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Abstract

The white-striped longhorn beetle Batocera horsfieldi (Coleoptera: Cerambycidae) is a

polyphagous wood-boring pest that causes substantial damage to the lumber industry.

Moreover olfactory proteins are crucial components to function in related processes, but the

B. horsfieldi genome is not readily available for olfactory proteins analysis. In the present

study, developmental transcriptomes of larvae from the first instar to the prepupal stage,

pupae, and adults (females and males) from emergence to mating were built by RNA

sequencing to establish a genetic background that may help understand olfactory genes.

Approximately 199 million clean reads were obtained and assembled into 171,664 tran-

scripts, which were classified into 23,380, 26,511, 22,393, 30,270, and 87, 732 unigenes for

larvae, pupae, females, males, and combined datasets, respectively. The unigenes were

annotated against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot,

Gene Ontology (GO), Pfam, Clusters of Eukaryotic Orthologous Groups (KOG), and KEGG

Orthology (KO) databases. A total of 43,197 unigenes were annotated into 55 sub-catego-

ries under the three main GO categories; 25,237 unigenes were classified into 26 functional

KOG categories, and 25,814 unigenes were classified into five functional KEGG Pathway

categories. RSEM software identified 2,983, 3,097, 870, 2,437, 5,161, and 2,882 genes that

were differentially expressed between larvae and males, larvae and pupae, larvae and

females, males and females, males and pupae, and females and pupae, respectively.

Among them, genes encoding seven candidate odorant binding proteins (OBPs) and three

chemosensory proteins (CSPs) were identified. RT-PCR and RT-qPCR analyses showed

that BhorOBP3, BhorCSP2, and BhorOBPC1/C3/C4 were highly expressed in the antenna

of males, indicating these genes may may play key roles in foraging and host-orientation in

B. horsfieldi. Our results provide valuable molecular information about the olfactory system

in B. horsfieldi and will help guide future functional studies on olfactory genes.
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Introduction

The white-striped longhorn beetle, Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), is a

polyphagous wood-boring pest that feeds on more than 20 plant species belonging to taxo-

nomically distant plant families (Salicaceae, Juglandaceae, Fagaceae, Rosaceae, Caprifoliaceae,

Betulaceae, Oleaceae, Moraceae, and Euphorbiaceae) [1–5]. B. horsfieldi is distributed mainly

in southwest, southern, central south, and northern China, and in Vietnam, Japan, India, and

Myanmar [6]. Its basic biology is similar to other members of subfamily Lamiinae and its life

cycle is usually completed in 2–3 years [7]. Adults emerge in the early summer and feed mainly

on branches of host plants until they are sexually mature [8].

B. horsfieldi is a pest with a quite complete protection mechanism. The crypticity of larvae

towards damage makes their prevention and control difficult and traditional chemical pest

control is rarely effective. Currently, research on chemoecology and behavior has laid the foun-

dation for exploring new prevention and control means for B. horsfieldi. Liang et al. found that

Viburnum awabuki and Betula luminifera could lure B. horsfieldi adults in need of extra nutri-

tion [4]. Li et al. found through field investigation that B. horsfieldi concentrated on rosaceous

plants for extra nutrition [2]. Yang et al. found that nutrition supplement of B. horsfieldi adults

was related to changes in volatile components of the plants [9]. Yang et al. analyzed encounter

and mating behaviors of B. horsfieldi adults through a video capture system. The study upon

encountering behavior of B. horsfieldi provides the basis for studying calling mechanism and

sex pheromone biosynthesis of B. horsfieldi as well as reproductive behavior of the adults [10].

Li et al. established a cDNA library for antennae of B. horsfieldi and conducted expression

analysis for relevant olfactory genes [11].

During the long evolution process, sensitive smell of insects can help them recognize exter-

nal volatile chemical substances so as to realize behaviors such as searching for food, mate, and

spawning places [12–14]. The main olfactory sensors of insects are the antennae at the front of

the head. There are many different varieties of receptors on the antennae. The receptors con-

tain various functional proteins related to olfactory sensation; for example, odorant binding

proteins (OBPs), chemosensory proteins (CSPs), and olfactory receptors. OBPs are acidic solu-

ble proteins with low molecular weight (about 15 kD), which are distributed mainly in lymph

in the olfactory receptors of insects [15]. The typical structure of OBPs comprises six conserved

cysteines, which can form three disulfide bonds to support the 3D structure of OBPs [16]. So

far, OBPs have been discovered in at least seven different orders of insects, namely Lepidoptera

[17–23], Diptera [24, 25], Orthoptera [26], Hemiptera [27], Isoptera [28], Hymenoptera [29],

and Coleoptera [30, 31].

While OBPs have been discovered in both insects and mammals, CSPs have been found

only in insects. In 1994, Mckenna et al. discovered CSPs in antennae of Drosophila melanoga-
ster for the first time by subtractive hybridization [32]. The molecular weight of CSPs is lower

than that of OBPs (generally only 10–15 kD). CSPs have four conserved cysteine sites [33].

