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Abstract: Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the
genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary
for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating
biofilm formation and virulence. In this review, we reorganize the information produced in recent
years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable
compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use
and focus on their role as therapeutic target themselves. We assess the current biotechnological
applications of different sectors and evaluate the state-of-the-art technology relating to the use of
synthetic biology tools for pathway engineering. Finally, we review the most recent methods and
techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
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1. Pyoverdines’ General Features

Pyoverdines (PVDs) are fluorescent molecules produced by bacteria belonging to the
genus Pseudomonas (Figure 1I). Also known during the last decades as fluoresceins and
pseudobactins, they were discovered at the end of the nineteenth century [1]. However, the
understanding of their biological functions in microbial metabolism remained unknown
until 1978, the year in which Meyer and Abdallah [2] and Meyer and Hornsperger [3]
unraveled their role in the acquisition of iron. Therefore, from a functional point of view,
PVDs belong to the class of siderophores, small molecules with a mass between 200 and
2000 Da that are able to chelate iron and other metals [4].

Iron is a crucial element for the metabolism and survival of microorganisms as it is
involved in mechanisms such as the reduction of oxygen for the synthesis of ATP and DNA
precursors [5,6]. Despite iron being one of the most widespread elements on our planet,
its bioavailability is greatly reduced due to the reduced solubility of Fe (III) oxyhydroxide
particulates, the prevailing form at neutral pH and in oxygenated environments [7].

Therefore, PVDs, and more generally siderophores, being very soluble molecules and
having a high affinity with iron, exert their main role by taking up the iron present in the
extracellular environment to internalize it.

From the literature, five classes of siderophores are known, each of which differs
from the functional group used to bind the metals: catecholate, hydroxamate, salicylate,
carboxylate, and mixed-type (Table 1).
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Figure 1. Structure of pyoverdine type 1 produced by P. aeruginosa (I); examples of different PVDs’ 
chromophore structures (II); illustration of different side chains characteristic of PVDs (III). 

Table 1. Representative list of siderophores belonging to the class of hydroxamate, catecholate, 
carboxylate, and mixed ligands. 

Type of 
Siderophore Structure Organism References 

Hydroxamate Siderophores 

Albomycins 

 

Actinomyces 
suibtropicus [8] 

Alcaligin 

 

Bordetella pertussis;  
Bordetella bronchiseptica 

[9] 

Bisucaberin 

 

Alteromonas haloplanktis 
SB-112 

[10] 

Figure 1. Structure of pyoverdine type 1 produced by P. aeruginosa (I); examples of different PVDs’
chromophore structures (II); illustration of different side chains characteristic of PVDs (III).

Table 1. Representative list of siderophores belonging to the class of hydroxamate, catecholate,
carboxylate, and mixed ligands.

Type of
Siderophore Structure Organism References

Hydroxamate Siderophores

Albomycins
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and most likely influences the specific species diversity of the different PVDs as each one 
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strain to acquire iron through the PVDs released by itself, or at least through heterologous 
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ribosomal peptides. Such molecules originate from non-ribosomal peptide synthetases
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without an RNA template [41]. The organization in modules of the NRPSs generally
contributes to the possibility of producing a wide spectrum of bioactive compounds [42]
and most likely influences the specific species diversity of the different PVDs as each one is
characterized by a unique peptide moiety [43]. Such a feature enables each Pseudomonas
strain to acquire iron through the PVDs released by itself, or at least through heterologous
PVDs sharing high homology with the native PVD [44,45], since all PVDs, once the iron
is bound, only bind to a specific receptor (ferripyoverdine, FpvA) placed on the outer
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1S-5-amino-2,3-dihydro-8,9-dihydroxy-1H-pyrimido-[1,2-a] quinolone-1-carboxylic acid
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at 447 nm.

However, some biological precursors and derivatives display structural modifica-
tions, such as isopyoverdine (IsoPy), dihydro-pyoverdine (DiHPy), dihyodro-pyover-dine-
7-sulfonics acid (SPy), ferribactin (FerB), Azotobactin (AzoB), and succinopyoverdine
(SuccPy) [47].
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to the 3- amino group of the fluorophore, and a strain-specific peptide backbone, usually
bound to the C1 -carboxyl group of the ring system. Interestingly, the strain-specific peptide
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backbone varies in its sequence and can either be linear or (partially) intramolecularly
cyclized [48].

Notably, the PVDs’ peptide chain is fundamental to bind iron. Indeed, PVDs chelate
Fe (III) due to three bidentate chelating residues: (i) a catechol group; (ii) a hydroxamate
group at the end of the peptide chain; and (iii) an hydroxamate group in the middle of the
peptide chain [49,50].

Overall, the PVDs’ great affinity for iron and, more generally, metals aroused great
interest among the scientific community due to their promising application in the field
of human health and environment care. To provide all the information necessary for a
possible biotechnological use, we will describe the main steps of PVD biosynthesis in the
following paragraph.

2. Pyoverdine (PVD) Biosynthesis

Generally, the fluorescent Pseudomonas species produce PVDs as major siderophores to
access iron. In particular, P. aeruginosa strains produce three different PVDs (PVDI, PVDII,
and PVDIII), each one characterized by a different peptide chain [51].

During the past few years, many reviews investigating PVD biosynthesis have been
published [43,48,52–55]. In this paragraph we describe, in a general way, the role of
the different enzymes involved in the biosynthesis of PVD type 1 (PVDI) produced by
P. aeruginosa, focusing on the most recent data of the last two years.

