S. epidermidis ATCC 12228 bacteria. However, at a 250 µM concentration, analogs 7a and
7b greatly inhibited the growth of S. aureus ATCC 25923 and S. epidermidis ATCC 12228.
In the case of analog 7c, the optical density increased up to 0.7 after 18 h of the sample
culture with both kinds of Gram-positive bacteria. In contrast, the reference sample’s (TSB)
optical density increased to 7.5 for S. aureus ATCC 25923, and 4.9 for S. epidermidis ATCC
12228 after 18 h of bacteria culture. All of the investigated compounds did not inhibit the
growth of Gram-negative Escherichia coli ATCC 25922 bacteria. All of the analog values of
the measured optical density were similar to that of the reference sample (5.0–5.1, Table 3).

Table 3. The results of the antimicrobial analysis using Gram-positive and Gram-negative bacteria
cultured with the investigated compounds at 37 ◦C for 18 h. The results are presented as the differ-
ences between the optical density measurements of the samples before and after culture (McFarland’s
scale (CFU/mL).

No.
S. aureus

ATCC 25923
S. epidermidis
ATCC 12228

Escherichia coli
ATCC 25922

200 µM 250 µM 200 µM 250 µM 200 µM 250 µM

BN 5.1 5.6 neg 4.7 neg neg
7a 0.9 0 neg 0 neg neg
7b 2.2 0 neg 0 neg neg
7c 1.0 0.1 neg 0.7 neg neg
7d 0 0 0 0 neg neg
7e 0 0 0 0 neg neg
7f 0 0 0 0 neg neg
9a 0 0 0 0 neg neg
9b 0 0 0 0 neg neg
9c 0 0 0 0 neg neg

Control 7.5 7.5 4.1 4.9 5.1 5.0
0: no difference between samples after 18 h of bacteria culture (bacteria grow was inhibited); neg: negative results
(analog BN did not inhibit bacteria growing).

The obtained results showed that 28-TPP⊕ BN (7d–7f) and 3,28-bisTPP⊕ BN (9a–9c)
could be employed as agents for the inhibition of Gram-positive bacteria (S. aureus ATCC
25923 and S. epidermidis ATCC 12228) growth at a concentration of 200 µM in an aqueous
solution.

3. Materials and Methods
3.1. General Information

NMR spectra (1H and 13C) were recorded on a Varian spectrometer at operating fre-
quencies of 600 or 400 MHz and 150 or 100 MHz, respectively, using TMS as the resonance
shift standard. CDCl3 was used as the solvent, which was purchased from ACROS Organics
(Geel, Belgium). The 31P NMR spectra were acquired using a Varian 400 spectrometer at
161.9 MHz, where the resonance shift of H3PO4 was determined as 0 ppm. All chemical
shifts (δ) were reported in ppm and coupling constants (J) in Hz. The following abbrevia-
tions were used to explain the observed multiplicities: s—singlet; d—doublet; dd—double
doublet; ddd—doublet of double doublet; t—triplet, dd~t—overlapping double doublet
that resembles a triplet (with similar values of coupling constants); m—multiplet; br—
broad. IR-spectra were measured on a Nicolet 6700 FT-IR spectrophotometer, Thermo
Scientific (Waltham, MA, USA) (attenuated total reflectance method; ATR). High resolution
mass spectrometry analyses were performed using a Waters Xevo G2 Q-TOF mass spec-
trometer (Waters Corporation, Milford, MA, USA) equipped with an ESI source operating
in positive-ion mode. The accurate mass and composition for the molecular ion adducts
were calculated using MassLynx software (Waters) incorporated in the instrument.

Reactions were monitored by TLC analysis on precoated plates of silica gel 60 F254
(Merck Millipore, Burlington, MA, USA). The TLC plates were inspected under UV light
(λ = 254 nm) or charring after spraying with 10% solution of sulfuric acid in ethanol.
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Crude products were purified using column chromatography performed on silica gel 60
(70–230 mesh, Fluka).

3,28-O,O’-Diacetylbetulin 2; 3-O-acetylbetulin 3 [45], 3-O-acetyl-28-O’-(3’-
carboxypropanoyl)betulin 4a; 3-O-acetyl-28-O’-(3’,3’-dimethyl-3’-carboxypropanoyl)betulin
4b [48], and 3,28-O,O′-bis(3′-carboxypropanoyl)betulin 5 [49] were prepared according to
the respective published procedures.

All chemicals used in the study were purchased from Sigma-Aldrich (St. Louis, MO,
USA), Fluka, Avantor (Radnor Township, PA, USA) and ACROS Organics, and used
without further purification.

3.2. Chemistry
3.2.1. General Procedure for the Synthesis of 3-O-Acetyl-28-O’-(carboxyacyl)betulin (4)

3-O-Acetylbetulin (3, 2.50 mmol, 1.21 g, 1 eq.), SA (7.50 mmol, 0.75 g, 3 eq.) or DMSA
(7.50 mmol, 0.96 g, 3 eq.) and DMAP (7.50 mmol, 0.92 g, 3 eq.) were dissolved in dry
pyridine (19 mL). The reaction mixture was stirred under reflux for 18–20 h. After cooling
to rt, 10% hydrochloric acid solution (20 mL) and water (35 mL) were added. The product
was extracted with CHCl3 (4 × 70 mL). The combined organic extracts were washed with
water (70 mL), 5% hydrochloric acid solution (140 mL), brine (70 mL), water (70 mL), dried
over MgSO4, and filtered. The solvent was evaporated under reduced pressure producing
analog 4a, which was used in the next step without further purification. Analog 4b was
purified using column chromatography (DCM/MeOH, gradient: 100:1 to 50:1).

