
Research and Applications

A framework for making predictive models useful in

practice

Kenneth Jung,1 Sehj Kashyap,1Anand Avati,2 Stephanie Harman,3 Heather Shaw,4

Ron Li,3 Margaret Smith,3 Kenny Shum,5 Jacob Javitz,5 Yohan Vetteth,5 Tina Seto,5

Steven C. Bagley ,1 and Nigam H. Shah 1

1Stanford Center for Biomedical Informatics, School of Medicine, Stanford University, Stanford, California, USA, 2Department of

Computer Science, School of Engineering, Stanford University, Stanford, California, USA, 3Department of Medicine, School

of Medicine, Stanford University, Stanford, California, USA, 4Stanford Healthcare, Stanford, California, USA, and 5Department of

Technology and Digital Solutions, Stanford Medicine, Stanford, California, USA

Corresponding Author: Nigam H. Shah, X-235, Medical School Office Building, 1265 Welch Road, Stanford, CA 94305, USA

(nigam@stanford.edu)

Received 10 August 2020; Editorial Decision 25 November 2020; Accepted 27 November 2020

ABSTRACT

Objective: To analyze the impact of factors in healthcare delivery on the net benefit of triggering an Advanced

Care Planning (ACP) workflow based on predictions of 12-month mortality.

Materials and Methods: We built a predictive model of 12-month mortality using electronic health record data

and evaluated the impact of healthcare delivery factors on the net benefit of triggering an ACP workflow based

on the models’ predictions. Factors included nonclinical reasons that make ACP inappropriate: limited capacity

for ACP, inability to follow up due to patient discharge, and availability of an outpatient workflow to follow up

on missed cases. We also quantified the relative benefits of increasing capacity for inpatient ACP versus outpa-

tient ACP.

Results: Work capacity constraints and discharge timing can significantly reduce the net benefit of triggering

the ACP workflow based on a model’s predictions. However, the reduction can be mitigated by creating an out-

patient ACP workflow. Given limited resources to either add capacity for inpatient ACP versus developing out-

patient ACP capability, the latter is likely to provide more benefit to patient care.

Discussion: The benefit of using a predictive model for identifying patients for interventions is highly dependent

on the capacity to execute the workflow triggered by the model. We provide a framework for quantifying the im-

pact of healthcare delivery factors and work capacity constraints on achieved benefit.

Conclusion: An analysis of the sensitivity of the net benefit realized by a predictive model triggered clinical

workflow to various healthcare delivery factors is necessary for making predictive models useful in practice.
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INTRODUCTION

Over the past decade, the rapid increase in the availability of health-

care data collected during routine care and dramatic advances in

machine learning have fed a great deal of excitement about using

machine learning to improve clinical care.1–4 Predictive models,

which estimate the probability of some event of interest occurring in

a specified time frame in the future, have been developed for events

such as heart failure, inpatient mortality, and patient deterioration.5
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However, there have been relatively few success stories where these

models led to impact on what matters to patients, providers, and

healthcare decision makers such as, reduction in costs, lower rate of

those clinical events, and increased access to care.6,7

The lack of impact is in part because the evaluation of machine

learning models typically focuses on measures of performance, such

as area under the receiver-operator curve (AUROC) and mean preci-

sion. Such measures provide a convenient quantitative summary of

the performance of the model, but they do not reflect the consequen-

ces of taking action based on the model’s output.8 The translation of

model performance into benefit to patient care is mediated by multi-

ple factors related to existing and proposed clinical workflows that

incur a broad range of data acquisition, change management, and

workflow integration burdens.9–11 While measures such as AUROC

can summarize the accuracy of predicting an event, they have little

bearing on the effectiveness of actions taken in response to the pre-

diction, the constraints on those actions,8 and the ethical concerns

or value mismatches that may arise from those actions.12–14 In many

cases the overall benefit of using predictive models for improving

healthcare will be critically determined by the considerations of im-

plementation costs, actionability, safety, and utility.6,9,11

In this work, we present a comprehensive analysis of the net ben-

efit of a machine-learning enabled workflow for identifying patients

for Advance Care Planning (ACP). ACP is the elicitation and docu-

mentation of patient values and preferences regarding goals of care.