The sequence similarity of CSPs is higher than that of OBPs between different insects of the

same and different species [34]. So far, CSPs have been discovered in insects such as Eury-
cantha calcarata [35], Aphis gossypii [36], Bombyx mori [37],Helicoverpa armigera [18], Agrotis
ipsilon [38], Tomicus yunnanensis [39],Manduca sexta [40], Adelphocoris lineolatus [13], and

Spodoptera littoralis [41].

In the present study, we used RNA sequencing to identify developmental stage-specific

genes by building transcriptomes of larvae from the first instar to the prepupal stage, pupae,

and adults (females and males) from emergence to mating (3-day-old). We identified differen-

tially expressed genes among larvae, pupae, and female and male adults by comparative tran-

scriptome analysis. We also screened B. horsfieldi candidate olfactory genes, including those
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encoding OBPs and CSPs, because the olfactory system is crucial for insects to locate hosts,

oviposition sites, and food sources. Finally, we validated the differentially expressed candidate

olfactory genes identified in the transcriptome data by RT-PCR and RT-qPCR.

Material and methods

Insect rearing and sample collection

Larvae, pupae and adults of B. horsfieldi were collected in June 2016 from in the Poplar Plant-

ing Base of Luojiang City, Sichuan Province, China (31.07˚N, 104.08˚E). The field studies did

not involve endangered or protected species, and no specific permission was required for the

research activity at this location. Adults were used just emergence and unmated. The charac-

teristics used to identify mated B. horsfieldi were the villi on the abdomen of mated males and

the obvious mating plaques on the backside of the mated females [42]. Female and male adults

were placed on ice and quickly dissected into antenna, thorax (without thoracic legs), hind

wing, and thoracic legs for RT-PCR analysis. RT-qPCR was performed using nucleic acids

from male and female adult organism. All samples were immediately frozen in liquid nitrogen

and stored at −80˚C until use. Each sample contained either larvae, pupae, or male or female

adult tissues from at least five insects. After pooling the tissues for each sample, three biological

replicates were conducted for each treatment.

RNA extraction and sequencing

Mixed larvae from the first instar to the prepupal stage, pupae, and adults (females and males)

were prepared for RNA extraction. Total RNA was isolated from homogenized sample in TRI-

zol reagent (Takara, Dalian, Liaoning, China) following the manufacturer’s protocols. The con-

centration of total RNA was quantified with a Qubit3.0 (Thermo Fisher Scientific, Waltham,

MA, USA) and an Agilent2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). UV

absorption values at 260 nm/280 nm was recorded to monitor the purity of the RNA products

(Nanodrop2000, Thermo Fisher Scientific, Waltham, MA, USA). After RNA extraction,

mRNAs were purified using the interaction of the poly (A) tails and magnetic oligo (dT) beads

and collected using RNeasy RNA reagent. Mixed mRNAs were fragmented into 300–800 bp

pieces using RNA fragment reagent (Illumina), and the pieces were collected using an RNeasy

RNA cleaning kit (Qiagen). Subsequently, RNA fragments were copied to make first-strand

cDNA using MMLV reverse transcriptase (Takara, Dalian, Liaoning, China) and random prim-

ers. Second-strand cDNA synthesis was performed using DNA Polymerase I and RNase H. The

Illumina HiSeq2000 system and 125 paired-end reads were used for sequencing. Statistical anal-

ysis of the sequence lengths was performed to ensure sequence purity.

Assembly and functional annotation

Raw sequence data in fasta format were first processed through in-house Perl scripts [43]. In

this step, clean data (clean reads) were obtained by removing reads containing adapter, poly-

N, and low-quality reads from the raw sequence data [44, 45]. The Q20, Q30, GC content, and

sequence duplication level of the clean data were calculated [44]. All downstream analyses

were based on good-quality clean data.

The flow chart of transcriptome assembly described by Grabherr et al. [46] was used in the

present analyses. A Perl pipeline described by Haas et al. [43] was used to analyze the sequence

data. As suggested by Haas et al.[43], when multiple sequencing runs are conducted for a single

experiment, the resultant reads can be concatenated into two files if paired-end sequencing is

used. The left files (read 1 files) from all the samples were pooled into a single large left.fq file,
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and the right files (read 2 files) were pooled into a single large right.fq file. Transcriptome

assembly was accomplished based on the left.fq and right.fq using Trinity (http://trinityrnaseq.

github.io) with min_kmer_cov set to two by default and all other parameters set to default. The

assembled unigenes were annotated by BLASTX searches and ESTScan against the NCBI non-

redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), Swiss-

Prot, Gene Ontology (GO), protein families (Pfam), Clusters of Eukaryotic Orthologous Groups

(KOG), and KEGG Orthology (KO) databases (E<10−5), and the best annotations were

selected [44, 45, 47]. Differentially expressed genes were selected based on a log2 fold change>1

and q value<0.005 using DESeq [48] (S1 Table). The simple sequence repeats (SSR) in the B.

horsfieldi unigene sequences were screened with MISA software (http://pgrc.ipk-gatersleben.de/

misa/misa.html). The expression level of genes were calculated based on FPKM method[49].