3-O-Acetyl-28-O’-(3’-carboxypropanoyl)betulin (4a) was obtained as a resin (1.45 g, 99%
yield); Rf = 0.78 (DCM/MeOH, 10:1, v/v). 1H NMR (600 MHz, CDCl3): δH 0.75, 0.76, 0.88,
0.94, 1.31 (all s, 3H each, H-23–H-27), 1.60 (s, 3H J1 = 5.9 Hz, H-30), 0.62–2.06 (m, 24H, CH,
CH2 BN scaffold), 1.96 (s, 3H, CH3CO), 2.34 (td, 1H, J2 = 11.0 Hz, H-19), 2.54–2.63 (m, 4H,
O(CO)CH2CH2), 3.80 (d, 1H, J = 10.8 Hz, H-28b), 4.22 (d, 1H, J = 13.2 Hz, H-28a), 4.38 (dd,
1H, J1 = 5.4 Hz, J2 = 10.8 Hz, H-3), 4.50 (s, 1H, H-29b), 4.60 (s, 1H, H-29a) ppm; 13C NMR
(150 MHz, CDCl3): δC 14.7, 16.0, 16.2, 16.5, 18.2, 19.1, 20.8, 21.3, 23.7, 25.1, 27.0, 27.9, 28.8,
29.1, 29.5, 29.7, 34.1, 34.5, 37.1, 37.6, 37.8, 38.4, 40.9, 42.7, 46.4, 47.7, 48.8, 50.3, 55.4, 63.2, 80.9,
109.9, 150.1, 171.1, 172.4, 176.9 ppm; IR (ATR) ν: 2938, 1729, 1714, 1244, 1158 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-carboxypropanoyl)betulin (4b) was obtained as a resin
(1.52 g, 99% yield); Rf = 0.64 (DCM/MeOH, 10:1, v/v). 1H NMR (600 MHz, CDCl3): δH
0.83, 0.84, 0.96, 1.02, 1.31 (all s, 3H each, H-23–H-27), 1.39 (s, 6H, CMe2), 1.68 (s, 3H, H-30),
0.70–2.00 (m, 24H, CH, CH2 BN scaffold), 2.04 (s, 3H, CH3CO), 2.41 (td, 1H, J1 = 5.8 Hz,
J2 = 11.1 Hz, H-19), 2.64 (s, 2H, O(CO)CH2), 3.87 (d, 1H, J = 10.9 Hz, H-28b), 4.26 (d, 1H,
J = 9.2 Hz, H-28a), 4.47 (dd, 1H, J1 = 5.6 Hz, J2 = 10.7 Hz, H-3), 4.58 (s, 1H, H-29b), 4.68 (s,
1H, H-29a) ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.4, 18.1, 19.1, 20.7, 21.2,
23.6, 25.1, 25.2, 25.3, 26.9, 27.9, 29.5, 29.7, 34.0, 34.5, 37.0, 37.5, 37.7, 38.3, 40.4, 40.8, 42.6, 44.3,
46.2, 47.6, 48.7, 50.2, 55.3, 63.0, 81.9, 109.8, 150.0, 171.06, 171.4, 183.0 ppm; IR (ATR) ν: 2940,
1728, 1703, 1242, 1193 cm−1.

3.2.2. Synthesis of 3,28-O,O′-Bis(3′-carboxypropanoyl)betulin (5)

BN (2.50 mmol, 1.11 g, 1 eq.) and SA (25.00 mmol, 2.50 g, 10 eq.) were dissolved in dry
pyridine (26 mL) and stirred under reflux for 9 h. After cooling to r.t., 10% hydrochloric
acid solution (26 mL) and water (48 mL) were added. The product was extracted with
CHCl3 (6 × 120 mL). The combined organic layers were concentrated to a 200 mL volume,
washed with water (200 mL), 5% hydrochloric acid solution (2 × 90 mL), brine (200 mL),
H2O (200 mL), dried over MgSO4, and filtered. Then, the solvent was evaporated under
reduced pressure.

3,28-O,O′-Bis(3′-carboxypropanoyl)betulin (5) was obtained as a resin (1.04 g, 65% yield);
Rf = 0.23 (DCM:MeOH, 100:1). 1H NMR (600 MHz, CDCl3): δH 0.83, 0.84, 0.85, 0.98, 1.03
(all s, 3H each, H-23–H-27), 1.69 (s, 3H, H-30), 0.70–2.00 (m, 24H, CH, CH2 BN scaffold),
2.43 (td, 1H, J1 = 5.8 Hz, J2 = 11.1 Hz, H-19), 2.60–2.70 (m, 8H, 2 × O(CO)CH2CH2), 3.88 (d,
1H, J = 10.9 Hz, H-28b), 4.31 (d, 1H, J = 11.0 Hz, H-28a), 4.50 (dd, 1H, J1 = 5.6 Hz, J2 = 10.8
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Hz, H-3), 4.59 (dd, 1H, J1 = 1.4 Hz, J2 2.3 Hz, H-29b), 4.68 (d, 1H, J = 2.0 Hz, H-29a) ppm;
13C NMR (150 MHz, CDCl3): δC 14.8, 16.0, 16.1, 16.5, 18.2, 19.1, 20.8, 23.6, 25.2, 27.0, 27.9,
29.0, 29.1, 29.3, 29.6, 29.7, 34.1, 34.4, 37.1, 37.6, 37.8, 38.3, 40.9, 42.7, 46.5, 47.7, 48.8, 50.3, 55.4,
63.2, 81.6, 109.9, 150.1, 171.7, 172.3, 177.9, 178.0 ppm; IR (ATR) ν: 2944, 1709, 1160, cm−1.

3.2.3. General Procedure for the Synthesis of Bromides of BN (6)

To a solution of BN derivative (4, 0.25 mmol, 1 eq.) and K2CO3 (0.25 mmol, 34.6 mg, 1
eq.) in DMF (1 mL/100 mg 4) and MeCN (0.1 mL/100 mg 4), the appropriate dibromoalkane
(Br(CH2)nBr, n = 3, 4, 5; 0.75 mmol, 3 eq.) was added. The reaction was carried out at 50
◦C for 18–21 h. After the reaction was completed, the obtained mixture was diluted with
cold water and extracted with ethyl acetate (5 × 19 mL). The combined organic layers were
washed with brine (2 × 65 mL), dried over MgSO4, and the solvent was evaporated under
reduced pressure. Then, crude product 6 was washed with methanol (2 × 0.5 mL) and
purified using column chromatography (DCM/MeOH, gradient: 100:1 to 50:1).

3-O-Acetyl-28-O’-(3’-(3"-bromopropyloxycarbonyl)propanoyl)betulin (6a) was obtained as
a resin (74.1 mg, 42% yield); Rf = 0.18 (DCM:MeOH, 100:1). HRMS (ESI+) m/z: calcd for
C39H61BrO6Na ([M+Na]+) 727.3549; found 727.3546; 1H NMR (600 MHz, CDCl3): δH 0.83,
0.84, 0.85, 0.97, 1.03 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.70–2.00 (m, 24H, CH,
CH2 BN scaffold), 2.04 (s, 3H, CH3CO), 2.16–2.20 (m, 2H, CH2 fragment of linker), 2.43
(td, 1H, J1 = 5.8 Hz, J2 = 11.1 Hz, H-19), 2.64–2.66 (m, 4H, O(CO)CH2CH2), 3.46 (t, 2H, J =
6.5 Hz, CH2Br), 3.87 (d, 1H, J = 11.1 Hz, H-28b), 4.24 (t, 2H, J = 6.1 Hz, (CO)OCH2), 4.29
(dd, 1H, J1 = 1.9 Hz, J2 = 11.1 Hz, H-28a), 4.46 (dd, 1H, J1 = 5.9 Hz, J2 = 10.5 Hz, H-3), 4.59
(s, br, 1H, H-29b), 4.68 (s, br, 1H, H-29a) ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 16.0,
16.1, 16.4, 18.1, 19.1, 21.3, 20.7, 23.6, 25.1, 27.0, 27.9, 29.1, 29.2, 29.3, 29.5, 29.7, 31.6, 34.1, 34.5,
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172.1, 172.5 ppm; IR (ATR) ν: 2943, 1731, 1244, 1155, 732 cm−1.