As stated above, PVDs are synthesized by NPRSs organized into modules (from a
minimum of 2 to a maximum of 18), each of which selects and catalyzes the addition
of a specific substrate to the final product. The mechanism that allows the elongation
of the nascent chain is based on the presence, in each module, of three core domains:
(i) adenylation (A) domain, which selects a cognate amino acid and converts it to the
corresponding aminoacyl adenylate; (ii) peptidyl carrier protein (PCP) domain (also known
as thiolation domain), carrying the growing peptidyl chain via a phosphopantetheinyl
arm; (iii) condensation (C) domain, which catalyses the peptide bond formation [56]. The
complete peptide chain is then released from the multi-enzymatic complex following the
action of the thioesterase domain, present only in the termination module [57].

PVD biogenesis starts in the cytoplasm, where its biological precursor, i.e., an acylated
ferribactin, is assembled by three multimodular NRPS (PvdL, PvdI, and PvdD) together
with several tailoring enzymes. The four-module NRPS PvdL catalyses the biosynthesis
of the chromophore precursor. The first module of PvdL recruits myristic or myristiloeic
acid as a starter unit, which, as reported by [58], is supposed to prevent the diffusion of the
peptide beyond the membrane during assembly. The fatty acid unit is then transferred to
the second module of PvdL, catalysing the acylation of an L-glutamate residue. The next
two PvdL modules promote the sequential incorporation of D-Tyrosine (D-Tyr) and L-2,4
Diaminobutyrate (L-Dab), thus forming a tetrahydropyrimidine ring, i.e., the precursor of
the chromophore [43,59].

Subsequently, the peptide is modified by the action of PvdI, an enzyme composed
of four modules catalyzing the addition of D-Ser, L-Arg, D-Ser, and L-N5-formyl-N5-
hydroxyornithine (L-hfOrn) [60]. Other auxiliary enzymes associated with the biosynthetic
pathway are PvdH, PvdA, and PvdF, responsible for the formation of specific amino acids
composing the PVDs backbone, such as L-Dab and L-hfOrn. In detail, PvdH promotes the
L-Dab synthesis starting from L-aspartate β-semialdehyde, while PvdA and PvdF allow
L-ornithine hydroxylation and formylation yielding L-fOHOrn [61,62]. Interestingly, Gasser
and colleagues [63] showed, using the FRET–FLIM (Förster resonance energy transfer
measured by fluorescence lifetime microscopy) technique, that PvdA interacts physically
with PvdJ, PvdI, PvdL, and PvD, suggesting the presence of a strongly organized mul-
tienzymatic complex coordinating the PVD biosynthesis. Similarly, Philem and collabo-
rators [64] demonstrated the fundamental role played by PvdF through a mutagenesis
experiment, as the mutants carrying the inactivated enzyme had a reduced production
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of PVDI. Therefore, the authors suggest a possible switch to regulate PVD production for
biotechnological purposes.

As just mentioned, two other NRPSs directly involved in the elongation of the peptide
are PvdJ and PvdD, catalyzing the addition of L-Lys, L-hfOrn, and two L-Thr residues [63–65].
The activity of two auxiliary enzymes, PvdG and MbtH, appears to be required for the
intra-cytoplasmic maturation of the ferribactin. In detail, MbtH has been proven to enhance
the adenylation activity by A domains from many NRPS enzymes [66], while the role of
PvdG has not yet been fully elucidated. PvdG could be a trans-acting thioesterase for PvdL
and/or PvdI [48]. In addition, in specific strains, different auxiliary enzymes can catalyze
tailoring reactions during ferribactin biogenesis. As an example, during the biosynthesis of
type II PVD, PvdYII catalyzes the acetylation of N-hydroxy-ornithine, which is supposed
to be the preliminary step for the formation of the terminal N-hydroxy-cyclo-ornithine
residue, and the subsequent peptide release from the NRPS machinery [55,67]. The acylated
ferribactin is then transported to the periplasm through the activity of PvdE, a specific ABC
transporter homolog to MacB ABC transporter for cyclic peptides [68]. In the periplasm,
PVDI is subjected to diacylation by Ntn-type hydrolase PvdQ [69].

To achieve a functional pyoverdine, two copper-dependent oxidoreductases, PvdP
and PvdO, provide for the cyclization and the formation of the final PVDI chromophore
by catalyzing the first and last oxidative step, respectively [70,71]. The correct functioning
of PvdP requires the activity of two auxiliary enzymes. The activity of PvdP was, in fact,
closely associated with the presence of PvdM, which is believed to be indispensable for
the incorporation of copper within PvdP [72]. The action of the PvdP seems to be subordi-
nated even to the activity of one periplasmic membrane-associated oxidoreductase, CcmC,
which transfers the electrons generated during oxidation to a periplasmatic redox-active
compound [48]. However, further mutagenicity studies are required to better elucidate the
role played by CcmC.

After the formation of the mature chromophore, the peptide undergoes a rearrange-
ment of the side chains, especially at the level of the α-carboxy and α-amino groups of the
L-Glu present in position 1, which can be replaced, depending on the strains investigated,
by succinamide, succinate, or α-ketoglutarate, and, less frequently, malamide and malic
acid, or even traces of intramolecular cyclized succinic acid. Little is known about why
these modifications are made, but it is predicted that they can lead to an advantage ac-
cording to the different environmental conditions surrounding the microorganism [55,73].
The first enzyme discovered as having an active role in the modification of side chains is
PvdN, necessary for the addition of succinamide and succinic acid [73]. Similarly, the PtaA
enzyme, periplasmic transaminase A, was associated with the presence of α-ketoglutarate
on the PVDI side chain [74]. Although malamide and its derivative, malate, can probably
be produced starting from succinamide, the biosynthesis of the two compounds remains
currently unknown.