Documentation of ACP is critical for guiding care when patients are

seriously ill and unable to express their wishes or make their own

decisions. The target population is patients admitted to the General

Medicine service at Stanford Hospital. The prediction is an estimate

of 12-month mortality based on the patient’s historical electronic

health record (EHR) data; the action triggered by a high-risk esti-

mate is the offering of ACP, carried out by the General Medicine

teams. Timely offering of ACP and palliative care have proven to be

effective at both reducing downstream costs,15–17 improving physi-

cian morale, and in some cases, improving outcomes such as sur-

vival.18,19 However, despite widespread recognition that such

interventions are underutilized,20–24 timely ACP by hospitalists can

be difficult, given the urgency of taking care of a severely ill patient,

which can interfere with consideration of a patient’s longer-term

prognosis.

Predictive models for mortality have been evaluated for identify-

ing patients to receive ACP or similar interventions.25–28 There is ev-

idence that care workflows using such predictive models to screen

patients can identify the right patients for timely conversations

about goals of care.27 However, over the course of designing an im-

plementation of a workflow enabled by a machine learning model at

Stanford Hospital in early 2020, we identified various factors that

limit the presumed net benefit resulting from setting up a model-

triggered workflow. First, there may be limited capacity to perform

ACP even if patients are correctly identified by the model. Second,

effective ACP takes time to conduct, since it is based on conversa-

tions with patients and families. Building the shared understanding

and rapport necessary for these conversations takes time which may

be difficult to find for busy physicians. Third, it is possible to imag-

ine alternatives that can mitigate the impact of these factors, such as

increasing our capacity for inpatient ACP by hiring more staff or de-

veloping the capability for outpatient ACP. We quantify the impact

of these factors and gain insight into how best to mitigate those

impacts.

Our approach is inspired by the evaluation of screening tests,

and we view the prediction model as a screening test that triggers

follow-up care. For example, analogous to a number needed to

screen, we can compute a number needed to benefit which calculates

the number of patients that would need to be screened by a test and

treated in response to a positive result.29 Cost–benefit analysis is a

widely used approach to evaluate decisions made under such uncer-

tainty;30 here we apply a cost–benefit analysis on multiple factors

impacting the effectiveness of the proposed workflow using simula-

tions and sensitivity analysis. Unlike prior work applying the cost–

benefit framework to the clinical use of predictive models,31,32 our

focus is not on selecting a suitable decision threshold for triggering a

fixed intervention. Rather, akin to Horvitz’s efforts,33 we apply this

framework to alternative setups of the ACP workflow to gain insight

into the impact of healthcare delivery factors on the achieved bene-

fit.

The essence of our approach is to estimate utilities for each of 4

possible outcomes derived from the model output for each patient:

true positives (the model correctly flags a patient for ACP and ACP

is carried out), false positives (the model incorrectly flags a patient

for ACP, and it is carried out), true negatives (the model correctly

fails to flag a patient for ACP, and none is carried out), and false

negatives (the model incorrectly fails to flag a patient for ACP, and

no ACP is carried out). The utility for each outcome quantifies the

benefit associated with that outcome, in whatever units are most

convenient or meaningful. In this work, we quantify utility as total

healthcare expenditures in the 6 months following discharge because

estimates are available from a multisite randomized control trial

(RCT).15,34 If utility estimates are available in standard units of the

amount of unwanted care avoided, or increase in patient comfort,

the framework would still apply.

Given these RCT derived utilities, along with a set of patients for

whom we have both risk estimates and expert-provided, ground-

truth assessments of appropriateness for ACP, we can then estimate

the benefit under the setup of screening by a model and compare it

to the benefit achieved by policies, such as intervening on all or none

of the patients. While such approaches have been advocated for

evaluating predictive analytics in healthcare,9,31,35 they likely over-

estimate the benefit realized in practice, because factors such as lim-

ited capacity to perform ACP can reduce the effective number of

true positives. For example, if we can only perform ACP for 1 pa-

tient per day, then no benefit is accrued by the second and third

patients flagged for ACP even if the predictions are correct. In this

study, we quantify the effect of such healthcare delivery factors by

performing simulations that assess a broad range of failure rates for

a variety of factors. We also assess an alternative workflow in which

ACP is conducted via an outpatient pathway for patients who were

correctly flagged for ACP by the model, but for whom ACP was not

completed during their hospital stay.

MATERIALS AND METHODS

Our analysis uses simulations of a proposed prediction triggered

workflow (ie, the responsive action) running for an extended period.