3-O-Acetyl-28-O’-(3’-(4"-bromobutyloxycarbonyl)propanoyl)betulin (6b) was obtained as a
resin (154.8 mg, 86% yield); Rf = 0.28 (DCM:MeOH, 100:1). HRMS (ESI+) m/z: calcd for
C40H64BrO6 ([M+H]+) 719.3886, found 719.3885; 1H NMR (400 MHz, CDCl3): δH 0.83, 0.84,
0.85, 0.97, 1.03 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.75–2.00 (m, 28H, CH, CH2
BN scaffold and (CH2)2 fragment of linker), 2.04 (s, 3H, CH3CO), 2.43 (td, 1H, J1 = 5.8 Hz, J2
= 11.1 Hz, H-19), 2.61–2.68 (m, 4H, O(CO)CH2CH2), 3.44 (t, 2H, J = 6.0 Hz, CH2Br), 3.88 (d,
1H, J = 11.1 Hz, H-28b), 4.13 (t, 2H, J = 6.0 Hz, (CO)OCH2), 4.29 (d, 1H, J = 11.1 Hz, H-28a),
4.45–4.49 (m, 1H, H-3), 4.59 (s, br, 1H, H-29b), 4.68 (s, br, H-29a) ppm; 13C NMR (100 MHz,
CDCl3): δC 14.7, 16.0, 16.1, 16.4, 18.1, 19.1, 20.7, 21.3, 23.6, 25.1, 27.0, 27.2, 27.9, 29.1, 29.2,
29.3, 29.5, 29.7, 33.0, 34.1, 34.5, 37.0, 37.5, 37.7, 38.3, 40.8, 42.6, 46.4, 47.7, 48.7, 50.2, 55.3, 63.0,
63.7, 80.9, 109.8, 150.0, 170.9, 172.2, 172.5 ppm; IR (ATR) ν: 2946, 1732, 1246, 1156, 734 cm−1.

3-O-Acetyl-28-O’-(3’-(5"-bromopentyloxycarbonyl)propanoyl)betulin (6c) was obtained as
a resin (99.1 mg, 54% yield); Rf = 0.31 (DCM:MeOH, 100:1). HRMS (ESI+) m/z: calcd for
C41H65BrO6Na ([M+Na]+) 755.3862, found 755.3870; 1H NMR (600 MHz, CDCl3): δH 0.83,
0.84, 0.85, 0.97, 1.03 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.70–2.00 (m, 30H, CH,
CH2 BN scaffold and (CH2)3 fragment of linker), 2.04 (s, 3H, CH3CO), 2.43 (td, 1H, J1 5.8 Hz,
J2 = 11.1 Hz, H-19), 2.62–2.66 (m, 4H, O(CO)CH2CH2), 3.42 (t, 2H, J = 6.1 Hz, CH2Br), 3.87
(d, 1H, J = 10.8 Hz, H-28b), 4.10 (t, 2H, J = 6.6 Hz, (CO)OCH2), 4.29 (d, 1H, 11.1 Hz, H-28a),
4.46 (dd, 1H, J1 = 5.6 Hz, J2 = 10.8 Hz, H-3), 4.59 (s, br, 1H, H-29b), 4.68 (d, 1H, J 2.3 Hz,
H-29a) ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.4, 18.1, 19.1, 20.7, 21.2, 23.6,
24.5, 25.1, 27.0, 27.7, 27.9, 29.1, 29.2, 29.5, 29.7, 32.2, 33.3, 34.1, 34.5, 37.0, 37.5, 37.7, 38.3, 40.8,
42.6, 46.4, 47.7, 48.7, 50.2, 55.3, 63.0, 64.3, 80.8, 109.8, 150.0, 170.9, 172.2, 172.5 ppm; IR (ATR)
ν: 2942, 1730, 1244, 1155, 731 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(3"-bromopropyloxycarbonyl)propanoyl)betulin (6d) was
obtained as a resin (133.9 mg, 73% yield); Rf = 0.28 (DCM:MeOH, 100:1); HRMS (ESI+) m/z:
calcd for C41H66BrO6 ([M+H]+) 733.4043, found 733.4045; 1H NMR (400 MHz, CDCl3): δH
0.76, 0.77, 0.89, 0.95, 1.32 (all s, 3H each, H-23–H-27), 1.21 (s, 6H, CMe2), 1.61 (s, 3H, H-30),
0.65–1.93 (m, 24H, CH, CH2 BN scaffold), 1.97 (s, 3H, CH3CO), 2.12 (d, 2H, J = 6.3 Hz, CH2
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fragment of linker), 2.35 (td, 1H, J1 = 5.7 Hz, J2 = 11.1 Hz, H-19), 2.56 (s, 2H, O(CO)CH2),
3.39 (t, 2H, J = 6.6 Hz, CH2Br), 3.78 (d, 1H, J = 11.0 Hz, H-28b), 4.14–4.21 (m, 3H, H-28a and
(CO)OCH2), 4.40 (dd, 1H, J1 = 5.6 Hz, J2 10.8 Hz, H-3), 4.52 (s, br, 1H, H-29b), 4.61 (s, br, 1H,
H-29a) ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 20.8, 21.3, 23.7,
25.1, 25.5, 25.6, 27.0, 27.9, 29.5, 29.7, 31.7, 34.1, 34.5, 37.0, 37.6, 37.8, 38.4, 40.6, 40.9, 42.7, 44.5,
46.3, 47.7, 48.8, 50.3, 55.4, 62.5, 62.9, 80.9, 109.9, 150.0, 171.0, 172.0, 176.4 ppm; IR (ATR) ν:
2931, 1732, 1245, 1177 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(4"-bromobutyloxycarbonyl)propanoyl)betulin (6e) was
obtained as a resin (78.5 mg, 42% yield); Rf = 0.29 (DCM:MeOH, 100:1); HRMS (ESI+) m/z:
calcd for C42H68BrO6 ([M+H]+) 747.4199, found 747.4194; 1H NMR (400 MHz, CDCl3):
δH 0.77, 0.78, 0.89, 0.95, 1.32 (all s, 3H each, H-23–H-27), 1.20 (s, 6H, CMe2), 1.61 (s, 3H,
H-30), 0.70–1.93 (m, 28H, CH, CH2 BN scaffold and (CH2)2 fragment of linker), 1.97 (s, 3H,
CH3CO), 2.35 (td, 1H, J1 = 5.7 Hz, J2 = 10.9 Hz, H-19), 2.56 (s, 2H, O(CO)CH2), 3.37 (t, 2H, J
= 6.6 Hz, CH2Br), 3.78 (d, 1H, J = 11.0 Hz, H-28b), 4.05 (t, 2H, J = 6.3 Hz, (CO)OCH2), 4.17
(d, 1H, J = 11.1 Hz H-28a), 4.39–4.42 (m, 1H, H-3), 4.52 (s, br, 1H, H-29b), 4.61 (s, br, H-29a)
ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 20.8, 21.3, 23.7, 25.1,
25.46, 25.48, 27.0, 27.2, 27.9, 29.3, 29.5, 29.7, 33.1, 34.1, 34.5, 37.0, 37.6, 37.8, 38.4, 40.9, 40.6,
42.7, 44.5, 46.3, 47.7, 48.8, 50.3, 55.4, 62.8, 63.7, 80.9, 109.9, 150.0, 171.0, 172.0, 176.6 ppm; IR
(ATR) ν: 2942, 1731, 1246, 1178 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(5"-bromopentyloxycarbonyl)propanoyl)betulin (6f) was
obtained as a resin (99.0 mg, 52% yield); Rf = 0.23 (DCM:MeOH, 100:1); HRMS (ESI+) m/z:
calcd for C43H70BrO6 ([M+H]+) 761.4356, found 761.4353; 1H NMR (600 MHz, CDCl3):
δH 0.76, 0.77, 0.89, 0.95, 1.32 (all s, 3H each, H-23–H-27), 1.20 (s, 6H, CMe2), 1.61 (s, 3H,
H-30), 0.65–1.92 (m, 30H, CH, CH2 BN scaffold and (CH2)3 fragment of linker), 1.97 (s, 3H,
CH3CO), 2.35 (td, 1H, J1 = 5.8 Hz, J2 = 11.1 Hz, H-19), 2.56 (s, 2H, O(CO)CH2), 3.35 (t, 2H,
J = 6.7 Hz, CH2Br), 3.78 (dd, 1H, J1 = 1.3 Hz, J2 = 11.1 Hz, H-28b), 4.02 (t, 2H, J = 6.5 Hz,
(CO)OCH2), 4.17 (dd, 1H, J1 = 2.2 Hz, J2 = 11.0 Hz, H-28a), 4.39 (dd, 1H, J1 = 5.6 Hz, J2 =
10.8 Hz, H-3), 4.51 (s, br, 1H, H-29b), 4.61 (d, 1H, J = 2.3 Hz, H-29a) ppm; 13C NMR (150
MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 20.8, 21.3, 23.7, 24.6, 25.1, 25.5, 27.0, 27.7,
27.9, 29.5, 29.7, 32.2, 33.4, 34.1, 34.5, 37.0, 37.6, 37.8, 38.4, 40.6, 40.9, 42.7, 44.5, 46.3, 47.7, 48.8,
50.3, 55.4, 62.8, 64.3, 80.8, 109.9, 150.1, 171.0, 171.6, 176.6 ppm; IR (ATR) ν: 2941, 1730, 1245,
1105 cm−1.