The nucleotide sequences of the identified olfactory gene are listed in S2 Table.

Homology analysis

A neighbor-joining (NJ) tree was constructed with MEGA version 5.0 and the Jones-Taylor-

Thornton model [50]. The olfactory genes of other coleopteran species were obtained from the

NCBI databases. Bootstrap support values were based on 1000 replicates. All the candidate

olfactory genes were named according to the nomenclature system described previously [51,

52]. The olfactory genes from different species were marked with different colors and the phy-

logenetic tree was generated with iTOL software (http://itol.embl.de)

RT-PCR and RT-qPCR validation of differentially expressed candidate

olfactory proteins

Seven OBPs and three CSPs that were predicted to be highly abundant in antenna or had com-

plete ORFs were selected for further analysis. Specific primer pairs were derived from the tran-

scriptome data, and primer pairs for each gene were designed to amplify 100–200 bp products,

which were verified by sequencing. A semi-quantitative RT-PCR (Bio-Rad S1000, US) analysis

was performed for each primer pair using rTaq DNA polymerase (Takara, Dalian, Liaoning,

China) before the RT-qPCR analysis to ensure that the correct products were amplified and no

primer dimers were present [53]. The RT-qPCR analysis was carried out using an Mx 3000P

detection system (Agilent, Palo Alto, CA, USA) as described previously, with thermal cycler

parameters of 2 min at 94˚C, then 40 cycles of 20 s at 94˚C, 20 s at 58˚C, and 20 s at 72˚C. The

18S gene was used as an internal control: 18S forward and reverse, 5’- GAGACTCTAGCCT
GCTAACT-3’ and 5’-TGTTTGTACGCCGACAGT-3’. A standard curve was derived from

10-fold serial dilutions of plasmid containing the target DNA segment to determine the PCR

efficiency and to quantify the amount of target mRNA. All primers tested gave amplification

efficiencies of 90–100%. For each treatment, three biological replicates were conducted. RT-

qPCR data were analyzed by the 2−ΔΔCT method [54]. The primers used in this experiment

were designed with Primer premier 5.0 and Oligo 6.0 and are listed in S3 Table. A Chi-square

test was using to compare the expression level of male and female adult. The RT-qPCR data

were analyzed and output as PDF files using Graphpad 5.0.

Results

Illumina sequencing and assembly

This filtering resulted in a total of 50,028,651, 51,705,759, 49,935,243, and 47,402,329 clean

reads in larvae, pupae, and females and males of B. horsfieldi, respectively. All the clean reads

were assembled into transcripts by Trinity software; the longest copy of redundant transcripts

Candidate olfactory genes in Batocera horsfieldi
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was regarded as a unigene [43, 44, 46]. A total of 171,664 transcripts were obtained and assem-

bled into 87,732 unigenes. Many unigenes exceeded 2000 bp in length, while approximately

21.13% unigenes exceeded 1000 bp, and 25.74% were 500–1000 bp (Table 1).

Annotation of the B. horsfieldi unigenes

The assembled unigenes were annotated against the Nr, Nt, Swiss-Prot, Pfam, GO, KOG/

COG, and KO databases[53]. A total of 26,511 unigenes were annotated in B. horsfieldi pupae,

23,380 in larvae, 30,270 in males, and 22,393 in females. Among them, 549 were BP-specific,

595 were BL-specific, 515 were BF-specific, 922 were BM-specific, 11,012 were common

among the groups, and 87,732 were in the BP-BL-BF-BM combined dataset (Table 2). The

numbers and percentages of unigenes annotated in each of the databases were counted. The

Nr database had the best matches against the unigenes in the BP-BL-BF-BM combined dataset

(50,968, 58.10%) (Table 2) (S1–S12 Texts).

After functional annotation, the numbers of sequences from different species that matched

the B. horsfieldi unigenes were calculated from the annotation results. The five most repre-

sented species (about 76% of all the species) were Tribolium castaneum (57.1% of the annotated

sequences), Dendroctonus ponderosae (15.3%), Zootermopsis nevadensis (1.4%), Leptinotarsa
decemlineata (1.3%), and Acyrthosiphon pisum (0.9%), as shown in Fig 1.

Table 1. Number and length of transcripts and unigenes.

