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Abstract

Protein interaction networks play central roles in biological systems, from simple metabolic pathways through complex programs
permitting the development of organisms. Multicellularity could only have arisen from a careful orchestration of cellular and
molecular roles and responsibilities, all properly controlled and regulated. Disease reflects a breakdown of this organismal
homeostasis. To better understand the evolution of interactions whose dysfunction may be contributing factors to disease,
we derived the human protein coevolution network using our MatrixMatchMaker algorithm and using the Orthologous MAtrix
project (OMA) database as a source for protein orthologs from 103 eukaryotic genomes. We annotated the coevolution network
using protein–protein interaction data, many functional data sources, and we explored the evolutionary rates and dates of
emergence of the proteins in our data set. Strikingly, clustering based only on the topology of the coevolution network partitions
it into two subnetworks, one generally representing ancient eukaryotic functions and the other functions more recently acquired
during animal evolution. That latter subnetwork is enriched for proteins with roles in cell–cell communication, the control of cell
division, and related multicellular functions. Further annotation using data from genetic disease databases and cancer genome
sequences strongly implicates these proteins in both ciliopathies and cancer. The enrichment for such disease markers in the
animal network suggests a functional link between these coevolving proteins. Genetic validation corroborates the recruitment of
ancient cilia in the evolution of multicellularity.
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Introduction
At the heart of elucidating the complexity of cellular cooper-
ation in metazoans is determining the protein–protein inter-
actions (PPI) that enable cell–cell communication and the
dynamic functioning of cellular pathways that respond to
internal and environmental signals. Evolution of multicellu-
larity would necessitate the formation of new interactions
between new genes while accommodating and adapting
proteins from the precursor unicellular network. New systems
of cellular communication and cell division control must have
evolved early on in the evolution of multicellularity. Break-
down of such systems can lead to disease, particularly cancer,
because cancer arises from the loss of a cell’s normal compli-
ance with the ground rules of multicellular phenotypic organ-
ization. Most recently, cancer-related “gatekeeper” genes,
which are involved in cellular signaling and growth processes,
were phylogenetically mapped to the emergence of multicel-
lularity in metazoa (Domazet-Loso and Tautz 2010), and the
rise of cancer together with multicellularity was further high-
lighted in the context of sequencing the Amphimedon queen-
slandica (sponge) genome (Srivastava et al. 2010).

Networks of PPI have evolved under natural selection
over millions of years, leaving their mark in the molecular

sequences of proteins, which we can now study thanks to
the abundance of sequence data provided by advances in
sequencing technology. Interactions between proteins can
be predicted through their correlated evolutionary rates
(Pazos and Valencia 2001; Juan et al. 2008). Detecting mo-
lecular coevolution can thus help to elucidate functional
interactions between molecules within and between cells to
gain insight into biological processes, pathways, and the net-
works of interactions important for cellular function.

Our recently developed method MatrixMatchMaker
(MMM) implements an efficient computational strategy to
detect sequence coevolution (Tillier and Charlebois 2009;
Rodionov et al. 2011). It was shown to be more accurate
than previous coevolutionary methods, more accurate than
coabundance predictions, and most accurate in predicting
protein complexes (Clark et al. 2011). Using this tool on re-
cently available data, we are now able to resolve two subnet-
works of human protein coevolution: one involving ancestral
eukaryotic proteins and the other proteins specific to animals
or having been recruited in animals to play roles in multicel-
lular communication and control. That latter subnetwork
exposes associations among genes required for multicel-
lularity, providing opportunities to study interactions
among systems contributing to organismal homeostasis.
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More specifically, we here describe a human protein coevolu-
tion network that contains many proteins previously unchar-
acterized in terms of protein interactions and expression
patterns. We, however, find strong evidence for genetic inter-
action among these proteins when considering human dis-
ease data, particularly links among genes involved in
ciliopathies and cancer. The nonmotile primary cilia play im-
portant roles in chemo-, mechano-, and thermosensation in
vertebrates and coordinate signaling with motility or with cell
division and differentiation (Satir and Christensen 2008).
Proteins associated with centrioles, centrosomes, and cilia
have been implicated in both ciliopathies and cancer in
human (Bettencourt-Dias et al. 2011).

Materials and Methods

Input Data for MMM

For the construction of the human coevolution network, we
used the version of the OMA Browser (Altenhoff et al. 2011)
dated November 2010, to obtain the 20,804 OMA groups
containing a human protein. Only eukaryotic orthologs
(from 103 genomes) were considered in these groups,
having at least two sequences. We also considered an alter-
native clustering scheme to that used in OMA. For this, all
eukaryotic proteins reciprocally best matching with human
proteins (1:1 orthologs) were added to the human sequence
to form a group, though we did not require all pairwise 1:1
orthologs to hold over all species. This alternative clustering
yielded 20,225 groups.

MAFFT (Katoh and Toh 2008) was used to create multiple
sequence alignments for each group; evolutionary distance
matrices were obtained by using protdist (from PHYLIP 3.69
[Felsenstein 1989], modified to allow selenocysteine and pyr-
olysine amino acids and for identical sequences to have a
distance of 0.0 [protdist sets these to 0.00001]).