3.2.4. General Procedure for the Synthesis of Triphenylphosphonium Derivatives of BN (7,
28-TPP⊕ BN)

The bromide derivative of BN (6, 0.1 mmol, 1 eq.) and triphenylphosphine (0.2 mmol,
52.5 mg, 2 eq.) were dissolved in dry DCM (1.0–1.5 mL) and stirred at room temperature for
10–15 min until homogenization was reached. The solvent was evaporated under reduced
pressure and the residue was heated in an oil bath at 120 ◦C under an Ar atmosphere for
6–12 h. The obtained mixture was washed with diethyl ether (7a–7c: 3 × 4 mL; 7d–7f:
5 × 3 mL) at 50 ◦C. Then, the crude product was crystalized from ethyl acetate/diethyl
ether (1:4, v/v) and dried under reduced pressure at 50 ◦C for 4 h.

3-O-Acetyl-28-O’-(3’-(3"-triphenylphosphoniopropyloxycarbonyl)propanoyl)betulin bromide
(7a) was obtained as a resin (95.8 mg, 99% yield); HRMS (ESI+) m/z: calcd for C57H76O6P+

([M]+) 887.5380, found 887.5383; 1H NMR (600 MHz, CDCl3): δH 0.83, 0.84, 0.85, 0.95, 0.96
(all s, 3H each, H-23–H-27), 1.67 (s, 3H, H-30), 0.70–1.95 (m, 26H, CH, CH2 BN scaffold
and CH2 fragment of linker), 2.04 (s, 3H, CH3CO), 2.38 (td, 1H, J1 = 5.7 Hz, J2 = 0.8 Hz,
H-19), 2.60-2.66 (m, 4H, O(CO)CH2CH2), 3.84 (d, 1H, J = 11.0 Hz, H-28b), 4.09–3.99 (m, 2H,
CH2P), 4.22 (d, 1H, J = 11.0 Hz, H-28a), 4.39–4.45 (m, 2H, (CO)OCH2), 4.46 (dd, 1H, J1 = 5.1
Hz, J2 = 11.1 Hz, H-3), 4.59 (s, br, H-29b), 4.67 (s, br, H-29a), 7.71-7.90 (m, 15H, PPh3), ppm;
13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 19.5, 19.8 (d, JC,P 52.3 Hz),
20.8, 21.3, 22.3, 22.4, 23.6, 25.1, 27.0, 27.9, 29.1, 29.2, 29.5, 29.6, 34.0, 34.5, 37.0, 37.6, 37.8, 38.3,
40.8, 42.6, 46.4, 47.8, 48.7, 50.2, 55.3, 62.9, 63.4 (d, JC,P = 17.4 Hz), 80.8, 109.9, 118.1 (d, JC,P
= 85.7 Hz), 130.5 (d, JC,P = 12.1 Hz), 133.8 (d, JC,P = 9.8 Hz), 135.0 (d, JC,P = 3.0 Hz), 150.0,
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171.0, 172.0, 172.8 ppm; 31P NMR (162 MHz, CDCl3): δP 24.75 ppm; IR (ATR) ν: 2942, 1729,
1246, 1156, 691 cm−1.

3-O-Acetyl-28-O’-(3’-(4"-triphenylphosphoniobutyloxycarbonyl)propanoyl)betulin bromide
(7b) was obtained as a resin (97.2 mg, 99% yield); HRMS (ESI+) m/z: calcd for C58H78O6P+

([M]+) 901.5536, found 901.5550; 1H NMR (600 MHz, CDCl3): δH 0.83, 0.84, 0.85, 0.96, 1.00
(all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.72–1.97 (m, 26H, CH, CH2 BN scaffold
and CH2 fragment of linker), 2.04 (s, 3H, CH3CO), 2.12 (q, 2H, J = 7.1 Hz, CH2 fragment of
linker), 2.40 (td, 1H, J1 = 5.8 Hz, J2 = 11.0 Hz, H-19), 2.48–2.59 (m, 4H, O(CO)CH2CH2), 3.85
(d, 1H, J = 11.0 Hz, H-28b), 3.97–4.06 (m, 2H, CH2P), 4.14 (t, 2H, J = 5.8 Hz, (CO)OCH2),
4.24 (d, 1H, J = 11.1 Hz, H-28a), 4.47 (dd, 1H, J1 = 5.3 Hz, J2 = 11.0 Hz, H-3), 4.59 (s, br, 1H,
H-29b) 4.67 (s, br, H-29a), 7.66–7.92 (m, 15H, PPh3) ppm; 13C NMR (100 MHz, CDCl3): δC
14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 19.26, 19.33, 20.7, 20.8, 21.3, 22.2 (d, JC,P = 50.6 Hz), 23.7, 25.1,
27.0, 27.9, 29.1, 29.2, 29.5, 29.7, 34.1, 34.5, 37.0, 37.6, 37.8, 38.3, 40.9, 42.7, 46.4, 47.7, 48.7,
50.2, 55.3, 63.0, 63.6, 80.9, 109.9, 118.3 (d, JC,P = 84.9 Hz), 130.4 (d, JC,P = 12.1 Hz), 133.8 (d,
JC,P = 9.9 Hz), 134.9 (d, JC,P = 3.0 Hz), 150.0, 171.0, 172.2, 172.6 ppm; 31P NMR (162 MHz,
CDCl3): δP 24.61 ppm; IR (ATR) ν: 2945, 1731, 1246, 1156, 691 cm−1.