Larval Pupal Female Male

Raw reads 51,907,500 53,393,179 51,993,763 49,026,747

Clean reads 50,028,651 51,705,759 49,935,243 47,402,329

Clean bases 7.48G 7.76G 7.49G 7.11G

Q20% 96.49 96.88 96.74 95.78

Q30% 91.29 92.04 91.8 89.35

GC% 42.88 44.99 42.35 40.24

Transcripts Unigenes

200–500 bp 98,529 16,827

500–1 k bp 24,766 22,585

1 k-2 k bp 18,588 18,539

>2 k bp 29,781 29,781

Total number 171,664 87,732

Min length 201 201

Mean length 1,188 2048

Max length 27,920 27,920

N50 3,143 3669

N90 360 855

Total nucleotides 203,893,683 179,705,476

Number of Unigenes Percentage%

Annotated in NR 50,968 58.09

Annotated in NT 17,863 20.36

Annotated in KO 25,814 29.42

Annotated in SwissProt 40,700 46.39

Annotated in PFAM 42,320 48.23

Annotated in GO 43,197 49.23

Annotated in KOG 25,237 28.76

Annotated in all databases 8,275 9.43

Annotated in at least one databases 56,507 64.4

https://doi.org/10.1371/journal.pone.0192730.t001
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Table 2. Unigenes annotated in different databases.

BP BL BM BF BP-specific

NO. PCT(%) NO. PCT(%) NO. PCT(%) NO. PCT(%) NO. PCT(%)

NR 24906 93.95% 22026 94.21% 28423 93.90% 21043 93.97% 461 83.97%

NT 8718 32.88% 7735 33.08% 8877 29.33% 7595 33.92% 160 29.14%

KO 13092 49.38% 11859 50.72% 15030 49.65% 11654 52.04% 180 32.79%

Swissprot 20419 77.02% 18296 78.25% 23089 76.28% 17736 79.20% 329 59.93%

PFAM 20415 77.01% 18186 77.78% 23183 76.59% 17535 78.31% 389 70.86%

GO 20801 78.46% 17211 73.61% 23586 77.92% 18525 82.73% 394 71.77%

KOG 13798 52.05% 11991 51.29% 15260 50.41% 11823 52.80% 176 32.06%

Total NO. 26511 23380 30270 22393 549

BL-specific BM-specific BF-specific Common BP-BL-BM-BF combined

NO. PCT(%) NO. PCT(%) NO. PCT(%) NO. PCT(%) NO. PCT(%)

NR 476 80.00% 784 85.03% 397 77.09% 10705 97.21% 50968 58.10%

NT 360 60.50% 183 19.85% 272 52.82% 3810 34.60% 17863 20.36%

KO 271 45.55% 342 37.09% 218 42.33% 6121 55.84% 25806 29.41%

Swissprot 431 72.44% 563 61.06% 360 69.90% 9223 83.75% 40700 46.39%

PFAM 421 70.76% 660 71.58% 353 68.54% 8804 79.95% 42320 48.24%

GO 435 73.11% 563 61.06% 360 69.90% 8960 81.37% 44535 50.76%

KOG 225 37.82% 326 35.36% 174 33.79% 6528 59.28% 25237 28.77%

Total NO. 595 922 515 11012 87732

BP: Unigenes of Batocera horsfieldi pupae; BL: Unigenes of B. horsfieldi larvae; BM: Unigenes of B. horsfieldimales; BF: Unigenes of B. horsfieldi females; BP-specific:

Specific unigenes of B. horsfieldi pupae; BL-specific: Specific unigenes of B. horsfieldi larvae; BM-specific: Specific unigenes of B. horsfieldimales; BF-specific: Specific

unigenes of B. horsfieldi females; Common: Common unigenes of B. horsfieldi pupae, larvae, males, and females; BP-BL-BM-BF Combined: Total unigenes of B.

horsfieldi pupae, larvae, males, and females. NO: number; PCT (%): percentage (%); NR: NCBI non-redundant protein sequences; NT: NCBI non-redundant nucleotide

sequences; KO: KEGG Orthology; Swissprot: A manually annotated and reviewed protein sequence database; PFAM: Protein family; GO Gene Ontology; KOG: Clusters

of Orthologous Groups of protein; Total NO: Total number of annotated unigenes.

https://doi.org/10.1371/journal.pone.0192730.t002

Fig 1. The five most represented species among the annotation results of the B. horsfieldiunigenes.

https://doi.org/10.1371/journal.pone.0192730.g001
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Functional annotation of the B. horsfieldi unigenes

A total of 43,197 unigenes were annotated into 55 sub-categories under the three main GO cat-

egories: biological process, cellular component, and molecular function (Fig 2). There were 25

sub-categories under biological process, 20 under cellular component, and 10 under molecular

function. The top 10 sub-categories were binding (26,156 unigenes), cellular process (25,616

unigenes), metabolic process (23,538 unigenes), single-organism process (21,263 unigenes),

catalytic activity (19,882 unigenes), cell (14,998 unigenes), cell part (14,998 unigenes), biologi-

cal regulation (10,787 unigenes), organelle (10,503 unigenes), and regulation of biological pro-

cess (10,283 unigenes) (S13 Text).