MMM searches for pairs of evolutionary distance subma-
trices that are similar within a specified tolerance. Such
matching submatrices represent similar phylogenetic sub-
trees, indicating coevolution over the evolutionary history
of the subset of taxa included in the submatrices. The
number of taxa found in the matching submatrices is the
MMM score; higher scores provide stronger evidence for co-
variation of the two protein families. MMM is scale independ-
ent and thus allows for the detection of correlated distances,
not just identical distances, so that protein coevolution may
be detected despite the proteins evolving at different rates.
We used MMMvII (Rodionov et al. 2011), an efficient and
exact algorithm for identifying the submatrices. All-by-all pair-
wise combinations (216,850,725 for the OMA groups and
another 204,535,425 for the 1:1 groups) were analyzed, only
allowing proteins belonging to the same species to be
included in possible MMM solutions (parameter: u, so that
only distances between the species in common in the two
alignments were considered) and with a match tolerance
(parameter: a) set to 0.1 (10%), which has been previously
shown (Tillier and Charlebois 2009; Clark et al. 2011) to pro-
vide adequate sensitivity and specificity.

An average matrix was obtained by averaging the matrix
entries of each protein family for each pairwise species com-
parison, over all of the OMA groups’ matrices. The MMM
score for each matrix to the average matrix was used to cal-
culate the so-called G score and the sum of MMM plus G
scores (MMMpG), which is used to correct MMM scores
between groups for the part of their coevolution that is
due to the species phylogeny (see Clark et al. 2011 for details).

Evolutionary Age of Orthologous Groups

We also used the average matrix described earlier to compute
the relative rate of an OMA group’s evolution, as the ratio of
its rate (average distance to the human ortholog) over the
average matrix’s rate (same subset of species). Neighbor
Joining (Felsenstein 1989) and Minimum Evolution (ME)
trees (Rzhetsky and Nei 1992) were obtained from the average
matrix, showing generally good agreement with the eukary-
otic species phylogeny but with some artifacts arising due to
long-branch effects. We chose to use the ME tree (supple-
mentary fig. S1, Supplementary Material online). For each
OMA group, its species distribution was used to determine
the position in the ME tree for the last common ancestor of
all the sequences in the group. The age of the protein is simply
then the evolutionary distance from the human sequence to
this internal node. We chose the edge between the branch
node leading to the unicellular Monosiga brevicollis (at a dis-
tance of 0.48) and the node leading to early multicellular
animals (at a distance of 0.45) as the delimiter for “new”
groups because all species with a smaller distance to human
are multicellular animals. The “old” OMA groups include
human orthologous proteins from nonanimals and animals.

Map Equation Clusters

Map equation (Rosvall and Bergstrom 2008) was used to
cluster the network with MMM and MMMpG scores 12
and higher according to its topology. A total of 145 clusters
were obtained for the OMA groups’ network and 97 for the
1:1 network. The age of each cluster was taken as the average
age of the nodes included in the cluster, and each cluster was
then labeled either “NEW” or “OLD” according to their aver-
age distance being<0.46 or>0.46, respectively. Because there
are some “old” nodes in the “NEW” clusters, and conversely,
“new” nodes in the “OLD” clusters, we use capitalization to
differentiate the age of clusters and genes.

Orthologous Groups

The division of the MMM network into two distinct groups of
NEW and OLD clusters is partly an artifact of the method-
ology used in defining sets of orthologs, because it is more
difficult to identify distant orthologs for rapidly evolving pro-
teins (making old proteins appear newer). The ages of the
proteins are only gross estimates, because missing sequences
from unfinished genomes, Basic Local Alignment Search Tool
(BLAST) parameters, and clustering approaches will all affect
the composition of the orthologous clusters. We attempted
to add potentially more distant human orthologs by creating
protein families that considered only the 1:1 reciprocal best
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BLAST hits to the human proteins, which is not nearly as strict
a criterion for orthology as that used by OMA, which does not
permit paralogous proteins to be included in their groups
(Altenhoff et al. 2011). We think this more relaxed approach
would be less likely to underestimate the age of proteins. This
indeed resulted in larger matrices on average and older ages
(supplementary data set S2, Supplementary Material online).
The resulting 1:1 MMM network was quite similar to the one
obtained from the OMA groups, however, and does not alter
our conclusions. We therefore chose to present the network
from the better established orthologous clusters assembled by
OMA, which are most likely to represent single-protein func-
tions and also to yield better quality alignments and distance
matrices.

Mapping of OMA Proteins and MMM Networks
to Known Interactions, Coexpression Data,
Gene Ontology Functional Annotation, Pathways,
and Diseases

The OMA proteins and the MMM networks were annotated
with many resources, and these annotations can be found in
supplementary data sets S2 (protein annotations) and S1
(MMM network annotation), Supplementary Material
online. The descriptions and the references for these are
given in supplementary text S1, Supplementary Material
online (supplementary methods and results, Supplementary
Material online).

Coexpression Data
Data from the E-MTAB-62 data set, a meta analysis of gene
expression data from �5,400 human samples representing
369 different cell and tissue types, disease states, and cell
lines, all on the same platform of the Affymetrix GeneChip
Human Genome HG-U133A (G-U133A) obtained from
GEO and ArrayExpress (Lukk et al. 2010), were obtained
from ArrayExpress (http://www.ebi.ac.uk/arrayexpress/, last
accessed 2012 September 23). The processed data were
mapped to the OMA human proteins, and all expression
values for a gene were averaged. The Pearson correlation co-
efficient was then calculated for all pairwise comparisons of
genes over all the samples. Correlation values of expression
data were also obtained from COXPRESdb (Obayashi and
Kinoshita 2011).

Ciliopathies
“Cilia” and “ciliopathy” were both used as search terms in
Gene Ontology (GO), Online Mendelian Inheritance in
Man (OMIM), and National Center for Biotechnology
Information (NCBI) Gene and by searching through reviews
of ciliopathies in the literature (Gerdes et al. 2009; Tobin and
Beales 2009); the ciliome database (http://ciliome.com, last
accessed 2012 September 23) (Inglis et al. 2006) that had at
least three studies linking a gene to cilia; and from the
http://ciliaproteome.org (last accessed 2012 September 23)
database (Gherman et al. 2006). We found 323 human
genes involved in cilia or ciliopathies that we could map to
the OMA groups.