3-O-Acetyl-28-O’-(3’-(5"-triphenylphosphoniopentyloxycarbonyl)propanoyl)betulin bromide
(7c) was obtained as a resin (77.7 mg, 78% yield); HRMS (ESI+): calcd for C59H80O6P+

([M]+) m/z: 915.5693, found 915.5715; 1H NMR (600 MHz, CDCl3): δH 0.83, 0.84, 0.85, 0.96,
1.01 (all s, 3H each, H-23–H-27), 1.67 (s, 3H, H-30), 0.70–1.97 (m, 30H, CH, CH2 BN scaffold
and (CH2)3 fragment of linker), 2.04 (s, 3H, CH3CO), 2.41 (td, 1H, J1 = 5.8 Hz, J2 = 11.1 Hz,
H-19), 2.55–2.65 (m, 4H, O(CO)CH2CH2), 3.86 (d, 1H, J = 11.0 Hz, H-28b), 3.91–3.98 (m,
2H, CH2P), 4.03 (t, 2H, J = 6.4 Hz, (CO)OCH2), 4.25 (d, 1H, J = 11.1 Hz, H-28a), 4.47 (dd,
1H, J1 = 5.4 Hz, J2 = 11.0 Hz, H-3), 4.58 (s, br, H-29b), 4.67 (s, br, H-29a), 7.67–7.91 (m, 15H,
PPh3) ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 20.7, 21.3, 22.2,
22.3, 22.7 (d, JC,P = 49.4 Hz), 23.7, 25.1, 26.5, 26.7, 27.0, 27.9, 28.1, 29.1, 29.2, 29.5, 29.7, 34.1,
34.5, 37.0, 37.5, 37.8, 38.3, 40.8, 42.6, 46.4, 47.7, 48.7, 50.2, 55.3, 62.9, 65.8, 80.9, 109.8, 118.4
(d, JC,P = 85.0 Hz), 130.5 (d, JC,P = 12.1 Hz), 133.7 (d, JC,P = 9.8 Hz), 134.9 (d, JC,P = 3.0 Hz),
150.1, 171.0, 172.3, 172.7 ppm; 31P NMR (161.9 MHz, CDCl3): δP 24.37 ppm; IR (ATR) ν:
2946, 1731, 1246, 1157, 692 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(3"-triphenylphosphoniopropyloxycarbonyl)propanoyl)
betulin bromide (7d) was obtained as a resin (71.7 mg, 72% yield); HRMS (ESI+) m/z: calcd
for C59H80O6P+ ([M]+) 915.5693, found 915.5717; 1H NMR (600 MHz, CDCl3): δH 0.80, 0.83,
0.84, 0.87, 0.94 (all s, 3H each, H-23–H-27), 1.21 (s, 3H, CMe), 1.22 (s, 3H, CMe),1.66 (s, 3H,
H-30), 0.68–2.08 (m, 26H, CH, CH2 BN scaffold and CH2 fragment of linker), 2.04 (s, 3H,
CH3CO), 2.29 (td, 1H, J1 = 5.8 Hz, J2 = 10.8 Hz, H-19), 2.63–2.66 (m, 2H, 2 × O(CO)CH2),
3.76 (d, 1H, J = 11.0 Hz, H-28a), 4.01–4.10 (m, 3H, CH2P and H-28b), 4.45–4.48 (m, 3H, H-3
and (CO)OCH2), 4.58 (s, br, 1H, H-29b), 4.63 (s, br, 1H, H-29a), 7.69–7.91 (m, 15H, PPh3)
ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 15.9, 16.1, 16.5, 18.1, 19.0, 19.4 (d, JC.P = 51.8
Hz), 20.8, 21.3, 22.4, 23.6, 25.1, 25.4, 25.5, 26.9, 27.9, 29.5, 29.7, 34.0, 34.5, 37.0, 37.6, 37.8, 38.3,
40.6, 40.8, 42.6, 44.3, 46.3, 47.8, 48.6, 50.2, 55.3, 62.6, 63.9 (d, JC,P = 18.4 Hz), 80.8, 109.9, 118.3
(d, JC.P = 86.3 Hz), 130.4 (d, JC,P = 12.6 Hz), 133.8 (d, JC.P = 10.4 Hz), 134.9 (d, JC,P = 0.5 Hz),
150.0, 171.0, 172.0, 176.7 ppm; 31P NMR (161.9 MHz, CDCl3): δP 19.38 ppm; IR (ATR) ν:
2946, 1727, 1248, 1177, 725, 690 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(4"-triphenylphosphoniobutyloxycarbonyl)propanoyl)
betulin bromide (7e) was obtained as a resin (78.8 mg, 78% yield); HRMS (ESI+) m/z: calcd
for C60H82O6P+ ([M]+) 929.5849, found 929.5861; 1H NMR (600 MHz, CDCl3): δH 0.75,
0.76, 0.77, 0.88, 0.89 (all s, 3H each, H-23–H-27), 1.051 (s, 3H, CMe), 1.054 (s, 3H, CMe),
1.60 (s, 3H, H-30), 0.68–1.90 (m, 26H, CH, CH2 BN scaffold, and CH2 fragment of linker),
1.97 (s, 3H, CH3CO), 2.08 (q 2H, J 6.7 Hz CH2 fragment of linker), 2.30 (td, 1H, J1 = 5.7 Hz,
J2 = 10.8 Hz, H-19), 2.45 (s, 2H, O(CO)CH2), 3.72 (d, 1H, J = 11.0 Hz, H-28b), 3.87–3.92 (m,
2H, CH2P), 4.07–4.10 (m, 3H, H-28a and (CO)OCH2), 4.39 (dd, 1H, J1 = 5.3 Hz, J2 = 11.0 Hz,
H-3), 4.51 (s, br, 1H, H-29b), 4.58 (d, 1H, J = 2.3 Hz, H-29a), 7.61–7.87 (m, 15H, PPh3) ppm;
13C NMR (150 MHz, CDCl3): δC 14.6, 16.0, 16.1, 16.4, 18.1, 19.0, 19.1, 20.7, 21.2, 22.1 (d, JC,P
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= 49.3 Hz), 23.6, 25.1, 25.3, 26.9, 27.9, 29.1, 29.2, 29.5, 29.6, 34.0, 34.4, 36.9, 37.5, 37.7, 38.3,
40.5, 40.8, 42.6, 44.2, 46.2, 47.6, 48.6, 50.2, 55.3, 62.7, 63.2, 80.8, 109.8, 118.3 (d, JC,P = 88.1 Hz),
130.4 (d, JC,P = 12.6 Hz), 133.7 (d, J,P = 10.4 Hz), 134.9 (d, JC,P = 0.5 Hz), 149.9, 171.0, 171.5,
176.5 ppm; 31P NMR (162 MHz, CDCl3): δP 24.52 ppm; IR (ATR) ν: 2948, 1725, 1248, 1179,
723, 690 cm−1.