The KOG classification placed 25,237 unigenes into 26 functional categories (Fig 3). The

‘general function prediction only’ category was the largest (3,920 unigenes), followed by ‘signal

transduction mechanisms’ (3,625 unigenes), and ‘posttranslational modification, protein turn-

over, chaperons’ (2,531 unigenes). The top three categories had 39.93% of the unigenes

assigned to KOG categories (S14 Text).

A total of 25,814 unigenes were classified into five KEGG Pathway functional categories

(Fig 4): cellular process (4,621 unigenes), environmental information processing (4,983 uni-

genes), genetic information processing (4,176 unigenes), metabolism (8,621 unigenes), and

organismal system (9,069 unigenes). The top three subcategories out of a total of 32 were ‘sig-

nal transduction’, ‘endocrine system’, and ‘transport and catabolism’ (S15 Text).

SSR analysis

We screened for SSRs in the B. horsfieldi unigene sequences using MISA software and designed

primers with Primer 3 for the SSR markers (Fig 5). We identified 87,732 sequence segments

with total length of 179,705,476 bp, among which 44,015 SSRs sequences were authenticated.

Fig 2. Histogram of the gene ontology (GO) classification of the B. horsfieldiunigenes.

https://doi.org/10.1371/journal.pone.0192730.g002

Fig 3. Histogram of the clusters of eukaryotic orthologous groups (KOG) classification of the B. horsfieldi
unigenes.

https://doi.org/10.1371/journal.pone.0192730.g003
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Expected number of fragments per kilobase of transcript sequence per

millions base pairs sequenced (FPKM) analysis

We used the RSEM software to calculate statistics for the bowtie comparison results, and con-

vert FPKM[55]. We obtained the number of read counts for each gene and conducted FPKM

analysis accordingly. From the perspective of general distribution of expression quantity (Fig

6A) and discrete angle (Fig 6B), the gene expression quantity of different forms of B. horsfieldi
are different.

Fig 4. Histogram of the KEGG Pathway classification of the B. horsfieldiunigenes. (A) Cellular processes, (B)

Environmental information processing, (C) Genetic information processing, (D) Metabolism, (E) Organismal systems.

https://doi.org/10.1371/journal.pone.0192730.g004

Fig 5. Scattergram of simple sequence repeats (SSRs) detected in the B. horsfieldiunigene sequences.

https://doi.org/10.1371/journal.pone.0192730.g005
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Differentially expressed genes

A total of 2,882, 2,437, and 870 genes were differentially expressed between female and pupae,

female and male, female and larvae, respectively, and 107 of these genes were common to

pupae, males, larvae, and females (Fig 7A). A total of 2,882, 5,161, and 3,097 genes were differ-

entially expressed between pupae and females, pupae and males, pupae and larvae, respectively,

and 748 of these genes were common to males, females, larvae, and pupae (Fig 7B). A total of

870, 3,097, and 2,983 genes were differentially expressed between larvae and female, larvae and

pupae, and larvae and male, respectively, and 269 of these genes were common to females,

males, pupae, and larvae (Fig 7C). A total of 2,437, 5,161, and 2,983 genes were differentially

expressed between males and females, males and pupae, and males and larvae, respectively, and

650 of these genes were common to larvae, females, pupae, and males (Fig 7D) (S16–S21 Texts).

More genes were expressed in female than in pupae, in larvae than in female, in larvae than

in male, in larvae than in pupae, in male than in female, and in male than in pupae (1,506, 458,

1688, 2,101, 1,253, and 2,594, respectively; Fig 8). Conversely, fewer genes were expressed in

female than in pupae, in larvae than in female, in larvae than in male, in larvae than in pupae,

in male than in female, and in male than in pupae (1,376, 412, 1,295, 996, 1,184, and 2,567,

respectively; Fig 8).

Phylogenetic analysis of candidate olfactory genes

We constructed two phylogenetic trees comparing BhorOBP1/2/3, BhorOBPC1/2/3/4 (minus-

C OBP1/2/3/4) and the OBPs from 25 coleopteran insects, and BhorCSP1/2/3 and the CSPs

from 16 coleopteran insects, respectively (Figs 9 and 10). Four minus-C OBPs from B. hors-
fieldi grouped together with the OBPs of other coleopteran species, whereas three OBPs of B.

horsfieldi separated into different clades (Fig 9). The candidate CSPs, BhorCSP1, BhorCSP2,
and BhorCSP3, separated into different clades (Fig 10).

Fig 6. Expression levels of the B. horsfieldiunigenes by FPKM analysis. (A) The perspective of general distribution. (B) The dispersing perspective. BF: B. horsfieldi
females, BP: B. horsfieldi pupae, BL: B. horsfieldi larvae, BM: B. horsfieldimales.

https://doi.org/10.1371/journal.pone.0192730.g006
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Expression profiles of candidate olfactory genes

We identified 10 candidate CSPs and 16 candidate OBPs by searches against the Nr database

(Deduced amino acid sequences are listed in S22 Text). Significant differences were detected

in the expression profiles of the 10 candidate CSPs and 16 candidate OBPs in male and female

adults (Tables 3 and 4, respectively).