Cancer Genomes
Data from cancer genome sequencing were obtained
from the International Cancer Genome Consortium Data
Portal on 27 May 2011. Ensembl IDs for the mutations were
mapped to the OMA group human proteins, and the number
of samples in which the gene was (nonsilently) mutated was
counted. Genes mutated in fewer than three samples
were ignored. Ovarian cancer data were updated on 29
June 2011 from the supplementary table in The Cancer
Genome Atlas Research Network (2011). The OMA protein
annotation file (supplementary data set S2, Supplementary
Material online) shows the total number of samples over all
cancer genomes.

Results

The MMM Coevolution Network Splits According to
Evolutionary Age

We have previously shown that MMM scores have predictive
value for known PPI (Tillier and Charlebois 2009; Clark et al.
2011). Here, we obtained MMM scores in an all-by-all analysis
of distance matrices from orthologous groups containing
human proteins (supplementary data set S2, Supplementary
Material online), retaining scores of at least 12 in what we
refer to below as the MMM12+ network (supplementary
data set S1, Supplementary Material online). MMM-D, a data-
base of scores from the MMM12+ network (containing 6,422
pairs from 1,608 protein families) and all known as well as
orthologous protein interactions (323,702 interactions
between 11,836 protein families), is available at http://tillier
.uhnres.utoronto.ca/MMMD.php (last accessed 2012 Septem-
ber 23).

Clustering of the network, strictly based on topology using
the Map equation (Rosvall and Bergstrom 2008), revealed two
large subnetworks separated in their evolutionary age: one on
average younger than the origin of animal multicellularity
(MMM12+NEW) and one predating that origin (MMM12+
OLD) (see Materials and Methods and supplementary fig. S1,
Supplementary Material online). Connecting the two subnet-
works are MMM12+NEW/OLD edges. For clarity, we display
the smaller MMM13+ network in figure 1A.

The random expectations for old–old, new–old, and new–
new frequencies in the network are simply derived from the
binomial expansion. A �2 test (supplementary table S1, Sup-
plementary Material online) revealed a highly significant over-
representation of new–new and old–old node connections
within the MMM12+ network, whether using OMA groups
(P< 1.1E – 311) (as is shown in fig. 1B) or MAP clusters
(P< 1.1E – 311). This remained true when we analyzed the
network of all known protein interactions (P< 1.1E – 311),
such that on average, old proteins interact with old proteins
and new with new. Figure 1C shows that proteins in the
known interaction network also have more connections
when they are old.

Agreement with Known Interactions

Overall, higher MMM scores have predictive value for known
PPI. Figure 2A shows that higher scores give greater precision
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(the frequency of predictions that were previously known
interactions), which is approximately 10% at MMM� 12
and climbs to over 30% at MMM� 16. These values are com-
parable to biochemical high-throughput methods applied to
identify protein interactions in human, such as yeast-2-hybrid
and immunoprecipitation/mass spectrometry, whose pre-
dicted interactomes overlap with literature-curated PPI net-
works between 2–8% and 6–11%, respectively, and that have
mutual overlap of 7.9% (Rual et al. 2005; Ewing et al. 2007). We

thus set a threshold of 12 for our network, which we call
MMM12+. As seen in figure 2A, the highest coevolution
scores are not found in the Human Protein Reference
Database (HPRD) database, the gold standard for human
PPI, but are validated by other data sets, particularly the
Comprehensive Resource of Mammalian Protein Complexes
(CORUM) (see supplementary methods, Supplementary
Material online, for a list of databases used for known inter-
actions). We also considered the scores from the Drosophila

FIG. 1. The MMM13+ network. (A) This display of the MMM13+ network was produced using Cytoscape v.8.0’s spring-embedded layout (Shannon
et al. 2003). Clustering of the network according to its network topology was separately done using the Map equation algorithm (see Materials and
Methods). The pink nodes indicate that they are found in evolutionarily OLD clusters, that is, Map equation clusters of the MMM12+ network with an
average distance dating to before the origin of animals. The blue nodes are in clusters that have an average age no older than the origin of animals,
although some individual nodes within those clusters are older. (B) The MMM12+ network, represented as a heat map (Tarassov and Michnick 2005),
also shows fewer old-to-new edges than new-to-new or old-to-old edges. (C) The degree for nodes in the known interaction network is higher for older
nodes, indicating that more interactions are known among the older proteins.
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FIG. 2. Accuracy of MMM. (A) Precision of MMM predictions (the frequency of coevolving pairs that are known interactions from PPI databases)
increases with higher MMM score thresholds (x axis). Considering HPRD only, it contains far fewer interactions, and none with very high MMM scores.
(B) MMM scores correlate with the average interaction scores from Drosophila based on mass spectrometry analyses. (C), (D), and (E) show a high
correlation of MMM scores with average scores from other PPI prediction methods (IntnetDB, STRING, and HumanNet, respectively, each with their
own scoring scale); this is true for all MMM predictions and for the subset that are known interactions. The correlation coefficient is shown for the
MMM predictions, and error bars indicate one standard deviation over all MMM pairs. (F) Node degree frequency for proteins in the known interaction
network and in the MMM12+ network shows that they are both scale free.
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interactome (Guruharsha et al. 2011) and found that these
rapidly increased with higher MMM scores (giving 36.3% pre-
cision for PPI prediction with MMM12+), also indicating
agreement with this orthologous network (fig. 2B).