Finally, once the side chain replacements are completed, the mature PVDI is secreted
from the periplasm into the external environment through efflux pumps. To date, only
two ATP-dependent efflux pumps are known, PvdRT-OpmQ and MdtABC-OpmB. These
mediate the passage of PVDI through the membrane [46,75]. However, it is certain that
other transporters play a role in the transport of PVDs to the outside environment, because,
following the creation of Pseudomonas strains with deletions for the two pumps, PVD
secretion was not interrupted.

3. Biological Functions of PVDs
3.1. Iron Uptake

In the bacterial environment, PVDs produced by P. aeruginosa PAO1 chelate ferric iron,
yield the PVDI-Fe3+ complex [49], are recognized at the bacterial surface, and are internal-
ized in the periplasm across the outer membrane by two TonB-dependent transporters,
FpvAI and FpvB [76–78].
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Once in the bacterial periplasm, iron released from PVDI involves numerous proteins
encoded by the fpvGHJKCDEF genes and a mechanism of iron reduction. Recently, the
overall interaction network between the various proteins encoded by the fpvGHJKCDEF
genes has been reported, by using systematic bacterial two-hybrid screening. The authors
identified a large protein machinery composed of five interacting proteins, showing (i) an
interaction between the two inner-membrane proteins FpvG and FpvH; (ii) an FpvJ–FpvC–
FpvF periplasmic complex; and (iii) the interaction of the periplasmic complex (FpvC,
FpvF, and FpvJ) with the inner-membrane FpvG–FpvH complex, probably mediated by
FpvJ, found to interact with both periplasmic and membrane proteins [46]. In detail, the
PVDI-Fe3+ complex is first bound by the two periplasmic proteins, FpvC and FpvF [79]. The
iron is then released from the PVDI in the bacterial periplasm, not by chemical modification
of the siderophore, but by an iron reduction by the FpvG inner membrane reductase [80–82].
In the mechanism of iron release, FpvC is proposed as the Fe2+ chelator from PVDI, which,
subsequently, brings the ferrous iron to the ABC transporter FpvDE for its translocation
into the cytoplasm across the inner membrane [79,82,83].

Moreover, after iron release, the apo form of PVDI is most likely bound to the periplas-
mic siderophore binding protein FpvF, which is able to interact with PvdT, the inner-
membrane protein of the PvdRT-OpmQ efflux pump, allowing the recycling of apo-PVDI
to the extracellular medium, with the capacity to chelate Fe3+ again [46,84,85]. Interestingly,
PVDs also mediate the interactions underlying the regulations between microbial commu-
nities. Indeed, it is known that PVDs can be used by bacterial PVD non- and low-producers
(cheaters) for the supply of iron, as they are capable of encoding receptors compatible with
heterologous PVDs produced from other community members [86,87]. Interestingly, envi-
ronmental drivers, such as iron concentration, organic carbon composition, and pH, can
affect PVDs, and thus bacterial interactions [88]. In detail, bacteria reduce PVD production
as the iron concentration increases [89,90], particularly when iron is linked to weak organic
chelators [91], and when, at low pH, the solubility of iron is increased [92].

3.2. PVDs’ Role in Pseudomonas Virulence

In addition to satisfying the iron requirements of the Pseudomonas strains, PVDs are
also important for the infection and colonization of the host by pathogens towards animals
or plants, and therefore, they play a prominent role in the pathogenicity of the opportunistic
human pathogen P. aeruginosa.

First, due to their extremely high affinity for ferric iron (1032 M−1) [93], PVDs give
the pathogen a significant advantage over the host in their competition for iron, a nutrient
essential for growth. In fact, they can remove iron from mammalian iron-sequestering
proteins, such as lactoferrin and transferrin [51,94].

Besides iron scavenging, PVDs have several other implications in the virulence of
Pseudomonas strains. Biofilm formation and PVD production in P. aeruginosa have a complex
and bidirectional regulatory relationship. PVDs are responsible for obtaining extracel-
lular iron, which is a fundamental nutrient for biofilm formation in different species
of bacteria, including P. aeruginosa [95]. Notably, Kang and Kirienko demonstrated a
fine, bidirectional gene regulatory relationship between PVDs and biofilm, suggesting
that biofilm formation is necessary for PVD production. In fact, the biofilm inhibitor
2-amino-5,6-dimethylbenzimidazole attenuated PVD production and rescued C. elegans
from P. aeruginosa-mediated pathogenesis [96]. Interestingly, transcriptomic analyses indi-
cated that PVDs also seem to be involved in other aspects of the P. aeruginosa pathogenesis,
including quorum sensing (QS) and the response to reactive oxygen species (ROS) [97,98].
It has been also demonstrated that the Pseudomonas quinolone signal (PQS) biosynthetic
protein, PqsA, is indispensable for PVD production in a biofilm-dependent manner. This
behavior was specific to PqsA and not dependent on the biosynthesis of PQS. However,
exogenous PQS promoted a biofilm-independent PVD production [95].