To further explore the olfactory genes, a local BLAST search was performed against the

B. horsfieldi unigene database using the known olfactory gene sequences of Lissorhoptrus ory-
zophilus,Monochamus alternatus, and Dendroctonus ponderosae as queries. The calculated

Fig 7. Venn diagram of the number of differentially expressed genes in males, females, larvae, and pupae. BF: B. horsfieldi females, BP: B.

horsfieldi pupae, BL: B. horsfieldi larvae, BM: B. horsfieldimales.

https://doi.org/10.1371/journal.pone.0192730.g007
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expression values based on the FKPM method of all the candidate olfactory genes are listed in

Table 5.

Tissue- and sex-specific expressions of candidate olfactory genes

Semi-quantitative RT-PCR showed that all of the tested candidate olfactory genes were pri-

marily male antenna specific (Fig 11) (S23 Text). BhorOBP2/C2 and BhorCSP1 showed olfac-

tory and non-olfactory tissue expression, whereas BhorOBP1/3, BhorOBPC1/C3/C4, and

BhorCSP2/3 showed olfactory tissue-specific expression. BhorOBP3 and BhorOBPC1/C3were

highly expressed in the antenna of males.

The RT-qPCR results were mostly consistent with the RT-PCR results; BhorOBP2 and

BhorCSP1 showed high non-sex-specific expression, whereas BhorOBP1/3, BhorCSP2/3, and

BhorOBPC1/C2/C3/C4 showed high sex-specific expression (Fig 12).

Discussion

Establishing insect transcription libraries for high-throughput sequencing is an important

approach for molecular biology studies of insects. Transcriptome data can be used to detect

Fig 8. Volcano plots of differentially expressed genes in larvae, pupae, males, and females. Differentially expressed

genes between (A) BF and BP, (B) BL and BF, (C) BL and BM, (D) BL and BP, (E) BM and BF and (F) BM and BP.

Splashes represent different genes. Blue splashes indicate genes with no significant differential expression. Red splashes

indicate significantly upregulated genes. Green splashes indicate significantly downregulated genes. BF: B. horsfieldi
females, BP: B. horsfieldi pupae, BL: B. horsfieldi larvae, BM: B. horsfieldimales.

https://doi.org/10.1371/journal.pone.0192730.g008
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Fig 9. Neighbor-joining phylogenetic tree of B. horsfieldi odorant binding proteins (BhorOBPs). Values indicated at the nodes are bootstrap values based on 1000

replicates. Scale bar = 0.1. Bhor: Batocera horsfieldi; Tcas: Tribolium castaneum; Ityp: Ips typographus; Dpon: Dendroctonus ponderosae; Acor: Anomala corpulenta; Tmol:

Tenebrio molitor; Malt:Monochamus alternatus; Pdiv: Phyllopertha diversa; Cmon: Cryptolaemusmontrouzieri; Dhel:Dasrarcus helophoroides; Rfer: Rhynchophorus
ferrugineus; Cbow: Colaphellus bowringi; Lory: Lissorhoptrus oryzophilus; Hobl:Holotrichia oblita; Agla: Anoplophora glabripennis; Hele:Hylamorpha elegans; Darm:

Dendroctonus armandi; Hpar:Holotrichia parallela; Bpra: Brachysternus prasinus; Pjap: Popillia japonica; Eori: Exomala orientalis; Acup: Anomala cuprea; Asch: Anomala
schonfeldti; Aoct: Anomala octiescostata; Aruf: Anomala rufocuprea; Cbuq: Cyrtotrachelus buqueti. The olfactory genes from different species are marked with different

colors (S24 Text).

https://doi.org/10.1371/journal.pone.0192730.g009
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new genes, transcription sites, and differentially expressed genes, as well as obtain functional

gene information and transcription expression abundance, and the data can be used for molec-

ular marker development, gene expression analysis, and small RNA analysis. [56–59]. Tran-

scriptome for many insects has been established and analyzed, including Ericerus pela [60],M.

alternatus [61], Timema cristinae [62], Cyrtotrachelus buqueti [53], Drosophila melanogaster
[63], Bombyx mori [64], and Bombus terrestris [65].