3-O-Acetyl-28-O’-(3’,3’-dimethyl-3’-(5"-triphenylphosphoniopentyloxycarbonyl)propanoyl)
betulin bromide (7f) was obtained as a resin (73.7 mg, 72% yield); HRMS (ESI+) m/z: calcd
for C61H84O6P+ ([M]+) 943.6006, found 943.6042; 1H NMR (600 MHz, CDCl3): δH 0.82, 0.83,
0.84, 0.94, 0.97 (all s, 3H each, H-23–H-27), 1.20 (s, 3H, CMe), 1.21 (s, 3H, CMe), 1.66 (s, 3H,
H-30), 0.67–1.96 (m, 30H, CH, CH2 BN scaffold and (CH2)3 fragment of linker), 2.03 (s, 3H,
CH3CO), 2.38 (td, 1H, J1 = 5.8 Hz, J2 = 10.9 Hz, H-19), 2.57 (s, 2H, O(CO)CH2), 3.83 (d, 1H, J
= 11.0 Hz, H-28b), 3.88–3.95 (m, 2H, CH2P), 4.01 (t, 2H, J = 6.7 Hz, (CO)OCH2), 4.17 (d, 1H,
J = 11.0 Hz, H-28a), 4.46 (dd, 1H, J1 = 5.5 Hz, J2 = 10.5 Hz, H-3), 4.57 (s, br, 1H, H-29b), 4.64
(s, br, 1H, H-29a), 7.65–7.91 (m, 15H, PPh3) ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0,
16.1, 16.5, 18.1, 19.1, 20.8, 21.3, 22.21, 22.25, 22.7 (d, JC,P = 50.1 Hz), 23.6, 25.1, 25.4, 25.5, 26.4,
26.6, 26.9, 27.9, 28.0, 29.5, 29.7, 34.1, 34.5, 37.0, 37.5, 37.8, 38.3, 40.5, 40.8, 42.6, 44.4, 46.2, 47.7,
48.7, 50.2, 55.3, 62.7, 63.9, 80.9, 109.8, 118.4 (d, JC,P = 85.8 Hz), 130.4 (d, JC,P = 12.4 Hz), 133.7
(d, JC,P = 9.9 Hz), 134.9 (d, JC,P = 3.0 Hz), 150.0, 171.0, 171.7, 176.6 ppm; 31P NMR (161.9
MHz, CDCl3): δP 24.35 ppm; IR (ATR) ν: 2948, 1727, 1247, 1181, 725, 690 cm−1.

3.2.5. General Procedure for the Synthesis of
3,28-Bis(bromoalkoxycarbonyl)propanoyl)betulin (8)

3,28-O,O′-Bis(3′-carboxypropanoyl)betulin (5, 0.25 mmol, 160.6 mg, 1 eq.), DMF (2
mL/100 mg 5) and MeCN (0.2 mL/100 mg 5), the appropriate dibromoalkane (Br(CH2)nBr,
n = 3, 4, 5; 1.5 mmol, 6 eq.) and K2CO3 (0.50 mmol, 69.1 mg, 2 eq.) were stirred at 50 ◦C for
18–20 h. The obtained mixture was diluted with cold water (10 × volume) and extracted
with ethyl acetate (6 × 19 mL). The combined organic layers were washed with brine
(2 × 90 mL), dried over MgSO4, and the solvent was evaporated under reduced pressure.
Then, crude product 8 was washed with methanol (2 × 1.0 mL) and was further purified
by column chromatography (DCM/MeOH, gradient: 100:1 to 50:1).

3,28-O’,O′-Bis(3’-(3"-bromopropyloxycarbonyl)propanoyl)betulin (8a) was obtained as a
resin (143.8 mg, 65% yield); Rf = 0.23 (DCM:MeOH, 100:1); HRMS (ESI+) m/z: calcd for
C44H69Br2O8 ([M+H]+) 833.3359, found 833.3360; 1H NMR (600 MHz, CDCl3): δH 0.83,
0.84, 0.85, 0.97, 1.02 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.74–2.03 (m, 24H, CH,
CH2 BN scaffold), 2.15–2.21 (m, 4H, 2 × CH2 fragment of linker), 2.43 (td, 1H, J1 = 5.8 Hz,
J2 = 11.1 Hz, H-19), 2.61–2.68 (m, 8H, 2 × O(CO)CH2CH2), 3.45–3.47 (m, 4H, 2 × CH2Br),
3.87 (d, 1H, J = 10.3 Hz, H-28b), 4.22–4.26 (m, 4H, 2 × (CO)OCH2), 4.29 (dd, 1H, J1 = 1.9 Hz,
J2 = 11.0 Hz, H-28a), 4.46–4.51 (m, 1H, H-3), 4.59 (s, br, 1H, H-29b), 4.68 (d, 1H, J = 2.1 Hz,
H-29a) ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 20.8, 23.6, 25.1,
27.0, 27.9, 29.10, 29.16, 29.2, 29.3, 29.5, 29.6, 29.7, 31.6, 31.7, 34.1, 34.5, 37.0, 37.6, 37.8, 38.3,
40.9, 42.7, 46.4, 47.7, 48.8, 50.3, 55.4, 62.39, 62.43, 63.1, 81.4, 109.9, 150.1, 171.9, 172.1, 172.2,
172.5 ppm; IR (ATR) ν: 2943, 1732, 1157 cm−1.