Our data also show agreement with data from other
databases that include predicted interactions (fig. 2C–E).
Although STRING (fig. 2D) uses phylogenetic profiles as
part of its prediction score, which should be correlated with
MMM scores, this approach is only used for their prediction
of bacterial protein interactions. HumanNet (Lee et al. 2011)
includes phylogenetic profiling as part of their prediction ap-
proach, and as expected, those scores are higher for gene pairs
in the MMM12+ network (fig. 2E).

The structure of the network also agrees well with known
interactions: figure 2F shows the degree distribution for the
known interaction network of all 20,839 proteins in our data
set along with the degree distribution, which is consistent
with the power law and is typical for PPI networks.

Because interaction prediction data sets make use of the
GO database, we also considered similarity of functional
annotation using the Parent–Child algorithm (Alexa et al.
2006; Grossmann et al. 2007), which considers the GO hier-
archy and thus assigns lower P values to shared more-specific
GO terms (supplementary text S1, Supplementary Material
online). MMM proteins in interactions are more commonly
found to share the same GO annotation compared with
random pairs. For cellular component, MMM12+ pairs are
found to have the same annotation more often than
expected (P = 1.1E� 124, Pearson’s �2 with Yates’ continuity
correction) and with significantly lower P values
(P = 8.26E� 16, Mann–Whitney U test). Similarly, for biolo-
gical process, MMM12+ pairs share the same annotation
more often than expected (P = 9.2E� 281, Pearson’s �2

with Yates’ continuity correction), also with significantly
lower P values (P = 1.49E� 63, Mann–Whitney U test). This
shows that MMM predictions are enriched for functionally
interacting pairs of proteins. In supplementary figure S2,
Supplementary Material online, we show a strong correlation
between MMM scores and the P values indicating that higher
MMM scores predict functionally related protein pairs.

The majority of known and interologous interactions
were concentrated between the nodes within the ancient
MMM12+OLD network (fig. 1). MMM12+NEW thus re-
vealed a subnetwork of coevolving genes that are more evo-
lutionarily recent and that are not generally known to have
interaction partners.

The NEW network contained many proteins whose inter-
actions remain uncharacterized. For example, of the 263
nodes included in the MMM12+ network with no known
interactions in any of the databases interrogated, 235 (89%)
were new nodes (219 of these, or 83% of the 263, are in NEW
clusters). Figure 3A shows the frequency of NEW nodes in the
MMM12+ network decreasing as their degree in the known
interaction network increases, indicating that new nodes tend
to have few known interactions.

We considered that this observation could be due to a bias
in the known protein interaction network for proteins that
are conserved from yeast to human, because the yeast

interactome is better characterized, and we did use interologs
in our assignment of interacting proteins. We thus compared
the frequency distribution for the age of all proteins (20,839),
of proteins in the known interaction network (11,581), and
in our MMM12+ network (1,608), and did not see this bias
(fig. 3B). MMM12+ was less biased toward new nodes (59%);
however, both networks were similarly extremely biased
against interactions with very new proteins.

Proteins with identified human orthologs in the Drosophila
proteomics network (1,359) of protein complexes are
predominantly old (889), and the interactions (2,152) found
between these genes are statistically significantly biased
(P< 6.6E� 117; supplementary table S1, Supplementary
Material online) toward old–old interactions (1,456) and
against new–new interactions (143). Overall, we found that
known interactions favor new proteins but that proteins
interacting in complexes and coevolving proteins tend to
be old proteins with higher degree (fig. 1C).

Evolutionary Rates

Protein coevolution can only be recognized if the proteins in
question have undergone a sufficient amount of evolutionary
change. Therefore, for recently arisen proteins, the rate of
their evolution must have been sufficiently high to detect
their coevolution among a smaller set of species. We con-
sidered the relative rate of evolution of each OMA group to
the average rate over all proteins. A ratio above 1 indicates a
fast rate and a ratio below 1 a slow rate (see Materials and
Methods). Figure 3C shows the rate ratio for all OMA groups,
and for the subset in the MMM12+ network, plotted against
the evolutionary age of the protein family. Very high rate
ratios were not found in our network. We believe this is be-
cause the majority of such rapidly evolving proteins would
evolve too quickly for enough orthologs to be detectable by
BLAST or have emerged too recently to produce OMA
groups big enough to yield high MMM scores. Conversely,
slowly evolving proteins need to be old enough to have accu-
mulated enough substitutions.

When we considered the nodes only present in our net-
work, the range of evolutionary rate ratios was much reduced.
Additionally, when looking at the difference in the rate ratio
between the pairs of connected proteins (fig. 3D), we saw a
decrease with MMM score, indicating that the most strongly
coevolving proteins also tend to evolve at similar rates (not
just correlated rates). This remained true in the MMM12+
subnetwork of known interactions (fig. 3D), which had on
average even more highly similar rates (although the variance
is quite high). In supplementary figure S3, Supplementary
Material online, we show the frequency distribution of the
difference in the rate ratio in the MMM12+ network and the
known PPI network. In both of these networks, protein pairs
evolve at more similar rates than do protein pairs drawn from
a randomized network.

Coexpression Data

To help elucidate the nature of the coevolution between the
more recently evolved proteins and whether coevolution
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could possibly be entirely attributed to their coexpression
(Hakes et al. 2007), we considered expression data using the
Pearson correlation of genes from COXPRESdb and from
E-MTAB-62, a more recent compilation of expression values
across a wide range of conditions and tissues in human (Lukk
et al. 2010).

We found that coexpression values (as measured by
Pearson correlation) do correlate with the MMM score, and
as expected, known PPIs had high correlation values (fig. 4A).
The E-MTAB-62 set showed these effects much more strongly
than did the COXPRESdb data set, but only 66% of the edges
in the MMM12+ network had both genes present in the
E-MTAB-62 data set and only 8% of them could be
mapped onto COXPRESdb data. There was no correlation
between the two databases (Pearson R2 = 0.001).