In the present study, developmental transcriptomes were established for B. horsfieldi at vari-

ous stages, mixed-age larvae, pupae, and male and female adults, and a relatively comprehen-

sive gene pool was obtained. The alignments against the Nr database showed that 57.1% and

Fig 10. Neighbor-joining phylogenetic tree of B. horsfieldi chemosensory proteins (BhorCSPs). Values indicated at the nodes are bootstrap values based on 1000

replicates. Scale bar = 0.1. Hpar:Holotrichia parallela; Tmol: Tenebrio molitor; Ityp: Ips typographus; Dpon: Dendroctonus ponderosae; Tcas: Tribolium castaneum; Acor:

Anomala corpulenta; Bhor: Batocera horsfieldi; Gdau: Galeruca daurica; Paen: Pyrrhalta aenescens; Pmac: Pyrrhalta maculicollis; Dhel:Dasrarcus helophoroides; Cbow:

Colaphellus bowringi; Malt:Monochamus alternatus; Rdom: Rhyzopertha dominica; Hobl:Holotrichia oblita; Lory: Lissorhoptrus oryzophilus; Rfer: Rhynchophorus
ferrugineus. The olfactory genes from different species are marked with different colors (S25 Text).

https://doi.org/10.1371/journal.pone.0192730.g010
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15.3% of the B. horsfieldi unigenes were similar to T. castaneum and D. ponderosae sequences,

respectively. Thousands of differentially expressed genes were identified, facilitating develop-

mental and evolutionary studies of B. horsfieldi, and contribute to future work in B. horsfieldi
comparative genomics. Insects can sense changes in odorant substances in the environment

through olfactory receptors, which transform chemical signals from odorant substances into

electrophysiology signals that can generate various kinds of behaviors [11]. Proteins are

required for odorant substances to interact with insect olfactory receptors, and for turning the

chemical signals into electrophysiology signals [66]. These proteins are related to the olfactory

sensation of insects and participate in the transmission of a series of signals in the insect olfac-

tory system [67]. Moreover, olfactory proteins have been shown to act in insect nutrient

Table 3. Differentially expressed CSP between males and females.

Gene Readcount-Male Readcount-Female log2Fold-change q

Cluster-8309.12499 144.0953 7.6845 4.2280 <0.005�

Cluster-8309.21386 283.1867 103.2319 1.4569 >0.005

Cluster-8309.22628 320.1960 200.2058 0.6775 >0.005

Cluster-8309.36051 1,276.0900 660.3976 0.9503 >0.005

Cluster-8309.36377 5,298.4300 6,861.21 -0.3729 >0.005

Cluster-8309.36573 7,629.0900 8,266.90 -0.1158 >0.005

Cluster-8309.41714 439.4133 44.2061 3.3133 <0.005�

Cluster-8309.45810 527.3126 112.3486 2.2307 >0.005

Cluster-8309.52580 1,218.3300 186.9083 2.7045 >0.005

Cluster-8309.54261 545.3564 63.9106 3.0931 <0.005�

Q values were calculated according to the method of Anders et al., 2003.

�q < 0.005 is significantly different.

https://doi.org/10.1371/journal.pone.0192730.t003

Table 4. Differentially expressed OBPs between males and females.

Gene Readcount-Male Readcount-Female log2Fold-change q

Cluster-8309.12425 174.0043 102.9302 0.7575 >0.005

Cluster-8309.20864 122.1861 840.4307 -2.8192 <0.005�

Cluster-8309.27359 5,568.7170 720.3645 2.8177 <0.005�

Cluster-8309.31830 8,752.9100 1,295.3270 2.7564 <0.005�

Cluster-8309.32140 186.4977 61.9745 1.5894 >0.005

Cluster-8309.36213 2,129.661 44,723.7300 -4.3923 <0.005�

Cluster-8309.36426 57,197.9800 32,936.1900 0.7963 >0.005

Cluster-8309.37524 890.3307 208.1874 2.0965 >0.005

Cluster-8309.38445 5,044.1540 10,089.0100 -1.0001 >0.005

Cluster-8309.39085 217.9598 163.1848 0.4176 >0.005

Cluster-8309.39777 682.6873 1416.6270 -1.0532 >0.005

Cluster-8309.40165 399.8992 354.8279 0.1725 >0.005

Cluster-8309.40672 421.7275 641.6447 -0.6055 >0.005

Cluster-8309.41624 3,1696.7900 494.2113 6.0031 <0.005�

Cluster-8309.47478 4,136.7770 521.3067 2.7235 <0.005�

Cluster-8309.59754 589.7868 60.3018 3.0721 <0.005�

Q values were calculated according to the method of Anders et al., 2003.

�q < 0.005 is significantly different.

https://doi.org/10.1371/journal.pone.0192730.t004

Candidate olfactory genes in Batocera horsfieldi

PLOS ONE | https://doi.org/10.1371/journal.pone.0192730 February 23, 2018 14 / 22

https://doi.org/10.1371/journal.pone.0192730.t003
https://doi.org/10.1371/journal.pone.0192730.t004
https://doi.org/10.1371/journal.pone.0192730


uptake, life span, and behavior changes during developmental stages [67–69]. The develop-

mental transcriptomes of B. horsfieldi provide an opportunity to understand the relationship

between olfactory proteins and development. The evolution analysis of the OBPs of B. hors-
fieldi and 25 Coleoptera species and the CSPs of B. horsfieldi and 16 Coleoptera species showed

that the OBPs of B. horsfieldi were quite similar to those of Anoplophora glabripennis and the

CSPs of B. horsfieldi were quite similar to those ofMonochamus alternates. Therefore, we spec-

ulated that these genes may have evolved from the same ancestral gene, but differentiated by

adaptation to different types of environmental chemical factors during evolution, and perform

the same or similar functions among different species [53].