The prediction–action dyad starts with an automated estimation of

the risk of 12-month all-cause mortality for patients admitted to the

General Medicine service at Stanford Hospital. Risk estimates are

output by a model for all-cause mortality, as described below. Chart

review by an experienced palliative care nurse was used to assign

ground-truth labels for whether ACP was appropriate. Patients

whose risk estimate exceeds a chosen threshold are considered re-

ferred for an ACP intervention. Given a risk threshold, we can calcu-

late a utility achieved for each patient, using the risk estimate and
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the ground-truth label to categorize that prediction as true positive,

false positive, true negative, or false negative. Simulations vary the

effects of various factors, such as work capacity constraints, which

may prevent ACP from being successfully carried out thus reducing

the utility actually achieved for the patient. Below, we describe the

predictive model, its validation via chart review, and our simulation

setup.

Model development
We developed a gradient boosted tree model36 to estimate the prob-

ability of 1-year all-cause mortality upon inpatient admission, using

a deidentified, retrospective dataset of EHR records for adult

patients seen at Stanford Hospital between 2010 and 2017.37 This

dataset comprised 97 683 admissions, and had a prevalence of

17.6% for 1-year all-cause mortality. Data were obtained under a

Stanford University Institutional Review Board approved protocol,

and informed consent was waived. The input data for a given admis-

sion consisted of basic demographic information (age and gender),

along with counts of diagnosis codes, medication orders, and en-

counter types (eg, inpatient, office visits, surgery) observed in the

year prior to admission. A total of 63 043 features were used. We

split the admissions according to year: we used 82 525 admissions

from 2010 through 2015 as training data and 15 098 admissions in

2016 and 2017 as validation data. We tuned hyperparameters based

on performance in the validation data and trained a final model on

the full dataset using the optimal hyperparameters. We evaluated

the performance of the resulting model against clinician chart review

prospectively, as described below. We omitted admissions for which

we do not have reliable indications of survival (eg, in person encoun-

ters) or mortality in the following year. Although our analysis in this

work is focused on admissions to the General Medicine service, the

1-year all-cause mortality model was developed using admissions to

all services. We did so to ensure adequate training data and to ob-

tain a prediction model that can be used for other service lines as

well. Note that 1-year mortality is a surrogate for the true target,

“appropriate for ACP,” which is difficult to define programmati-

cally. Therefore, in our prospective evaluation, we assess the concor-

dance of referrals triggered by a model trained to predict this

surrogate outcome against the key clinical criteria currently used by

General Medicine clinicians at Stanford Hospital to trigger a consul-

tation with Palliative Care.

Prospective evaluation by chart review
We conducted a prospective evaluation of the model against expert

chart review over 2 months in the first half of 2019; each day in that

period we presented an experienced palliative-care advanced-prac-

tice (AP) nurse with a list of patients newly admitted to General

Medicine at Stanford Hospital. These lists were in random order,

and no model output was presented. On any given day, the evalua-

tor might not have been able to complete the chart review for all, or

even any, of the newly admitted patients. However, the set of

patients for whom chart review was completed is random. These

data were collected under a separate Stanford University Institu-

tional Review Board approved protocol; need for informed consent

was waived. The AP nurse performed chart reviews for each patient

in order, as time permitted each day, to answer the question,

“Would you be surprised if this patient passed away in the next

twelve months?” Note that we use the responses to this question as

a ground-truth label for appropriateness for ACP because currently

such assessment by General Medicine clinicians is a key determinant

for triggering a consultation with palliative care. An important fac-

tor explored in our simulations is patients leaving the hospital before

ACP can be completed. Length of stay information was not available

at the time of chart review, which is done on day of admission.

Thus, we mapped the patients who underwent chart review to a dei-

dentified EHR data extract containing length of stay information.

Of the 191 patient charts reviewed, 178 were mapped and used in

subsequent analysis. The median age was 59.6 years (þ/� 19.52

years), and 49.7% were female. The case mix for this population in

comparison with the General Medicine admitted patients in the first

half of 2019 is shown in the Supplementary Table S1. The AP nurse

responded “No” to the evaluation question for 29.2% of these

patients. The model achieved an area under the ROC curve and

Precision-Recall curve of 0.86 and 0.76 respectively (with 95% con-

fidence intervals of 0.8–0.92 and 0.65–0.97 respectively, estimated

from 1000 bootstrap samples of the chart review set).

Utility values and simulation parameters
We estimated the utilities of the 4 possible outcomes of an interven-

tion, Utp, Ufn, Ufp, and Utn, using a multicenter randomized trial of

inpatient palliative care consults15 to measure the postdischarge

healthcare costs (Table 1). Gade et al found that patients who re-

ceived usual care incurred an average cost of $21 252 in the 6

months following discharge, while patients who received an inpa-

tient palliative care consultation incurred an average cost of $14

486. We use the former as an estimate of the cost of a false negative

Ufn (ie, the cost incurred by a patient who should have received ACP

but did not), and the difference ($6766) as the savings from ACP.