The study of several P. aeruginosa mutants, carrying deletions in genes involved in
virulence, iron acquisition, or QS, demonstrated a correlation between PVD production
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of P. aeruginosa in airways of immunocompromised patients with cystic fibrosis and its
antifungal activity against Aspergillus fumigatus by interfering in biofilm production. This
suggests the involvement of PVDs in P. aeruginosa’s capability of interfering with fungi,
which are competitors in its ecological niches, such as the human microbiome [99].

Moreover, the ability of PVDs to induce biofilm formation plays a central role in the
development of antibiotic resistance. P. aeruginosa strains especially can resist various an-
timicrobials as well as the immune system defence mechanism due to the physical/chemical
barrier offered by the biofilm [96]. To this end, recent studies [100,101] have been able to
highlight a close relation between PVD production and the ability to escape antimicrobial
therapies, since the authors found, among 54 clinical isolates showing antibiotic resistance,
93% were PVD producers.

PVDs can also mediate virulence by stimulating the production of exotoxin A and protease
PrpL [102], capable, respectively, of inducing cell death by apoptosis and degrading surfactants
and interleukins 22 necessary for the immunity of the pulmonary mucosa [103–105]. It has also
been demonstrated that PVDs are an essential colonization factor in the important plant
pathogen P. syringae, as they are required to produce tabtoxin [106].

PVDs can also directly exert a toxin-like behavior. A pathogenesis model based on
C. elegans suggested that the PVDs exert cytotoxicity by removing host iron, inducing
mitochondrial damage, mitophagy, and a lethal hypoxic crisis in the host [107,108]. Kang
and colleagues [109] demonstrated that PVDs transiently translocase into the host where
they binds and, therefore, remove significant amounts of ferric iron. As a consequence of
the PVD-mediated iron extraction, host mitochondria, which are iron-rich organelles, suffer
damage, compromising their electron transfer and ATP production function, ultimately
activating mitochondrial turnover via autophagy.

In addition, in vivo experiments conducted with P. aeruginosa showed that the manip-
ulation of the availability of iron-scavenging PVDs affects the bacterial load in infections of
the greater wax moth Galleria mellonella larvae in complex ways, triggers differential host
responses, and alters the expression of regulatory-linked virulence factors [110].

4. Inverting the Tide: PVDs as Target for Antimicrobial Therapy

P. aeruginosa’s threat as an opportunistic human pathogen is worsened by its great
resistance to many common antibiotics. P. aeruginosa possesses different resistance mecha-
nisms, including efflux pumps, decreased membrane permeability, enzymes that modify
or degrade antimicrobials, and a biofilm that forms a physical barrier; moreover, they can
acquire genetically encoded resistance determinants from other pathogens [111]. For these
reasons, targeting bacterial virulence factors, minimizing, or preventing, its pathogenicity,
is a promising strategy to counteract infection, without necessarily killing the bacteria and
reducing the development of newly acquired resistance mechanisms.

As reported in detail in the preceding paragraph, PVDs play a major role in the vir-
ulence apparatus of P. aeruginosa. Therefore, manipulating PVDs and disrupting their ability
to bind iron directly interferes with the principal regulatory mechanisms of
P. aeruginosa’s virulence, severely compromising its pathogenicity [112].

Different PVD inhibition approaches have been investigated up to now (Table 2).

Table 2. List of pyoverdine inhibitors and related mechanism.

Pyoverdine Inhibitor Inhibition Mechanism Reference

LK10: 3-hydrazinylquinoxaline-2-thiol Pyoverdine blocker

[111]
LK11: 1,2,3,6,7,8-hexahydro-pyrene-1,3,6,8-tetrone Pyoverdine blocker

LK12:3-amino1,4-dihydroxy-quinoxaline-2-carbonitrileN Pyoverdine blocker

LK31: (5E)-5-[(dimethylamino)methylidene]-3-(methyl-
sulfanyl)-4,5,6,7-tetrahydro-2-benzothiophen-4-one Pyoverdine blocker
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Table 2. Cont.

Pyoverdine Inhibitor Inhibition Mechanism Reference

LK31 analog:
(5E)-5-[(dimethylamino)methylidene]-3-(methylsulfanyl)-
4-oxo-4,5,6,7-tetrahydro-2-bemzothyphene-1-carbonitrile

Pyoverdine blocker

PQ3: 5-oxo-3-phenyl-4-[2-(1,3-thiazol-2-yl)
hydrazin-1-ylidene] pyrazole-1-carbothioamide Pyoverdine blocker

[113]PQ3 analog: (E)-3-methyl-5-oxo-4-(thiazol-2-yldiazenyl)-2,5-
dihydro-1H-pyrazole-1-carbothioamide Pyoverdine blocker

Gallium Iron-mimic [114–116]

aPvd3 analog of PaO1 Pyoverdine-mimic [117]

5-FC: 5-fluorocytosine Pyoverdine biosynthesis inhibition [102,111,118,119]

5-FU: 5-fluorouracil Pyoverdine biosynthesis inhibition [111,118,119]

5-FUR: 5-fluorouridine Pyoverdine biosynthesis inhibition [119,120]

N2- Succinyl-L-ornithine Pyoverdine biosynthesis inhibition [121]

Actinomycin X2 Unknown [122]
Actinomycin D Unknown

Eugenyl acetate Unknown [123]

Various studies have performed high-throughput screenings of compound libraries in
search of PVD blockers since PVD-quenching compounds also inhibit their activity. It was
observed that anti-PVD compounds can quench the fluorescence of pyoverdines in cell-free
filtrates, limit the expression of PVD-dependent genes, and improve C. elegans survival
after exposure to P. aeruginosa strains [112,113].