Seven candidate OBPs and three candidate CSPs in male and female adults, showed signifi-

cant differences in expression. To further explore the significant differences among these

genes, a local BLAST was performed on the B. horsfieldi unigene database based on the known

Table 5. Detailed information on the candidate olfactory genes of B. horsfieldi.

Gene name Unigene ID Gene

length

Status FPKM (Pupae/Larvae/Male/

Female)

BLASTx best hit Gene ID

BhorOBP1 Cluster-

8309.27359

1699 Complete

ORF

15.50/16.36/269.25/23.25 odorant binding protein [Lissorhoptrus

oryzophilus]

KC461118.1

BhorOBP2 Cluster-

8309.40672

695 Complete

ORF

30.37/311.36/66.44/59.51 odorant binding protein 6 [Monochamus

alternatus]

KC461116.1

BhorOBP3 Cluster-

8309.41624

2778 Complete

ORF

18.53/233.05/872.11/7.41 odorant-binding protein 2 [Monochamus

alternatus]

KC461117.1

BhorOBP

C1

Cluster-

8309.39777

739 Complete

ORF

0.57/56.57/97.70/118.34 minus-C odorant binding protein 1 [Batocera

horsfieldi]

GU575294.1

BhorOBP

C2

Cluster-

8309.59754

943 Complete

ORF

144.19/60.64/59.26/9.97 minus-C odorant binding protein 2 [Batocera

horsfieldi]

GU575295.1

BhorOBP

C3

Cluster-

8309.47478

574 Complete

ORF

369.84/9.13/890.61/88.60 minus-C odorant binding protein 4 [Batocera

horsfieldi]

GU584933.1

BhorOBP

C4

Cluster-

8309.31830

1229 Complete

ORF

130.68/44.54/623.72/51.82 minus-C odorant binding protein 4 [Batocera

horsfieldi]

GU584934.1

BhorCSP1 Cluster-

8309.12499

888 Complete

ORF

2.10/778.25/15.60/0.48 chemosensory protein [Batocera horsfieldi] HQ587040.1

BhorCSP2 Cluster-

8309.41714

432 Complete

ORF

15.04/536.49/167.20/11.72 chemosensory protein 8 [Lissorhoptrus

oryzophilus]

HQ587041.1

BhorCSP3 Cluster-

8309.54261

2016 Complete

ORF

13.50/7.44/21.38/1.38 chemosensory protein 4 [Dendroctonus

ponderosae]

HQ587042.1

https://doi.org/10.1371/journal.pone.0192730.t005

Fig 11. Tissue-specific expressions of candidate olfactory genes of B. horsfieldi by RT-PCR. FA: female antenna; MA: male antenna; T: thorax; W: hind

wing; L: leg. 18S RNA was used as an internal control.

https://doi.org/10.1371/journal.pone.0192730.g011
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olfactory sequences of L. oryzophilus,M. alternatus, D. ponderosae, and B. horsfieldi. Bhor-
OBP1/2/3/C1/C2/C3/C4were annotated as encoding odorant binding protein domains, while

BhorCSP1/2/3were annotated as encoding chemosensory protein domains. The cloning and

functional analysis of olfactory genes will be the focus of the next research.

Combining RT-PCR and RT-qPCR data, most of the candidate olfactory genes were shown

to have male-specific expression patterns in B. horsfieldi, suggesting that the olfactory system is

highly developed in male and that olfactory detection plays a relatively important role in

males. This result supports the existence of a contact sex pheromone that is produced by B.

horsfieldi female, as previously shown on the molecular level [70]. Additionally, components of

the female-produced sex pheromone have been identified in other longhorn beetles, such as

Prionus californicus [71],Migdolus fryanus [72], Vesperus xatarti [73], and Ortholeptura valida
[74].

BhorOBP1/3, BhorOBPC1/C3/C4, and BhorCSP2/3 showed olfactory-specific expression,

suggesting that these candidate olfactory genes may play key roles in foraging and host-orien-

tation in B. horsfieldi. A comprehensive, good-quality sequence resource from the develop-

mental transcriptomes of B. horsfieldi larvae, pupae, female and male adults was constructed in

this study. This resource enriches what is known about B. horsfieldi genomics, thus facilitating

our understanding of metamorphosis, development, and fitness to environmental change. Sev-

eral potential functional olfactory genes were identified. Future studies aimed at exploring the

functions of these genes are the next logical step.
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