Although we could obtain the correlation of expression
data for over 80% of the edges for the known interactions,
only 56% of the edges in the NEW network had coexpression
information in at least one of the two databases we

considered. This suggests that many of the MMM12+NEW
genes in our network were not on the expression arrays and
were otherwise poorly characterized (data not shown).

The frequency distribution of Pearson correlations in
the E-MTAB-62 data set (fig. 4B) was found to be skewed
toward higher values when considering only the known inter-
actions (blue solid line). The overall MMM12+ network dis-
tribution had fewer high correlation values (green solid line),
particularly when only the subnetwork of NEW clusters was
considered (red solid line). Of the MMM12+ known inter-
actions, 76% had correlation values greater than 0.2 in either
expression data set, whereas only 21% of the coevolving pro-
teins in the NEW network reached that threshold.

Comparing these distributions in the network of all known
interactions, we also found higher correlation values when
both genes in the interaction were old (orange dotted line)
but significantly less than if the genes were also coevolving
(blue solid line). The distribution of known interactions when
one of the genes was “new” (blue and purple dotted lines) was

FIG. 3. New nodes and NEW network. (A) Frequency of NEW nodes decreases with increasing degree. (B) Frequency of node age for all proteins
analyzed and for the known and MMM12+ networks. (C) The relative evolutionary rate (rates ratio to average matrix), as a function of the age of
proteins is plotted for all proteins analyzed and for those in the MMM12+ network. The range was much reduced for proteins in the network,
indicating that these neither evolve extremely quickly nor slowly. (D) The difference between the rates ratio of two proteins interacting (MMM12+

Known) or coevolving (MMM12+) decreases with MMM score, indicating that coevolving proteins also have similar rates of evolution.
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FIG. 4. MMM coevolution and coexpression. (A) The average Pearson correlation (R2) measuring the coexpression of gene pairs in the MMM12+ and
its subset of known interactions (MMM12+ Known) increases with MMM score. (B) Frequency distribution of the Pearson correlation (R) of
coexpression over the E-MTAB-62 data of gene pairs in the All Known and MMM12+ networks. For the known interactions found in MMM12+

(blue solid line), the frequency distribution was found to be skewed toward higher correlations. The overall MMM12+ network distribution had fewer
high correlation values (green solid line), particularly when only the subnetwork of NEW clusters was considered (red solid line). When considering all
the known interactions, we found higher correlation values when both genes were old (orange dotted line) but significantly less than if the genes were
also coevolving (i.e., in MMM12+; blue solid line). Newly interacting genes are less likely to be coexpressed. The distribution of known interactions when
one of the genes was “new” (blue and purple dotted lines) was similar to the distribution from the MMM12+NEW network (red solid line).
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similar to the distribution in the MMM12+NEW network
(red solid line).

Functional Annotation

To better annotate the MMM12+NEW coevolution network,
we made use of GO and several pathway databases (annota-
tions are found in supplementary data sets S1 and S2, Sup-
plementary Material online). Statistically overrepresented GO
terms are provided in supplementary data set S3, Supplemen-
tary Material online. The MMM12+NEW network was found
to be enriched for extracellular proteins, cell anchoring and
adhesion proteins, the cytoskeleton, and cilia. We also saw a
link between these proteins and cell division, control of the
cell cycle, and multicellular development.

Human Diseases
We used data from Online Mendelian Inheritance in Man
(OMIM), Catalogue of Somatic Mutations in Cancer
(COSMIC), and Gene Signature Database (GeneSigDB) to
assess the relationship between protein age and disease
(table 1). (Although also considered, the disease classifications
in the Genetic Association Database did not yield any statis-
tically significant results.) When considering all proteins
mapped to OMA (not just in the MMM12+), we found
that old genes were more likely to be implicated in OMIM
diseases. This was especially true for proteins involved in
enzyme or protein deficiencies and in ciliopathies. From
COSMIC, however, we found that proteins involved in
cancer were more likely to be new genes. The overrepresenta-
tion of genes involved in cancer among this set had been
noticed previously (Domazet-Loso and Tautz 2010).

The data from GeneSigDB were difficult to interpret be-
cause genes in a signature can be up or down for the disease
considered, but interestingly, genes in signatures were mostly
old (possibly due to the bias of expression studies). This is
especially true of genes with signatures for stem cells, whereas
cell differentiation markers were instead overrepresented in
new genes.

Many of these observations still applied when considering
the age of the protein clusters in the MMM12+ network. We
saw a higher representation of NEW clusters involving genes
of differentiated cells, and mutated in cancer, and we also saw

an overrepresentation of ciliopathy genes in the NEW
clusters.

Although the ciliopathy genes are mostly old, many are
clustering within the NEW network and are seen coevolving
with newer animal-specific genes. USH2A and GPR98 have
been found to be mutated in Usher syndrome, a ciliopathy
leading to deafness and blindness, and found to potentially
interact in the extracellular gap (Maerker et al. 2008). PKHD1
is involved in polycystic and hepatic disease. We also saw
several axonemal dynein proteins, involved in ciliary dyskin-
esia. In figure 5, we show the MMM13+ network of only the
ciliopathy genes and their first neighbors, indicating strong
coevolution of genes particularly with GPR98, USH2A, PKHD1,
RP1, and MKKS.

Cancer Genomes
Mutation Data. With the advent of cancer genome sequen-
cing, we sought to determine whether genes mutated in
cancer could also be found in our MMM12+ network, as
the data from COSMIC indicated, and as tight control of
multicellular homeostasis should warrant.