The consultation itself cost $1911 for a net savings of $4855. These

data were collected between 2002 and 2003; accounting for infla-

tion38 yields costs of $37 085 for patients who do not receive ACP.

Subtracting the inflation adjusted net savings of $8472 yields a cost

for true positives (Utp) of $28 613. We used these estimates as the

values for true positives and false negatives, respectively. We esti-

mated the cost of true negatives and false positives as follows. For

the cost of true negatives, Utp, we use the mean per capita annual

spending for US patients ($11 646) as determined from the Peter-

son–Kaiser Health System Tracker.39 For false positives, we added

the inflation adjusted cost of the intervention ($3324) to this cost,

yielding a total of $14 970. These utility values are summarized in

Table 1. We note that the net expected utility at a given decision

threshold depends solely on the prevalence of “appropriate for

ACP” patients, the recall and specificity of the model, and the differ-

ences Utp—Ufn ($8472) and Ufp—Utn ($3324) rather than the indi-

vidual utilities.

Establishing the “best case”
Our goal is to gain insight into how healthcare delivery factors im-

pact the net benefit of triggering an Advanced Care Planning (ACP)

workflow based on predictions of 12-month mortality. To that end,

we use simulations based on resampling of the 178 admissions for

which we have clinician evaluations, model output, and length of

stay. We first establish the “best case” utilities achievable given the

predictive model as it stands, where “best case” is the absence of

failures due to healthcare delivery factors. Thus, even under the

“best case,” given the model’s mistakes, false positive patients re-

ceive ACP (and false negatives miss ACP) in the simulation.

To establish this best case, we simulated 5000 days of offering

ACP. Each simulated day, we randomly sampled the number of

admissions from the empirical distribution of admissions per day ob-
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served from March through August 2019 (the mean number of

admissions to the General Medicine service was 9.4 per day, with a

standard deviation of 3.4). We then chose that many admissions

with replacement from the 178 admissions with model output and

chart review. We calculated the number of patients in each of the 4

possible outcomes at each possible threshold of the model output to

get the true positives, false negatives, false positives, and true nega-

tives for the day. These counts were multiplied by the utilities for

each category (Utp, Ufn, Ufp, and Utn), and the products summed.

The result is the utility achieved on a given day, which is divided by

the number of admissions to yield a per-admission utility.

We simulated 5000 such days and calculated the mean utility

over simulated days at each possible threshold. We smoothed the

mean utilities across thresholds using loess with a smoothing param-

eter of 0.7540 and took the maximum utility across all possible

thresholds. We then normalize this maximum to the status quo ante

by subtracting the utility under a policy of Treat Nobody, yielding

the possible maximum net utility. Note that establishing the “best

case” in this manner assumes each true positive is translated into

successful execution of the ACP workflow.

Impact of external factors
Our next objective is to explore how various factors impact the

achieved utility using the best case as a reference. The factors ex-

plored are listed in Table 2.

Rejection for nonclinical reasons
Often, a patient recommended by a model is a valid candidate for

ACP with respect to clinical prognosis, but has declined prior

attempts at goals-of-care conversations. We simulated this factor by

flipping a weighted coin for each true positive patient in the best

case simulation. The weighted coin represents a Bernoulli trial with

some probability that ACP will be rejected for nonclinical reasons.

We varied the probability of rejection as 0.1, 0.2, and 0.3. We nor-

malized the maximum utility achieved across all possible thresholds

against the utility of the status quo ante to yield a net utility as be-

fore and compared against the net utility of the best case. We present

all results as a fraction of the best-case utility to avoid tying the anal-

ysis with specific dollar values and ensuring that, if utility estimates

are available in standard units of the amount of unwanted care

avoided, or increased in patient comfort, the approach can still be

used.

Limited capacity for ACP
Another frequent situation is that a patient is a valid candidate, but

the clinician has limited time during the day to initiate ACP (ie, the

“crazy day in the clinic”). We simulated this factor as a hard con-

straint on the capacity of the General Medicine service to intervene.

We proceeded similarly to the best case simulation except that for

each day we capped the number of true positives to some fixed limit

(1, 2, 3, or 4). Any true positives in excess of this limit were counted

as false negatives. As before, we compared the net maximum utility

under each scenario against that of the best case.