3,28-O,O′-Bis(3’-(4"-bromobutyloxycarbonyl)propanoyl)betulin (8b) was obtained as a
resin (159.8 mg, 70% yield); Rf = 0.26 (DCM:MeOH, 100:1); HRMS (ESI+) m/z: calcd for
C46H72Br2O8Na([M+Na]+) 933.3492, found 933.3525; 1H NMR (600 MHz, CDCl3): δH 0.83,
0.84, 0.85, 0.97, 1.02 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.70–2.06 (m, 32H, CH,
CH2 BN scaffold and 2 × (CH2)2 fragment of linker), 2.43 (td, 1H, J1 = 5.7 Hz, J2 = 11.1 Hz,
H-19), 2.60–2.68 (m, 8H, 2 × O(CO)CH2CH2), 3.43–3.45 (m, 4H, 2 × CH2Br), 3.87 (d, 1H, J
= 11.0 Hz, H-28b), 4.11–4.13 (m, 4H, 2 × (CO)OCH2), 4.29 (d, 1H, J = 11.0 Hz, H-28a), 4.48
(dd, 1H, J1 = 5.8 Hz, J2 = 10.5 Hz, H-3), 4.58 (s, br, 1H, H-29b), 4.68 (s, br, 1H, H-29a) ppm;
13C NMR (150 MHz, CDCl3): δC 14.6, 15.9, 16.0, 16.4, 18.0, 19.0, 20.7, 23.5, 25.0, 25.1, 26.9,
27.1, 27.8, 29.1, 29.0, 29.41, 29.44, 29.6, 32.9, 34.0, 34.4, 36.9, 37.4, 37.7, 38.2, 40.8, 42.6, 46.3,
47.6, 48.7, 50.1, 55.3, 62.9, 63.5, 63.6, 81.2, 109.8, 149.9, 171.8, 172.09, 172.14, 172.4 ppm; IR
(ATR) ν: 2944, 1730, 1157 cm−1.
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3,28-O,O′-Bis(3’-(5"-bromopentyloxycarbonyl)propanoyl)betulin (8c) was obtained as a
resin (150.5 mg, 64% yield); Rf = 0.32 (DCM:MeOH, 100:1); HRMS (ESI+) m/z: calcd for
C48H76Br2O8Na ([M+Na]+) 961.3805, found 961.3886; 1H NMR (600 MHz, CDCl3): δH 0.83,
0.84, 0.85, 0.97, 1.02 (all s, 3H each, H-23–H-27), 1.68 (s, 3H, H-30), 0.72–2.00 (m, 36H, CH,
CH2 BN scaffold and 2 × (CH2)3 fragment of linker), 2.43 (td, 1H, J1 = 5.8 Hz, J2 = 11.1 Hz,
H-19), 2.60–2.68 (m, 8H, 2 × O(CO)CH2CH2), 3.40–3.42 (m, 4H, 2 × CH2Br), 3.87 (d, 1H,
J = 12.2 Hz, H-28b), 4.08–4.11 (m, 4H, 2 × (CO)OCH2), 4.29 (dd, 1H, J1 = 2.0 Hz, J2 = 11.2
Hz, H-28a), 4.49 (dd, 1H, J1 = 5.5 Hz, J2 = 10.9 Hz, H-3), 4.59 (s, br, 1H, H-29b), 4.68 (d, 1H,
J = 2.2 Hz, H-29a) ppm; 13C NMR (150 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1,
20.8, 23.6, 24.6, 25.1, 27.0, 27.7, 27.9, 28.1, 28.2, 29.2, 29.5, 29.3, 29.7, 32.3, 33.4, 34.1, 34.5, 37.0,
37.6, 37.8, 38.3, 40.9, 42.7, 46.4, 47.7, 48.8, 50.2, 55.4, 63.0, 64.3, 64.4, 81.3, 109.9, 150.1, 171.9,
172.25, 172.32, 172.6 ppm; IR (ATR) ν: 2943, 1731, 1157 cm−1.

3.2.6. General Procedure for the Synthesis of Bis(triphenylphoshonium) Derivatives of BN
(9, 3,28-bisTPP⊕ BN)

3,28-O,O′-Bis(3’-(3"-bromoalkoxycarbonyl)propanoyl)betulin (8a–8c) (0.1 mmol, 1 eq.)
and triphenylphosphine (0.3 mmol, 78.7 mg, 3 eq.) were dissolved in dry DCM (1–2 mL)
and stirred at room temperature for 10–15 min until homogenization was reached. The
solvent was evaporated under reduced pressure, and the residue was heated in an oil bath
at 120 ◦C under an Ar atmosphere. The obtained mixture was washed with diethyl ether
(5 × 4 mL) at 50 ◦C. Then, the crude product was crystalized from ethyl acetate/diethyl
ether (1:4, v/v) and dried under reduced pressure at 50 ◦C for 6 h or purified using column
chromatography (DCM:MeOH, 10:1, v/v).

3,28-O,O′-Bis(3’-(3"-triphenylphosphoniopropyloxycarbonyl)propanoyl)betulin bromide (9a)
was obtained as a resin (74.7 mg, 53% yield); Rf = 0.13 (DCM:MeOH, 10:1); HRMS (ESI+)
m/z: calcd for C40H49O4P2+ ([M]2+) 624.3368, found 624.3379; 1H NMR (600 MHz, CDCl3):
δH 0.70, 0.72, 0.73, 0.88, 0.89 (all s, 3H each, H-23–H-27), 1.60 (s, 3H, H-30), 0.60–1.90 (m,
24H, CH, CH2 BN scaffold), 1.92–2.00 (m, 4H, 2 × CH2 fragment of linker), 2.31 (td, 1H, J1
= 5.7 Hz, J2 = 10.9 Hz, H-19), 2.51–2.60 (m, 8H, 2 × O(CO)CH2CH2), 3.75 (d, 1H, J = 10.8
Hz, H-28b), 3.92–3.99 (m, 4H, 2 × CH2P), 4.17 (dd, 1H, J1 = 1.9 Hz, J2 = 11.0 Hz, H-28a),
4.31 (dd, 1H, J1 = 5.7 Hz, J2 = 10.4 Hz, H-3), 4.34–4.38 (m, 4H, 2 × (CO)OCH2), 4.52 (s, br,
1H, H-29b), 4.60 (d, 1H, J = 2.2 Hz, H-29a), 7.63–7.83 (m, 30H, 2 × PPh3) ppm; 13C NMR
(150 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1, 19.7 (d, JC,P = 51.8 Hz), 20.8, 22.3, 23.6,
25.1, 27.0, 28.0, 29.1, 29.5, 29.4, 29.7, 34.1, 34.5, 37.0, 37.6, 37.8, 38.3, 40.9, 42.7, 46.4, 47.8,
48.7, 50.3, 55.4, 62.9, 63.5 (d, JC,P = 18.4 Hz), 81.3, 109.9, 118.1 (d, JC,P = 86.3 Hz), 130.5 (d,
JC,P = 12.8 Hz), 133.8 (d, JC,P = 9.2 Hz), 135.1 (d, JC,P = 0.5 Hz), 150.0, 171.99, 172.0, 172.1,
172.7 ppm; 31P NMR (162 MHz, CDCl3): δP 24.61, 24.54 ppm; IR (ATR) ν: 2946, 1730, 1438,
1158, 724, 691 cm−1.

3,28-O,O’-Bis(3’-(4"-triphenylphosphoniobutyloxycarbonyl)propanoyl)betulin bromide (9b)
was obtained as a resin (115.0 mg, 80% yield); Rf = 0.19 (DCM:MeOH, 10:1); HRMS (ESI+)
m/z: calcd for C41H51O4P2+ ([M]2+) 638.3525, found 638.3536; 1H NMR (600 MHz, CDCl3):
δH 0.73, 0.75, 0.89, 0.93, 1.18 (all s, 3H each, H-23–H-27), 1.61 (s, 3H, H-30), 0.60–2.05 (m,
32H, CH, CH2 BN scaffold and 2 × (CH2)2 fragment of linker), 2.38 (td, 1H, J1 = 5.6 Hz, J2
= 10.9 Hz, H-19), 2.41–2.52 (m, 8H, 2 × O(CO)CH2CH2), 3.77 (d, 1H, J = 10.1 Hz, H-28b),
3.89–3.97 (m, 4H, 2 × CH2P), 4.05–4.08 (m, 4H, 2 × (CO)OCH2), 4.22 (d, 1H, J1 = 11.4 Hz,
H-28a), 4.35 (m, 1H, H-3), 4.52 (s, br, 1H, H-29b), 4.61 (d, 1H, J = 3.1 Hz, H-29a), 7.58–7.87
(m, 30H, 2 × PPh3) ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 16.5, 18.1, 19.1,
19.2, 19.3, 20.8, 22.2, (d, JC,P = 50.0 Hz), 23.6, 25.1, 25.3, 27.0, 27.9, 28.9, 29.0, 29.1, 29.5, 29.6,
34.0, 34.5, 37.0, 37.5, 37.8, 38.3, 40.8, 42.7, 46.4, 47.7, 48.7, 50.2, 55.4, 63.0, 63.4, 81.3, 109.9,
118.2 (d, JC,P = 88.8 Hz), 130.4 (d, JC,P = 12.9 Hz), 133.7 (d, JC,P = 9.9 Hz), 135.0 (d, JC,P = 3.0
Hz), 150.0, 171.9, 172.16, 172.18, 172.6 ppm; 31P NMR (162 MHz, CDCl3): δP 24.51 ppm; IR
(ATR) ν: 2936, 1728, 1438, 1160, 725, 691 cm−1.