We considered the data from the recent sequencing
of ovarian serous cystadenocarcinoma (OSC) tumors
(The Cancer Genome Atlas Research Network 2011) because
mutation of the BRCA2 gene is a risk factor for this cancer
(Ford et al. 1998), which we found to be coevolving with
cilia proteins in the NEW network. The TP53 gene is the
most frequently mutated gene in this cancer, representing
about half of all mutations, so the observed number of
other mutated genes is small. Nevertheless, we saw an over-
representation of genes in the MMM12+ network as
mutated in a relatively high number of patients (fig. 6 and
table 2), particularly USH2A, GPR98, PKHD1, and several
dynein proteins.

Figure 6A plots the relationship between the total number
of genes mutated against the cumulative number of donors
with that number of mutations. Most of the relevant genes to
cancer will thus appear in the most number of tumors. New
genes appear most likely to be mutated (but they are also
more frequent, so their overrepresentation in the set of
cancer genes is not significant). In figure 6B, we see that
cilia genes and MMM12+NEW genes are highly mutated in
this cancer, and this is statistically significant (outlined

Table 1. Disease Functional Annotation.

Membership New vs. Olda NEW vs. OLDb

N Overrepresented P N Overrepresented P

OMIM 2,476 old 1.74E-07 315 — —

OMIM "Deficiency" 322 old 5.55E-14 55 — —

Cilia/ciliopathy 323 old 5.8E-11 42 NEW 6.54E-03

COSMIC mutation 4,555 new 8.43E-06 558 NEW 1.92E-18

COSMIC census 399 new 9.40E-03 42 NEW 2.80E-03

In signature 10,189 old 3.25E-36 1,608 OLD 3.70E-03

STEM signature 5,836 old 3.49E-63 384 OLD 3.03E-07

CD marker 311 new 1.04E-16 26 NEW 1.37E-06

anew/old comparisons considered all genes mapped to OMA.
bNEW/OLD comparisons considered only the clusters in MMM12+.
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FIG. 5. MMM13+ network of cilia/ciliopathy genes. Subnetwork of cilia/ciliopathy genes and their first neighbors in the MMM13+ network. Teal nodes
indicate the cilia/ciliopathy genes. The thickness of the lines to their first neighbors is proportional to the MMM score.

FIG. 6. Frequency of mutated genes in ovarian serous cystadenocarcinoma tumors. The count of mutated genes (y axis) found in at least the number of
tumor donor samples on the x axis is shown. Genes were annotated as being involved in cilia or ciliopathies (blue diamonds) or grouped by their
evolutionary age (red circles for old and green triangles for new) and are black outlined when statistically significant (P< 0.05). (A) The results are for all
genes. (B) We only considered genes in the MMM12+ network. The MMM12+OLD genes were never overrepresented in the samples, but the cilia
genes were highly overrepresented in the samples, as were the MMM12+NEW genes.
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markers indicate statistically significant P values< 0.05 for the
number of mutations found in the cancer samples).

Expression Data. The analysis of the Cancer Genome Atlas
(TCGA) ovarian cancer data from both Agilent and
Affymetrix arrays similarly showed a significant underexpres-
sion of cilia genes in ovarian cancer samples (supplementary
results and supplementary fig. S4, Supplementary Material
online). Because these data contained few normal samples
to compare to the tumor samples, to confirm, we analyzed a
smaller sample of microdissected tumors of high-grade serous
carcinoma from fallopian tube samples, against their nonma-
lignant counterparts (Tone et al. 2008). We considered the
average difference in the log of expression values between the
tumor samples and the normal samples and found significant
underexpression of the new versus old genes over all the
probes for the 17,271 genes mapped to OMA
(P = 2.1E� 29) or in MMM12+(P = 3.6E� 18). Cilia/ciliopa-
thy genes were strikingly underexpressed in these tumor sam-
ples (P = 6.6E� 105 in OMA and P = 2.8E� 31 in MMM12+).
In figure 7, we show the average expression values for the
probes to cilia/ciliopathy genes and to the rest of the genes in
OMA. Although the expression of noncilia genes did not vary
considerably between tumors and normal samples, cilia genes

had lower expression in tumor samples and higher expression
in normal samples.

There were a few exceptional examples of annotated cilia
genes that we found overexpressed in the ovarian tumors
(several kinesins and aurora kinase A [AURKA]; supplemen-
tary fig. S4, Supplementary Material online). However, such
overexpression could indicate the misannotation of these
as cilia genes or possibly be attributed to alternative functions
such as mitotic activity, as these genes are also important
for mitosis. Interestingly, AURKA promotes the destabilization
of the axoneme and cilium (Pugacheva et al. 2007) and
interacts with prometastatic protein NEDD9 (a member of
the MMM12+NEW network). In ovarian cancers, AURKA is
overexpressed and NEDD9 is amplified genetically (The
Cancer Genome Atlas Research Network 2011) agreeing
with the downregulation of cilia being associated with this
disease.

Discussion
In this work, we have analyzed the coevolution network of
human proteins found with MMM and considered the coe-
volution of interactions deposited in many PPI databases.
To do this, we required an accurate set of orthologous iden-
tifications to the human proteins. Deducing orthology is

Table 2. Mutations in Ovarian Serous Cystadenocarcinoma from the TCGA.