Failure to complete ACP due to early discharge
A significant fraction (57%) of hospital stays is 3 days or less, while

ACP may take several days due to logistical constraints, such as

scheduling time with family members. For each true positive patient,

we sampled the time required to complete ACP from an exponential

distribution with different means; representing scenarios in which it

takes 1, 2, 3, or 4 days on average to complete ACP. If the sampled

time to completion exceeds the true length of stay for the patient,

we count the patient as false negative from failure to complete ACP

due to early discharge. As before we compared the net maximum

utility under each scenario against that of the best case.

Effect of an outpatient ACP pathway
An outpatient care pathway for ACP may significantly mitigate

decreases in achieved benefit from factors such as capacity con-

straints or failure to complete ACP due to discharge. To simulate

this, we flipped a weighted coin for each patient who was moved

from the true positive to the false negative categories due to a capac-

ity constraint or early discharge. This coin flip represents the proba-

bility that the outpatient ACP pathway will be successful in serving

the patient. We varied this probability from 0, 0.5, and 1.0, while

keeping rejection for nonclinical reasons at 10%, a capacity con-

straint of 3 ACP interventions daily, and a mean time to completion

Table 1. Utility values

Parameter Desc Value Source

Utp Utility for true positives (ACP is appropriate and provided) �28 613 Gade et al Net savings of 4855 * inflation mul-

tiplier, subtracted from Ufn

Ufn Utility for false negatives (ACP is appropriate but not provided) �37 085 Gade et al original value of 21 252 * inflation

multiplier of 1.745

Ufp Utility for false positives (ACP is not appropriate but provided) �14 970 Utn plus inflation adjusted cost of intervention.

Utn Utility for true negatives (ACP is not appropriate and not provided) �11 646 Per capita spend in US, 2018, Peterson-Kaiser

Table 2. Simulation parameters to explore the impact of external factors

Parameter Desc Value Range

Rejection rate Fraction of patients for whom ACP is not possible for nonclinical reasons 0.1 0.1, 0.2, 0.3

Daily capacity Daily capacity to carry out ACP 3 1, 2, 3, 4, 5

Mean time to complete ACP Mean time in days to complete ACP, parameter to exponential distribution 2 1, 2, 3, 4

Outpatient pathway rescue rate Rate of successful ACP by outpatient pathway NA 0, 0.25, 0.50, 0.75, 1.0
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of 2 days. As before, we compared the net maximum utility under

each scenario against that of the best case.

Trade-offs between inpatient capacity vs outpatient

ACP
Of the failure modes analyzed, we have the least control over rejec-

tion for nonclinical reasons. Similarly, it is not reasonable to extend

the length of stay solely to complete ACP, especially given that

length of stay is a closely watched quality metric. Therefore, the 2

factors that are most amenable to modification are capacity to offer

ACP in the inpatient setting, and serving patients via an outpatient

ACP pathway.

We therefore explored the relative efficiency of increasing inpa-

tient capacity versus improving “rescue” via an outpatient pathway.

We simulated 5000 days at each combination of a range of inpatient

capacities (1–5) and rescue rates (0%, 50%, and 100%). We then

calculated the net maximum utility under each scenario and com-

pared the net maximum utility gained by increasing inpatient capac-

ity by 1 versus improving the outpatient pathway.

Analysis of utility ranges and effects of work capacity

limits
Our simulation analysis used fixed utility values for the true posi-

tives, false negatives, false positives, and true negatives. These values

might differ at different sites, and in some cases it may not be possi-

ble to obtain exact values. Therefore, to analyze the effect of choos-

ing different utilities, each of the 4 entries in a utility matrix were

expanded symmetrically by 10% to form the lower and upper

bounds of utility ranges. For each combination of lower and upper

bound of all 4 ranges, we computed the maximum expected utility

for acting on the model’s predictions, producing 2^4, or 16 possible

maxima.

Separately, we constructed a graphical representation showing

the relationship between choosing different classifier probability

thresholds, the expected utility, and the total number of predicted

positives, both true as well as false. Each positive prediction is a pa-

tient who will be offered an ACP consult. We refer to the total num-

ber of positives on whom to follow up as “work.”

RESULTS

We performed a series of simulation studies to evaluate the impact of

multiple factors on the net utility of a workflow for ACP triggered by

a 12-month mortality prediction. The factors analyzed were: (1) ineli-

gibility of candidates due to nonclinical reasons, (2) limited capacity

to offer ACP, (3) failure to complete ACP due to early discharge, and

(4) availability of an outpatient pathway to follow up on missed cases.