In a recent study [111], four compounds, namely 3-hydrazinylquinoxaline-2-thiol
(LK10), 1,2,3,6,7,8-hexahydro-pyrene-1,3,6,8-tetrone (LK11), 3-amino1,4-dihydroxy-
quinoxaline-2-carbonitrile (LK12), and 5E)-5-[(dimethylamino)methylidene]-3-(methyl-
sulfanyl)-4,5,6,7-tetrahydro-2-benzothiophen-4-one (LK31), were tested on bacteria cultures
and bacteria-free filtrates. LK11 and LK31 acted as anti-virulents while LK10
and LK12 also inhibited P. aeruginosa growth. It remains unclear how these small molecules
interact with PVDs, but the authors suggest they could bind to the conserved dihydrox-
yquinoline chromophores.

Functional inhibition of PVDs operated by PQ3 (5-oxo-3-phenyl-4-[2-(1,3-thiazol-2-yl)
hydrazin-1-ylidene] pyrazole-1-carbothioamide) was studied by Wang and colleagues [113],
identifying it as a PVD blocker. The authors tested a commercially available analogue
of PQ3 that was discovered to be an even more effective anti-PVD agent. To character-
ize its intermolecular interaction, and to provide insights on the molecular recognition
mechanism PVD-ligand, they performed nuclear magnetic resonance (NMR), molecular
dynamics (MD), and docking simulations. The interaction site resulted in a shallow groove
where the compound, the regions of the chromophore, and D-Ser1 and L-Arg2 of the
oligopeptide backbone enter in contact, forming a strong electrostatic interaction. Since
the compound quenched all three types of PVDs and the chromophore is shared by all
fluorescent Pseudomonads, the authors speculate that this binding site could be conserved
in pyoverdines from many strains.

A second approach investigated is the functional inhibition of PVDs with iron-mimetic
inhibitors. The ability of gallium to disrupt P. aeruginosa growth and inhibit biofilm for-
mation is well known [113]. However, in human serum (HS), the pathogen proved less
susceptible to gallium-mediated growth inhibition [116]. The reason why this occurs de-
pends on the ability of P. aeruginosa to use its proteases and PVD systems to hydrolase HS
proteins and acquire iron from the host, counteracting gallium inhibition.

A mimic strategy can also be used by synthetic PVD analogs with a siderophore-like ac-
tivity. Synthetic analogues should possess the same characteristics of natural PVD, though
structurally simpler than native siderophores [124]. Antonietti and collaborators [117] syn-
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thetized two analogs close to the endogen PVD of Pseudomonas PaO1 with few differences
in the peptidic sequence. The analogs had no antibiotic activity and one of them, named
aPvd3, showed high iron-chelating properties forming a stable 1:1 complex with iron in
water, while its penetration was ruled by a transport membrane protein. According to this
evidence, aPvd3 meets the criteria for application as a PVD analogue; it also possesses
functional groups that enable the grafting of antibiotic moieties, and could be used for
selective delivery in resistant bacteria using a “Trojan Horse strategy”.

Furthermore, inhibition of PVDs could be addressed from a biosynthetic point of
view, searching for compounds able to block enzymes of the PVD biosynthetic pathway.
A famous class of PVD inhibitors are fluoropyrimidines [111]. Fluoropyrimidines include
5-fluorocytosine (5-FC) and 5-fluorouridine (5-FU) known to have anti-pathogenic and
anti-PVD activities, though the exact mechanism of action is unclear [118]. Phenylthiourea
(PTU) is another compound able to inhibit the enzyme PvdP tyrosinase, required for the
maturation of the PVD chromophore [70], and consequently, to interfere with the production
of PVDs [125]. The inhibition mechanism was explained analyzing the crystal structure of
apo-PvdP and its interaction with phenylthiourea. Moreover, the presence of a C-terminal
lid with a Tyr residue at the end of the active site of apo-PvdP was reported. PTU was able
to form hydrogen bonding and hydrophobic interactions with the residues between the
N-terminal β-barrel domain (BBD) and the C-terminal tyrosinase domain (TYD) of PvdP,
blocking the substrate-binding pocket and interfering with its enzymatic activity. In this
way, PTU shows a non-competitive inhibitory activity through the rearrangement of the
C-terminal lid.

The above-mentioned anti-virulence approaches are PVDs specific. However, anti-
virulence compounds, such as allicin and gallein, have been known to interfere with chronic
virulence factors, such as QS and biofilm formation, and produce a broader inhibition effect
indirectly influencing the production of pyocyanin, PVD, elastase, rhamnolipids, motility,
and toxins [126,127].

A cocktail of different antivirulents, affecting both QS, biofilm formation, and PVDs,
together with conventional antimicrobials, could display a synergistic and more effective
mechanism able to prevent infections.

5. Biotechnological Potential of PVDs
5.1. Applications

The metal chelation ability of siderophores can be useful for several medical ap-
plications, and PVDs were recently used in diagnostics (Figure 2). The PVD produced
by P. aeruginosa PAO1 was labelled with Gallium-68 for specific imaging of Pseudomonas
infections through positron emission tomography (PET). Results displayed specific ac-
cumulation in the infected tissues and better distribution than with the clinically used
18F-fluorodeoxyglucose and 68 Ga-citrate [128]. Alternatively, it is possible to employ the
PVDs’ iron uptake systems as a device to increase the bacterial uptake of antibiotics. The
first attempt was made in 1998, in which two PVDs from P. aeruginosa and P. fluorescens
were linked to ampicillin.