Gene Symbol Donors MMM12+ Gene Age Cilia Gene Symbol Donors MMM12+ Gene Age Cilia

TP53 258 NEW PKHD1 9 NEW NEW +

TTN 65 NEW SI 9 NEW NEW

CSMD3 19 NEW DNAH11 8 NEW NEW +

FAT3 19 NEW GPR98 8 NEW NEW +

USH2A 19 NEW NEW + ANK2 8 NEW NEW

MUC16 18 NEW APC 8 NEW NEW

RYR2 16 NEW COL22A1 8 NEW NEW

DST 15 NEW COL6A3 8 NEW NEW

HMCN1 15 NEW NEW PKHD1L1 8 NEW NEW

DNAH5 14 NEW NEW + PPP1R3A 8 NEW NEW

LRP1B 14 NEW TG 8 NEW NEW

LRP2 14 NEW NEW CRB1 7 NEW +

AHNAK 12 GLI2 7 NEW +

APOB 12 NEW NEW RP1L1 7 NEW +

DNAH3 12 NEW NEW + FREM2 7 NEW NEW

NF1 12 NEW IGSF10 7 NEW NEW

AHNAK2 11 NEW LAMA2 7 NEW NEW

FAT1 11 NEW NEW LAMA3 7 NEW NEW

HYDIN 11 + MAP2 7 NEW NEW

MUC17 11 OLD PRKDC 7 NEW NEW

ODZ1 11 NEW PTPRZ1 7 NEW NEW

BRCA1 10 NEW NEW STAB2 7 NEW NEW

BRCA2 10 NEW NEW SYNE2 7 NEW NEW

LRRK2 10 NEW NEW VPS13B 7 NEW NEW

MACF1 10 NEW XIRP2 7 NEW NEW

RYR1 10 NEW YSK4 7 NEW NEW

SYNE1 10 NEW NEW ZFYVE26 7 NEW NEW

NOTE.—The genes most frequently mutated are listed (removing silent, in frame, untranslated regions, flanking, noncoding, nonstop, intron, and splice sites/region mutations). In
between seven and nine donors (on the right), only genes involved in cilia/ciliopathies and/or in the MMM12+ network are listed. Underlined genes were highlighted in TCGA’s
article (The Cancer Genome Atlas Research Network 2011).
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difficult due to the prevalence of gene and domain duplica-
tions. To address potential problems with orthologous iden-
tification and the misdating of proteins in the network, we
applied two strategies for the clustering of orthologous se-
quences, and although there were differences in detail, our
conclusions remained the same: the MMM coevolution net-
work separates into two loosely linked subnetworks (fig. 1A).
Evolutionary dating of the two subnetworks, given the limi-
tations of species distribution in our data set and the reso-
lution of the phylogenetic tree, points to the separation
around the emergence of multicellularity in animals. We
thus investigated the functional differences between the pro-
teins in these two subnetworks within this context.

MMM analysis revealed a network of coevolving genes that
are more evolutionarily recent and not generally known to
interact nor to be coexpressed. However, many of these
MMM12+NEW network genes were absent from expression
array surveys and are otherwise poorly characterized com-
pared with genes that are conserved throughout the eukary-
otes (fig. 4). Moreover, the MMM12+NEW network could be
showing coevolution between genes that are potentially coex-
pressed and interacting only at specific stages of development
and in specific tissues, as is likely to be the case for more newly
evolved genes specialized for differentiated, multicellular
animals.

The OLD network, similar to what we had found for highly
conserved proteins (Tillier and Charlebois 2009) and for
proteins with yeast orthologs (Clark et al. 2011), showed
higher levels of overall protein expression and thus appears
to reflect ancient and fundamental interactions important
for basic cellular function. In support of this, we found an
overrepresentation of cell differentiation markers in the
MMM12+NEW network, whereas the OLD network showed
more genes involving markers of stem cells (table 1).

Our previous study (Clark et al. 2011) showed that
MMM predictions of coevolution most agreed with the
(gold standard) interactions in the yeast interaction net-
work coming from mass spectrometry studies. The recent
study of protein complexes in Drosophila (Guruharsha
et al. 2011) confirms this finding; however, that network
is also extremely biased toward interactions between old
proteins. The human network described here, especially
when considering the NEW interactions, is thus more
difficult to validate owing to the paucity of solid experi-
mental data.

Many of the proteins in the MMM12+NEW network are
extracellular, cytoskeletal, or nonsoluble membrane proteins,
whose interactions are poorly characterized (supplementary
data set S3, Supplementary Material online), so it is unclear
whether coevolution predicts actual physical protein–protein
contacts in this network. The predicted interaction between
GPR98 and USH2A in mice was putatively confirmed as a
physical interaction in Maerker et al. (2008), indicating that
the known PPI databases are, unsurprisingly, incomplete.
Despite the accumulation of literature-curated protein inter-
action data for model organisms such as yeast, allowing for
the higher overlap of 20–30% for high-throughput PPI detec-
tion methods (Reguly et al. 2006), high-quality human PPI
maps are still incomplete (Ewing et al. 2007; Havugimana
et al. 2012). In addition, even though there has been signifi-
cant progress in detecting PPI in multicellular organisms such
as fly (Guruharsha et al. 2011), these data would not neces-
sarily apply well to the human proteins, because 60% of the
human protein complexes are thought to have originated in
vertebrates (Havugimana et al. 2012). The significant under-
representation of old–new pairs found in the MMM12+ net-
work is also found in the known PPI databases, such that on
average, old proteins interact with old proteins and new with

FIG. 7. Expression of cilia-related genes in high-grade serous ovarian carcinomas. The average log expression values for the cilia/ciliopathy genes and
those not annotated as such (supplementary data set S2, Supplementary Material online) are shown for cancer samples (first 13 samples on the left),
normal fallopian epithelial (FTE) cells from BRCA1-mutated donors (middle 12 samples), and normal fallopian epithelial cells from non-BRCA1 donors
(rightmost 12 samples; see Tone et al. [2008] for details). Asterisks indicate statistical significance of a two-tailed t-test at *P< 0.05 or **P< 0.01, for
significant over- or underexpression of cilia/ciliopathy genes.
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new (supplementary table S1, Supplementary Material
online).