We also evaluated the relative benefits of increasing capacity for out-

patient ACP versus increasing inpatient ACP capacity. We found that

work capacity constraints and failure to complete ACP due to early

discharge can significantly reduce the benefit. The impact of these fac-

tors can be mitigated by an alternative pathway for offering ACP in

the outpatient setting. Under resource limitations to either add capac-

ity for conducting inpatient ACP versus developing the outpatient

pathway, the latter is likely to provide more benefit to patients.

Impact of external factors on the realized benefit
Rejection for nonclinical reasons

Figure 1a shows the fraction of the best case, per patient utility

achieved, as the rate of rejection for nonclinical reasons varies from

0% to 30%. We see a decrease in the per patient utility at all thresh-

olds. In the best-case scenario (no rejections), we would have seen an

average utility of �$17 701 per patient. This best case sets the maxi-

mum achievable benefit and the ‘not offering ACP’ sets the zero base-

line in the y-axis of the figure. At the 10% rejection rate scenario, we

achieve the majority of the ‘best case’ utility, with a linear decline as

more patients are rejected for nonclinical reasons. At a 30% rejection

rate, we achieve just short of 75% of the best case. We present all

results as a fraction of the best-case utility to avoid tying the analysis

with specific dollar values and ensuring that if utility estimates are

available in standard units of the amount of unwanted care avoided,

or increased in patient comfort, the approach can still be used.

Limited capacity for ACP

The General Medicine service takes care of complex patients, and

clinicians often do not have time to perform ACP. As described in

the methods, we simulated the impact of this as a limit on the num-

ber of patients for whom ACP can be done each day. The results are

shown in Figure 1b. We see that having a work capacity of just 1

ACP per day captures just shy of half of the best case achieved bene-

fit. Increasing the ACP capacity yields rapidly diminishing returns,

with very little difference at a capacity of 5 compared to the “best

case” scenario. This is because there are very few days in which we

can expect to need ACP for 4 or more patients.

Failure to complete ACP due to early discharge

Because the ACP intervention takes time to perform, clinicians may

not be able to complete ACP before the patient is discharged. We

simulated this loss to discharge as a random process as described in

the methods. Figure 1c shows that failure to complete ACP due to

discharge may have a significant impact on achieved utility. If it

takes on average 2 days to complete ACP, the savings relative to the

best case drop to about 75%. If it takes 4 days on average to com-

plete ACP, the impact on net benefit drops to 62.5% of best case.

Effect of an outpatient ACP pathway

Based on our results, capacity constraints and failure to complete

ACP due to discharge could significantly reduce the benefit of a pre-

diction triggered ACP workflow. Therefore, we explored the poten-

tial impact of having a pathway for performing ACP in an

outpatient setting, post-discharge. We fixed a 10% rate of rejection

due to external factors, along with a capacity constraint of 3 ACP

per day, and a mean time to complete ACP of 2 days. We vary the

rate at which the outpatient pathway successfully completes the rec-

ommended ACP from 0%, 50%, and 75%. Figure 1d shows the im-

pact of the proposed outpatient pathway. Without outpatient

rescue, the maximum achievable benefit is 66% of the best case,

which is significantly down from the near-best-case seen with a

100% rescue rate. However, even a 50% rescue rate recovers a sig-

nificant fraction of the best case net benefit.

Trade-offs between inpatient capacity vs outpatient ACP pathway

Of the factors we examine in this study, the modifiable ones are ca-

pacity for inpatient ACP and creation of an outpatient ACP path-

way. The relative benefit of these alternatives matter because they

are likely to have significantly different set-up and operating costs.

We examine the relative benefit of increasing inpatient ACP capacity

by 1 patient, versus investing in an outpatient pathway for ACP, at

various starting levels of inpatient ACP capacity.
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Figure 2 shows the change in mean per patient utility as we in-

crease inpatient capacity starting with different initial inpatient ca-

pacities (solid red line). The figure also shows the change in mean

patient utility with an outpatient pathway for ACP with 25% to

100% success rates. We find that no matter what the starting inpa-

tient capacity is, an outpatient pathway with a 50% success rate

(dashed green line) results in greater savings than increasing inpa-

tient ACP capacity.

Analysis of utility ranges and effects of work capacity limits

The analysis thus far used fixed utility values, which can be hard to

obtain or simply differ by site. Therefore, as described in the meth-

ods, each of the 4 entries in a utility matrix were expanded by þ/�
10% to form utility ranges. Examining all possible combinations of

utility ranges gives a range of �$15 800 to �$19 300 for the maxi-

mum expected per-patient utility.