The resulting products were tested against two ampicillin-resistant strains of
P. aeruginosa, displaying high antimicrobial activity [129]. However, other attempts have
been unsuccessful, and the main reasons are represented by the stability of the dual system
PVDs-antibiotics, the different compartments in which PVDs and the antibiotics act, and
the selectivity of P. aeruginosa outer membrane transporters for the different types of PVDs,
which hamper the correct uptake of the conjugated antibiotics [130–132]. A different type of
“Trojan horse” approach is represented by the “cheater invasion”, in which MDR pathogen
populations were infiltrated by strains with built-in weaknesses (Figure 2). For example,
recently, antibiotic-resistant P. aeruginosa strains were replaced by the antibiotic-sensitive
P. aeruginosa PAO1; this result was achieved by deleting its FpvB PVD receptor, which gives
them a selective advantage [133].
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PVDs, as virulence factors, also demonstrated to be a promising target to detect
the presence of pathogens. A very innovative finger-based sensor integrated on a glove
revealed the presence of P. aeruginosa by detecting PVDs up to a limit 1.66 µM [134].

The use of PVDs is not limited to human health care but embraces multiple biotech-
nological applications. PVDs possess several characteristics that make them suitable for
agricultural purposes (Figure 2). For example, they can provide plants with nutrients,
selectively triggering the mobilization of specific metal ions. In fact, PVDs produced
by P. aeruginosa can increase the phytoavailability of nickel instead of cadmium in hy-
droponics [135]. Moreover, they can enhance plant growth and induce plant pathogens
suppression. For example, PVD 2112, produced by P. fluorescence 2112, can reduce 70% of
the phytopathogenic damage made by the fungus Phytophthora capsici when directly spread
on the plant Capsicum annuum [136]. Beyond iron acquisition, PVDs can also regulate
gene expression in plants. In fact, the PVD from P. fluorescence C7R12 is not only able
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to restore the growth in Arabidopsis thaliana plantlets in iron deficiency conditions, but
it can up-regulate the expression of genes related to the iron acquisition, repressing the
defense-related expression of genes [137].

Thanks to their ability to bind metals, PVDs can also be used in bioremediation
(Figure 2). For example, they can remove iron from asbestos waste, altering the structure
of the asbestos fibers. PVDs from P. mandelii and P. fluorescens efficiently removed iron
from chrysotile-gypsum and amosite-gypsum, respectively, in a concentration-dependent
manner [138,139]. PVDs have also been proven to form a strong complex with metals
of the actinides series uranium U(VI), curium Cm (III), and neptunium Np(V). Notably,
Np(V) forms with the PVD from P. fluorescence CCUG 32,456, a complex 1.8 times more
stable than EDTA, which is known to be a strong chelator of actinides [140]. PVDs can
also desorb cesium (Cs) from illite. In particular, the PVD produced by P. fluorescens
ATCC 17,400 mobilized Cs from illite as a consequence of the direct ion exchange between
carbocation of the PVD chromophore and Cs+9, and weathering illite by iron chelation [141].
In addition, the same PVD was recently utilized to enhance phytoextraction of Cs from illite
by the red clover Trifolium pratense, which extracted five times more Cs in the presence of
PVD [142].

Siderophores, including PVDs, have been applied in the set-up of biosensors for the
detection and monitoring of metal ions, and antibiotics in environmental, clinical, and other
samples (Figure 2) [143]. A first successful attempt was made in the early 1990s, when PVD
immobilized on pore glass and packed in a flow cell was applied to detect the iron levels
in tap and mineral waters. The biosensor showed good stability, but a modest detection
limit [144]. The introduction of different immobilization approaches/systems (e.g., sol-gel
glass) has shown to increase the biosensor sensitivity detecting low concentrations of iron
in different matrices as reported in a recent review [143]. PVDs have been applied to
reveal the presence of antibiotics, such as furazolidone. As a matter of fact, this molecule
is used to counteract bacterial infections in animals, especially in the aquaculture and
poultry field, but it has become illegal due to its genotoxic, carcinogenic, and mutagenic
effects; however, it is still used. Furazolidone can quench the fluorescence of PVDs and this
effect was successfully exploited by Yin et al. for the efficient and rapid detection of this
antibiotic [145,146]. The same authors applied this quenching strategy to successfully detect
copper in different samples, such as drinking water, seawater, and biological samples [147].

5.2. Cluster Engineering and Heterologous Expression of PVDs

The promising biotechnological potential of PVDs has generated a growing demand of
such molecules. Moreover, seeing as each PVD can display specific activities, the generation
of new PVDs has been explored. As described above (see paragraph 2), their core structure
is synthesized by NRPSs, which are arranged in a modular manner. This organization then
allows the possibility to alter the core structures of the peptide by altering the enzymes of a
given module with others that have specificity with another amino acid. This strategy was
already explored for different peptides with some success and was also applied to PVDs
by Winn and colleagues [65] who tried to modify the P. aeruginosa PVD. The gene PvdD
contains two modules, both incorporating a threonine at the C-terminal. In their attempt
they tried to substitute: (1) only the adenylation domain (A); (2) both the A domain and
the condensation domain (C). Surprisingly, when only the A domain was substituted, they
were able to detect PVD always containing threonine, even if the A domain was specific for
other amino acids. Instead, when the A-C substitution was performed, they were able to
obtain two new PVDs incorporating lysine or serine in place of the threonine. Despite low
levels of production, this success also highlights a more complex role of the condensation
domain in NRPSs [148]. In a follow up work [149], the role of the thiolation (T) module was
investigated in the synthesis and reported a high portability of this domain. The researchers
performed 18 T domain substitutions, and in si cases the T was placed upstream of a C
domain and reported PVDs expression at different levels in 15 cases out of 18. This finding
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has important implication for NRPS engineering, suggesting domain C to be the key point
for the generation of recombinant PVDs.