An in silico approach has the strong advantage of not
suffering from the same technical limitations and biases of
laboratory experimentation, though our coevolutionary ap-
proach is itself limited in that it can only detect coevolution
for proteins within a limited range of evolutionary rates
(fig. 3). Sequence coevolution can only be detected in genes
that evolve sufficiently quickly to provide a signal but not so
quickly as to saturate that signal. We found the correlated
evolutionary rates in the NEW network to be increased rela-
tive to the OLD network. The fact that these proteins have
just the right evolutionary rates to be detected by coevolution
may not be coincidental, because an adaptation to multicel-
lularity should coordinately increase the rate of evolution of
those proteins involved.

We found a network of coevolving genes involved in cell–
cell communication, the cytoskeleton, and the cell cycle,
appearing crucial to the evolution and maintenance of multi-
cellularity. Defects in their control would be expected to
perturb multicellular homeostasis, and we indeed found a
significant overrepresentation in this network of genes
involved in ciliopathies and in cancer. This MMM12+NEW
network still contains several old proteins, many related to the
cilium. The cilium is an ancient appendage, dating to the
origin of the eukaryotic cell (Hartman and Smith 2009), but
it is still incompletely defined. (Because many of the experi-
mental protocols investigating human protein interactions
opt to employ dividing cell lines that are transformed—
which in itself is an abnormal phenotype—and lack cilia, it
is not surprising that the interactions involving ciliary proteins
may be systemically overlooked.) To assemble a working set of
cilia/ciliopathy genes, we mostly used annotations from GO
and OMIM to find genes involved in human ciliopathies, sup-
plemented with genes commonly found in the ciliome and
ciliaproteome databases. These two databases of high-
throughput gene expression (Inglis et al. 2006) and proteomics
and transcriptomics (Marshall 2008) data have little overlap
with one another nor with human disease information and to
some extent extrapolate from studies on ciliated or flagellated
protists. Efforts to confirm these results in ciliated mammalian
cell cultures have only just begun (Lai et al. 2011).

With the caveat that our set of human ciliome genes is
probably incomplete, our coevolution network shows con-
nections of several of these ancient proteins with the more
recently arisen animal proteins. We also observed links to the
centriole, implicating the centrosome and the control of cell
division. Interestingly, this could indicate an adaptation of the
originally motile cilia to so-called primary cilia, requiring new
wiring to adapt the organelle to multicellularity. We did not
observe coevolution with genes also involved in cytokinesis
that localize at the basal body complex in vertebrate ciliated
epithelial cells (Smith et al. 2011). Primary cilia play crucial
roles in animals, particularly in vertebrate development
(Goetz and Anderson 2010), and loss of their function results
in human genetic diseases, both ciliopathies (Gerdes et al.
2009; Tobin and Beales 2009) and cancer.

Some cancers are thought to be linked to ciliopathies due
to the importance of cilia and centrosomes in the control of
the cell cycle (Tucker et al. 1979; Plotnikova et al. 2008) and in
aberrant activation or suppression of the Hedgehog (Hh) and
Wnt pathways (Nielsen et al. 2008; Han et al. 2009; Wong et al.
2009), PDGF� (Schneider et al. 2005), and other signaling
pathways (Michaud and Yoder 2006). Loss of cilia has been
observed in clear cell renal cell carcinoma (Schraml et al.
2008), medulloblastoma (Han et al. 2009), pancreatic cancer
(Seeley et al. 2009), astrocytoma/glioblastoma (Moser et al.
2009), and breast cancer (Yuan et al. 2010).

Considering the data from the TCGA, we found the stron-
gest evidence for mutated cilia genes in ovarian cancer and
most particularly involving the subset of cilia-linked genes
found to be coevolving in the MMM12+NEW network. Addi-
tional evidence from expression studies of these tumors also
shows high-grade OSC tumors to have lower relative expres-
sion levels for many of the cilia genes compared with normal
cells (supplementary results, Supplementary Material online).
Investigation of tumors from microdissected fallopian epithe-
lium samples confirmed these results. These cilia genes are at
the center of the NEW network, which also includes BRCA1
and BRCA2. BRCA2 itself has been shown to localize to the
centrosome and to nuclei; the dysfunction of BRCA2 in the
centrosome causes abnormalities in cell division (Nakanishi
et al. 2007). The dynein proteins DNAH3 and DNAH5 also
seem particularly important in ovarian cancer and in our
network. There is recent evidence that dynein-binding pro-
teins may regulate the G1-S transition through an effect on
cilia (Jackson 2011; Kim et al. 2011; Li et al. 2011), such that
ciliated cells require the loss of their cilia to enter the cell cycle.

Mutations in genes in the OLD network would most likely
have the most severe phenotypes (depending on heterozy-
gosity and penetrance). The OLD network did show an
overrepresentation of disease genes, linked to an overrepre-
sentation of enzyme deficiencies in metabolism (table 1). The
NEW network, on the other hand, was found to be enriched
for proteins involved in cancer and ciliopathies, thus proteins
involved in cell communication, control of cell division, and
cell differentiation, providing community homeostasis in a
multicellular organism. The enrichment for such disease mar-
kers in the NEW network indicates a functional link between
these coevolving proteins and provides genetic validation for
this network.

With a better understanding of the relationships between
ciliary function, important in cell control and communication,
and cancer, reflecting the loss of such control and communi-
cation, the human coevolution network can help elucidate the
processes most relevant to these classes of disease and more
generally to the control and maintenance of a cooperative
multicellular phenotype. Concerted evolutionary changes
implicating the recruitment of the ancient cilium to these
new roles should provide a fruitful impetus for further study.

Supplementary Material
Supplementary text S1, table S1, figures S1–S4, and data sets
S1–S3 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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