Figure 1. The figure summarizes the effect of different factors on the realized net utility of triggering a care workflow based on a predictive model for 1 year mor-

tality. In all plots the y-axis shows the achieved net utility relative to the best case labeled as ‘optimistic.’ The default state of treating nobody, is the 0 point on the

y-axis. The achieved utility is plotted as a percentage of the best case scenario, in which every prediction is followed up by ACP. We also plot the relative net util-

ity of treating everybody (Treat all) for comparison. A. Impact of rejection of recommendations for ACP for nonclinical reasons. The x-axis shows the rate of re-

jection of ACP due to nonclinical factors ranging from 10% to 30%. The rejection rate translates to a linear reduction in net utility. B. Impact of capacity

constraints on per patient utility. The x-axis shows different capacity constraints for conducting ACP. Capacity constraints have a large impact on net utility, with

a capacity of 1 capturing close to 50% utility of the “best case.” Increasing capacity offers rapidly diminishing returns because there are few days when more

than 4 patients are recommended for ACP. C. Impact of failure to complete ACP due to discharge on per patient utility. The x-axis shows the average number of

days it takes to complete ACP. The relative net benefit ranges from 92% to 62.5% of the best case estimate as the mean time to complete ACP ranges from 1 to 4

days. D. Impact of an outpatient rescue pathway on per patient utility. The x-axis shows the effect of rescuing 0%, 50%, and 100% of the model’s recommenda-

tions. Without rescue, the net utility is 65% of the optimistic estimate. At 50% rescue, we achieve 76% of the optimistic estimate. At 100% rescue, we achieve

90.5% of the best-case scenario because the outpatient rescue pathway can not rescue ACP rejected for nonclinical reasons.
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Whatever the value of maximum expected per-patient utility

may be, there exists a trade-off between per-patient utility and work

capacity as illustrated in Figure 3. The x-axis is the probability

threshold on the output from the classifier, ranging from 1.0 down

to 0.0. Depending on the chosen threshold, patients with a predicted

probability higher than the threshold will be followed up on. The y-

axis is the expected per-patient utility calculated using the 4 utility

values from Table 1. The boxed numbers—located at regularly

spaced probability thresholds—are the patients to follow up on (ie,

work), expressed as a percentage of the total patients for whom a

prediction is made.

For our model, the number of new cases for which predictions

would be made corresponds to the new admissions per day to the

Gen Med service (mean 9.4 patients, std. dev. 3.4). In this situation,

a work capacity of 3 (which is 23.4% of the mean þ one std. dev. of

daily admits) is not close to the maximum per-patient utility, rein-

forcing the need to consider alternatives, such as an outpatient ACP

pathway.

DISCUSSION

Despite considerable improvements in measures of performance of

predictive models in healthcare, there have been relatively few suc-

cesses using such models to provide better clinical outcomes at lower

costs.41,42 We believe that this is in part because the translation of

modeling advances into improvements in clinical care requires inte-

grating the model’s output into complex human workflows that are

separate from model performance.6,8,9 If the actions taken in re-

sponse to a predictive model are embedded in such a system, the

ability to make predictions and improvements in predictive accuracy

alone are not sufficient to improve care.

We note that successful uses of machine learning in healthcare

typically require considerable integration efforts after model devel-

opment is done. For example, the majority of published efforts re-

garding the sepsis early warning system (EWS) deployed at Kaiser

Permanente Northern California focus on understanding existing

processes and then managing the iterative refinement and dissemina-

tion of new workflows supported by the EWS model.43–46 This ex-

perience reinforces the lesson learned from decades of quality

improvement efforts: clinical care takes place in a complex, adaptive

social environment, and changing processes within that environment

is not amenable to purely technical interventions.