From a biotechnological point of view, higher production levels are mandatory to
obtain high levels of products. Native producer strains generally yield poor amounts of
products because the synthesis of these secondary metabolites is tightly regulated. For
these reasons, heterologous expression represents a valid strategy for the production and
the study of new siderophores [150,151], and was also applied for clusters obtained from
metagenomes [152].

However, at the time of writing, there are no examples in the literature describing the
recombinant expression of PVDs in heterologous hosts. The reason probably lies in the
high complexity of PVD synthesis involving different genes among the NRPS core and the
other auxiliary genes necessary for the maturation, as shown above. Moreover, due to the
product bioactivities, the heterologous hosts need to be highly tolerant to the PVDs. For
these reasons, a good solution might be represented by Pseudomonas putida. This bacterium
is emerging as a promising platform to produce many secondary metabolites, including
NRPS [153]. Furthermore, it is a natural producer of PVD [154], and unlike P. aeruginosa, is
not a human pathogen, allowing cultivation on large scale with few limitations. With the
continuous improvement of DNA cloning and editing tools, P. putida, in the next few years,
could become the elected production platform for natural or synthetic PVDs.

6. Analytical Methods for the Identification of PVDs
6.1. Colorimetric and Electrochemical Detection

The presence of PVDs within complex matrices can be probed by colorimetric methods,
including the non-specific Chrome Azurol S (CAS) assay, widely used for the detection of
siderophores independent of their structures (Figure 3A).

The CAS assay was established by Schwyn and Neilands [155]. In this procedure, the
CAS and the hexadecyltrimethylammonium bromide (HDTMA) are employed to form
the indicator CAS/HDTMA and complex with Iron (III) coming from a FeCl3 solution,
leading to the production of a blue dye. If a strong iron chelator (e.g., siderophore) binds
the iron removing it from the dye, the blue solution turns to orange, thus revealing the
presence of a siderophore [156]. Unfortunately, the CAS assay does not allow for the
distinguishing of different classes of siderophores. Hence, specific colorimetric tests, such
as the Csaky’s and Arnow’s assays, have been developed to detect hydroxamate- and
catechol-type siderophores, respectively (Figure 3A) [157]. PVDs react positively in the
Csaky’s assay, as expected for the presence of the hydroxamate function. However, the
Arnow’s test gives ambiguous results with these molecules, despite bearing a catechol
function. While most authors report that PVDs do not react positively to this test [37,73],
there is no shortage of evidence that PVDs give positive results with both Csaky’s and
Arnow’s assays, indicative of mixed-type siderophores [158].

Furthermore, PVDs can also be detected thanks to their intrinsic fluorescence
(λAbs = 405 nm and λEmi = 460 nm) as being chromogenic metabolites, due to the presence of
the 2,3-diamino-6,7-dihydroxyquinoline chromophore (Figure 3A). Therefore, fluorescence-
based assays have been designed using PVDs as effective biomarkers of Pseudomonas spp.
infections in different tissues, such as burn wounds [159].

Recently, a sensitive and selective electrochemical sensor has been developed for PVD
detection in water and body fluids [160]. This sensor is made of a composite material based
on exfoliated graphene and gold nanoparticles deposited on a graphite screen-printed
electrode and has been employed to determine PVD concentration as function of the
current intensity for its electrochemical oxidation.

6.2. Mass Spectrometry and Structural Analysis

Numerous technologies have been employed in the structural elucidation of ionophores,
including siderophores. Among others, the most employed are certainly UV–visible ab-
sorption, NMR, and X-ray diffraction (Figure 3A) [161,162]. However, although these
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techniques are efficient for the characterization of a single pure molecule, these are low-
throughput technologies; thus, being often ineffective on complex mixtures containing
hundreds and hundreds of metabolites, and above all, unable to identify metabolites
featuring ion chelation properties. Advances in mass spectrometry (MS) technologies,
together with the development of chemoinformatic tools, are currently delivering new
high-throughput solutions to detect siderophores as well as other ionophores. Among
MS-based approaches, the thin-layer chromatography matrix-assisted laser desorption
ionization mass spectrometry (TLC-MALDI-MS) has been widely employed for the anal-
ysis of bacterial siderophores (Figure 3A). Although it is an old technique, TLC allows
for the quick location of iron ligands, as TLC plates can be unveiled with the CAS assay
reagent [163]. Inductively coupled plasma mass spectrometry (ICP-MS) coupled with
a liquid chromatography (LC) instrumentation represents another valuable resource for
the search of ionophores, as this has different advantages as compared to other MS ion
sources, including: (i) a higher ion density, which drastically increases its sensitivity
(<1 picomole of iron); and (ii) a lower influence of solvents and salts, that, on the other
hand, negatively affects electrospray source (ESI) sensitivity [164,165].