3,28-O,O′-Bis(3’-(5"-triphenylphosphoniopentyloxycarbonyl)propanoyl)betulin bromide (9c)
was obtained as a resin (129.0 mg, 88% yield); Rf = 0.11 (DCM:MeOH, 10:1); HRMS (ESI+)
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m/z: calcd for C42H53O4P2+ ([M]2+) 652.3681, found 652,3667; 1H NMR (400 MHz, CDCl3):
δH 0.73, 0.74, 0.87, 0.92, 1.17 (all s, 3H each, H-23–H-27), 1.59 (s, 3H, H-30), 0.60–1.97 (m,
36H, CH, CH2 BN scaffold and 2 × (CH2)3 fragment of linker), 2.33 (td, 1H, J1 = 5.7 Hz, J2
= 10.8 Hz, H-19), 2.44–2.57 (m, 8H, 2 × O(CO)CH2CH2), 3.77 (d, 1H, J = 11.4 Hz, H-28b),
3.78–3.88 (m, 4H, 2 × CH2P), 3.89–3.98 (m, 4H, 2 × (CO)OCH2), 4.18 (d, 1H, J = 11.3 Hz,
H-28a), 4.37 (dd, 1H, J = 8.0 Hz, H-3), 4.50 (s, br, 1H, H-29b), 4.59 (s, br, 1H, H-29a), 7.60–7.82
(m, 30H, 2 × PPh3) ppm; 13C NMR (100 MHz, CDCl3): δC 14.7, 16.0, 16.1, 18.5, 18.1, 19.1,
20.8, 22.2, 22.3, 22.8 (d, JC,P = 49.3 Hz), 23.6, 25.1, 26.7, 27.9, 28.1, 29.1, 29.2, 29.5, 29.7, 34.1,
34.5, 37.0, 37.6, 37.8, 38.3, 40.9, 42.7, 46.4, 47.7, 48.8, 50.2, 55.4, 63.0, 64.00, 64.04, 81.2, 109.9,
118.4 (d, JC,P = 85.0 Hz), 130.5 (d, JC,P = 12.2 Hz), 133.8 (d, JC,P = 9.8 Hz), 135.0 (d, JC,P = 3.0
Hz), 150.1, 172.0, 172.28, 172.30, 172.6 ppm; 31P NMR (162 MHz, CDCl3): δP 24.36 ppm.

3.3. Biological Evaluation
3.3.1. Cytotoxicity Assay
Cell Lines

The human colorectal carcinoma cell line (HCT 116) and the human breast adenocarci-
noma cell line (MCF-7) cells were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). The Normal Human Dermal Fibroblast (NHDF) cells were
purchased from Lonza (Dermal Fibroblasts, Lonza, Poland). All cells were cultured under
standard conditions at 37 ◦C in a humidified atmosphere at 5% CO2 in DMEM/F12 medium
(PAA) supplemented with 10% of heat-inactivated fetal bovine serum (FBS, EURx, Gdansk,
Poland) and antibiotics (penicillin/streptomycin).

Cell Viability Assay

Cells were seeded at 7500 (HCT 116) or 10,000 (MCF-7, NHDF) cells/well in 96-well
plates. After 24 h, the culture medium was removed and 100 µL of fresh medium containing
the test compounds at 0–12.5 µM concentrations was added to the culture wells. The test
compounds were dissolved in DMSO to obtain a stock solution with a concentration of
5 mM (betulin) or 10 mM (other test compounds). The stock solution was diluted with
the fresh culture medium to the desired concentration. Controls were cells grown in
medium without the addition of test compounds. After 24 h of incubation with the test
compounds, 10 µL of CCK-8 reagent (Bimake, Houston, TX, USA) was added to each well.
After 2 h, the absorbance of the samples was measured at a wavelength of 450 nm using a
microplate reader (Epoch, BioTek Instruments, Winooski, VT, USA). The determinations
were conducted in at least three biological replications (each biological replication contained
3 technical replications). The cell viability rate was calculated using CalcuSyn software
(version 2.0, Biosoft, Cambridge, UK).

3.3.2. Antibacterial Assay

Antibacterial analysis was performed using the S. aureus ATCC 25923, S. epidermidis
ATCC 12228, and Escherichia coli ATCC 25922 bacteria strains. The test compounds were
dissolved in DMSO to obtain a stock solution with a concentration of 5 mM (betulin) or
10 mM (other test compounds). The stock solution was diluted with water to the desired
concentration (25–250 µM). Then, 1 mL of the investigated solutions was mixed with 1 mL
of culture medium (TSB, Biomaxima, Lublin, Poland) in a sterile glass tube. The initial
concentration of bacteria was around 5 × 106 CFU/mL. The concentration of bacteria was
measured using an optical densitometer before and after 18 h of bacteria culture in glass
tubes at 37 ◦C (incubator POL-EKO, Wodzislaw Slaski, Poland). The investigations were
repeated for three independent samples. The control sample was the culture medium
without any supplementation.

4. Conclusions

In conclusion, we designed and synthesized nine new molecular hybrids of BN by
covalent linkage of the alkyltriphenylphosphonium moiety to the parent skeleton via



Molecules 2022, 27, 5156 18 of 20

the linker O(CO)CH2CR2COO. We developed a few-stage methodology that enabled the
preparation of both mono- and bis(TPP⊕) derivatives from easily available, cheap, natural
active substance (BN) by simple transformations in high yields. The advantage of this
protocol are the simple synthetic procedures and easy purification of the final products.

As expected, the triphenylphosphonium derivatives of BN showed a greater cytotoxic-
ity than natural BN toward the cell lines tested (HCT 116 and MCF-7). Importantly, analogs
(7a–7c) with one triphenylphoshonium cation were almost twice less toxic against healthy
cells (NHDF), which demonstrated their selectivity. TPP⊕-conjugates with BN showed
antimicrobial properties against the Gram-positive reference S. aureus ATCC 25923 and
S. epidermidis ATCC 12228 bacteria when their concentration in the water solution was
200 µM.

The obtained results show that the bioavailability of natural BN can be improved by
combining its backbone via linkers with a mitochondria-targeted TPP⊕ moiety. Addition-
ally, our study provides important data about the properties of BN conjugates with TPP⊕

and encourages further research on the structural modifications of the parent BN skeleton.

Supplementary Materials: The following can be downloaded at: https://www.mdpi.com/xxx/s1.
Supporting information includes the 1H, 13C, 31P NMR spectra of betulin and all of the synthesized
compounds (1–9) as well as the gHSQC and FTIR for the selected compounds.
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