In this study of a predictive model for mortality used to recom-

mend patients for ACP, we identified several workflow factors that

limit the benefit of setting up a model-triggered care workflow, such

as limited capacity for ACP during inpatient admissions, and early

discharge before ACP can be completed. These factors partially ex-

plain the critiques that models are proliferating but concrete benefit

is scant.6,41 Our analyses used simulations examining the net-utility

of workflows triggered by the model to elucidate the impact of

workflow factors. These analysis techniques are not new, but have

not received sufficient attention in the machine learning-for-

healthcare community.35,47,48 We believe it is time to adopt methods

from health delivery science and health services research to provide

honest evaluations of machine learning guided interventions in

healthcare49 and to develop a delivery science for artificial intelli-

gence interventions in healthcare.50

It is natural to ask where do such analyses fit into the develop-

ment and deployment path for predictive models into the clinic. We

adopt an idealized 4-stage framework, presented in Figure 4, for

such projects. The first stage focuses on clear definitions of both the

modeling problem (ie, what is the prediction target, how is it de-

fined, when does the prediction happen, and what data are available

at that time) and, just as important, the intervention presumably

triggered by the model’s output, along with a clear articulation of

the desired benefits sought. The second stage consists of develop-

ment and technical validation of the prediction model; this is the fo-

cus of the bulk of currently published work in the machine learning

Figure 2. Trade-off between adding inpatient capacity for ACP versus outpa-

tient capacity. The plot shows the change in mean per patient utility as we in-

crement inpatient capacity starting from different initial inpatient capacity

(solid red line). The dashed lines show the change in mean patient utility for

having an outpatient pathway for ACP with 50% and 100% success rates. We

find that at all starting inpatient capacities, an outpatient pathway with even a

50% success rate results in greater utility than adding to inpatient capacity.

Figure 3. Unit (per-patient) utility versus the probability threshold at which a

patient is referred for follow up. The boxed numbers are the number of

patients to follow up with (true positive and false positive), or “work” at that

threshold, expressed as a percentage. Work increases as more patients are

referred for ACP consultation. There is a tension between the goal of maxi-

mizing total utility, which is the product of per-patient utility and the number

of patients acted upon; while keeping the number of patients followed up be-

low the hospital system’s work capacity limit.
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for health community.42,51,52 The third stage comprises careful, iter-

ative development of the clinical workflow associated with the

model: what are the set of actions to be undertaken in response to a

prediction? The final stage consists of monitoring and maintenance

of a model and associated workflows, ideally followed by a prospec-

tive trial to demonstrate efficacy.

Analyses such as the 1 presented here are for guiding stage 3

(green) of the process in Figure 4. In this stage, the model itself takes

a back seat, and we focus on where it fits into the clinical workflow

and how to alter that workflow to achieve the desired benefit. Such

analyses, when used in conjunction with traditional methodologies

for change management and implementation science, can provide

valuable guidance on where to focus efforts and resources in order

to close the gap between best case estimates of benefit and the real-

ized benefit.

Such analyses have limitations. First and foremost is that it can

be very difficult to estimate true cost and thus calculate utili-

ties,47,48 and our results are contingent on the utilities being accu-

rate. Cost benefit analyses are very often quite sensitive to the

utilities, and different values may lead to quite different conclusions

about the relative importance of the different healthcare delivery

factors. In this work, we have used postdischarge healthcare expen-

ditures as a stand-in for utility; however, we acknowledge that this

is to illustrate the need for such analysis in the absence of a standard

quantification mechanism for the amount of unwanted care

avoided, or increased in patient comfort. We note that the ultimate

purpose of ACP is to provide care that is concordant with the

expressed values and wishes of patients, that this provides benefits

for providers who seek to provide the best care possible for their

patients, and that this “true goal” is not easily measured and not

captured by downstream healthcare spending. Therefore cost as a

measure, while limited, is still directionally useful and we present

results as a fraction of the best case utility to avoid tying the analy-

sis with specific dollar values. A second significant limitation of this

study is that we used a single expert’s response to the question,

“Would you be surprised if this patient passed away in the next 12

months?” as a source for our ground-truth labels. This mirrors 1 of

the key criteria that is supposed to trigger ACP in current work-

flows, but it is possible that this expert may be incorrect in their

judgement, introducing bias into the evaluations. Finally, our simu-

lations are not sufficiently fine-grained to accurately capture the

subtleties of all the factors in play. These limitations notwithstand-

ing, we believe that the analyses presented is a useful template for

how to obtain insight into the net effect of a proposed predictive

model paired with a clinical intervention.

CONCLUSION

We analyzed the impact of factors in healthcare delivery on the real-

ized benefit of using a predictive model for 12-month mortality to

identify patients for ACP. The analyses use simulations to identify

factors that have a large impact on the achieved benefit of using the

model to trigger an intervention. Factors included nonclinical rea-

sons that make ACP inappropriate, limited capacity for ACP, inabil-

ity to follow up due to patient discharge, and availability of an

outpatient workflow to follow up on missed cases. The resulting

estimates of the impact of these factors can guide allocation of

resources to mitigate reductions in achieved benefit. We argue that

routine use of such analyses of the sensitivity of the net benefit to

various healthcare delivery factors is necessary for translation of

advances in predictive modeling into real-world clinical benefit.
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