Based upon the existence of four stable iron isotopes, i.e., 54Fe (5.80%), 56Fe (91.72%),
57Fe (2.20%), and 58Fe (0.28%), several isotopic pattern-based methodologies have been
developed for the selective detection of iron ligands. However, an in-depth analysis of
untargeted tandem mass data of proton- and metal-bound siderophores reported by Aaron
and colleagues [166] revealed that the large majority of siderophores have not been detected
in their holo (iron bound) form, but in their apo (protonated) form. In addition, even when
the holo form is present, it usually shows a different retention time and MS/MS fragmenta-
tion as compared to the apo form, thereby making their linkage a difficult matter [167,168].
To overcome these issues, a native LC-MS based method was recently set up and integrated
with the ion identity molecular networking (IIMN), a chemoinformatic tool clustering
related molecules from crude extracts based on: (i) MS/MS spectra similarity; and (ii)
mass differences enabling the connection of protonated adducts with their relevant metal
adducts (e.g., with iron adducts in the case of siderophores) [169]. Basically, after chro-
matographic separation, this method involves post-column pH adjustment to physiological
values and metal infusion, aiming to trigger the formation of metal-bound rather than
protonated adducts.

A complementary approach to isotopic pattern-based methods, is screening MS/MS
spectra for fragment ions and/or neutral losses diagnostic of siderophore substructures [170].
LC–MS/MS analysis using an all-ion fragmentation (AIF) approach, has been demon-
strated to be a valuable strategy for PVD detection in complex matrices by generating
characteristic fragment ions, which can be traced back to the corresponding precursor
ions based on their retention times. As PVDs feature a typical chromophore (Figure 1),
a common strategy is targeting the 2,3-diamino-6,7-dihydroxyquinoline fragment ion at
m/z 204.0773 (C10H10N3O2

+), arising from the retro-Diels–Alder reaction of the chro-
mophore (Figure 3(BI)). However, this strategy cannot be extended to complex extracts
containing different PVD isoforms, which may differ for the side chain and/or the chro-
mophore core and, therefore, give MS/MS spectra either showing a low-intensity diagnostic
ion at m/z 204.0773 or even lacking it (Figure 3(BII)). For this reason, this method has been
implemented relying on the biological precursor of PVDs, the ferribactin, whose fragmen-
tation typically yields the fragments at m/z 305.1614, 170.0930, and 136.0762, which can
be used as PVD fingerprints together with, or as an alternative to, the 2,3-diamino-6,7-
dihydroxyquinoline fragment. In this regard, Rehm and co-workers showed that searching
for the ferribactin fragment ion turned out to be useful for the detection of several PVD
variants from Pseudomonas spp., including unusual congeners bearing an isopyoverdine
chromophore. Moreover, these authors developed a mass calculator and fragmentation pre-
dictor Excel tool for fast dereplication of PVDs, thus fostering discovery of novel derivatives
by HR-MS based approaches [171].
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7. Conclusions

Thanks to their excellent iron-binding properties, PVDs confer competitive advan-
tages to the producing strains and have different direct and indirect correlation with the
virulence of pathogen strains. In this context, besides the canonical iron chelation, an
analysis of the literature review allowed us to highlight the preponderant role played
by PVD in biofilm formation, one of the main virulence vectors of strains belonging to
the genus Pseudomonas. Here, we reported and described new compounds and their
related molecular mechanisms capable of reducing the virulence of PVDs, avoiding the
use of classic antibiotics. Iron mimicking inhibitors, synthetic PVD analogs, and metabolic
disruptors have shown excellent potential in reducing bacterial infections.

Nonetheless, PVDs exhibit promising biotechnological applications on human health
and environmental care. Indeed, PVDs have been explored as a “trojan horse” to deliver
antimicrobial/anticancer compounds, as biosensors for pathogens, antibiotics, and other
molecules, but also for other applications, such as bioremediation and phytostimulation.

However, the utilization of PVDs is somehow limited by their availability and price.
At the time of writing, only the pyoverdine from Pseudomonas fluorescent is commercialized
at a considerably high price (200 euro/mg). This is due mainly to the poor production rate
in native strains. A heterologous expression system for PVDs is still lacking, and from a
synthetic biology point of view, only few attempts were made to generate new synthetic
clusters. The use of a non-pathogenic Pseudomonas strain as a microbial cell factory could
be the key to unlocking the high-value production of PVDs. Substituting the enzymes that
synthesize the peptide core or the “decorating enzymes” using native PVD clusters could
be a promising strategy to vary the products, while the deletion of regulating sequences
or receptors could help to increase production yield. The discovery of new PVDs with
different properties is instead hampered by analytical methods. Classical biochemical
assays or MS-based approach are too unspecific, but only few high-throughput analytical
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methods for the straightforward identification of pyoverdines have been developed until
now. These rely upon the targeted search for diagnostic fragments of the highly conserved
PVD chromophore, but there is the need to develop a more comprehensive method for
the localization of unusual PVD variants. Molecular networking analysis of untargeted
high-resolution tandem mass spectrometry data [172] could be a suitable approach for
rapid identification of novel PVDs, but a dedicated tandem mass spectral library of already
known PVDs is still required. The improvement of rapid and reliable analytical techniques,
combined with the generation of microbial cell factories for high production of PVDs, will
be the key to finally unlock the biotechnological potential of these valuable molecules.
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