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Topological band structure via twisted photons in a
degenerate cavity
Mu Yang1,2,3, Hao-Qing Zhang1,2,3, Yu-Wei Liao1,2,3, Zheng-Hao Liu 1,2, Zheng-Wei Zhou 1,2,

Xing-Xiang Zhou1,2, Jin-Shi Xu 1,2✉, Yong-Jian Han1,2✉, Chuan-Feng Li 1,2✉ & Guang-Can Guo1,2

Synthetic dimensions based on particles’ internal degrees of freedom, such as frequency,

spatial modes and arrival time, have attracted significant attention. They offer ideal large-

scale lattices to simulate nontrivial topological phenomena. Exploring more synthetic

dimensions is one of the paths toward higher dimensional physics. In this work, we design

and experimentally control the coupling among synthetic dimensions consisting of the

intrinsic photonic orbital angular momentum and spin angular momentum degrees of free-

dom in a degenerate optical resonant cavity, which generates a periodically driven spin-

orbital coupling system. We directly characterize the system’s properties, including the

density of states, energy band structures and topological windings, through the transmission

intensity measurements. Our work demonstrates a mechanism for exploring the spatial

modes of twisted photons as the synthetic dimension, which paves the way to design rich

topological physics in a highly compact platform.
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The dimensions of physical models simulated by real space
lattices, such as photonic crystals1–3, metamaterials4 and
microcavity arrarries5, are generally smaller than or equal

to their geometric dimensions. Great efforts have been made
to simulate high-dimensional physics. Recently, a powerful
approach by introducing synthetic dimensions to the lower geo-
metric dimensions with remarkably fewer experimental require-
ments has caused increasing interest6,7. The (D+ d)-dimensional
physics can be investigated in D geometric dimensions with d
synthetic dimensions. The synthetic dimensions could be formed
by the particles’ internal degrees of freedom in photonic6,8 or
atomic systems9–11.

Abundant topological phenomena have been demonstrated
through utilizing the photonic frequencies12–15, optical wave-
guide modes16 and optical pulse arrival time17,18 as synthetic
physical dimensions. Exploring more synthetic dimensions is
helpful to investigate higher dimensional physics.

Photonic orbital angular momentum (OAM) with infinite
topological charge numbers is an ideal degree of freedom for
constructing the synthetic lattice. The photons carrying OAM
have twisted wavefronts, referred to as twisted photons19.
Moreover, optical systems with a tunable coupling between the
intrinsic spin angular momentum (SAM) and the synthetic OAM
dimension of photons offer natural platforms to simulate the
topological physics in spin-orbital coupling (SOC) systems. As
the first proposal for synthetic dimensions7,8, degenerate optical
cavities simultaneously support plenty of OAM modes have been
employed in theoretical protocols to simulate a wide variety of
topological physics including the non-Abelian gauge fields
induced phase transition 20 and edge states21. The synthetic fre-
quency and OAM dimensions are combined in a single cavity to
investigate gauge field physics22. Multimode optical cavities have
also been experimentally used to simulate Landau levels23,24,
which are the first two-dimensional topological cavity, and have
also been used to engineer Hamiltonians25. However, there has
been no experimental demonstration of the OAM degenerate
cavity-assisted SOC physics until now.

In this work, we develop an extremely compact platform and
experimentally investigate the properties of a periodically driven
SOC topological system in a degenerate optical cavity with the
photonic OAM serving as a synthetic dimension. The coupling
between the synthetic dimension and its internal spin is well
constructed. By detecting the transmission intensity of the
degenerate cavity, we directly obtain the density of states (DOS),
energy band structures, and topological windings of the simulated
system. Although some topological evidences have been demon-
strated through quantum walk on OAM modes in stackable
systems26–28, the direct band observations are not available. Our
experiments open the door to directly explore high-dimensional
topological physics with synthetic dimensions in a simple system.

Results
Theoretical framework. The degenerate optical cavity shown in
Fig. 1a consists of two high reflective plane mirrors and two
convex lenses. The input optical mode locates one focal length (f)
in front of the first lens while the output optical mode locates one
focal length after the second lens, which forms an exact 4f system.
See Supplementary Fig. S1 for details of experimental setup. The
cavity can stabilize more than 103 photonic OAM modes (see
section I of Supplementary Information (SI) for more details),
which steadily reproduce themselves periodically since they go
through the precise 4f telescope once every period. A large syn-
thetic lattice based on OAMmodes can then be constructed in the
optical degenerate cavity. The degenerate cavity carrying a variety
of OAM modes requires the precise control of surface quality
and position of cavity elements. Aberrations may destroy its
degenerate29–31, which implies that the experimental requirement
is high. We pursue this kind of degeneracy to reduce the self-
energy disorder in the cavity which may destroy the topological
character in the system.

The generation of high-order spatial OAM modes with the
input Gaussian mode and the coupling between the OAM and
SAM modes are simultaneously achieved via an anisotropic and
inhomogeneous medium (named Q-plate32) in the cavity (see
Methods). The action of the Q-plate (JQ(δ)) is described as:

JQðδÞ ¼
X
m

cosðδ=2Þðay↺;ma↺;m þ ay↻;ma↻;mÞ

þ i sinðδ=2Þðay↻;mþ2qa↺;m þ h:c:Þ;
ð1Þ

where m represents the topological charge numbers of OAM modes
with corresponding twisted wavefronts; ↺(↻) denotes the left
(right)-circular polarized SAM modes; ay↺ð↻Þ;m (a↺(↻),m) is the
corresponding creation (annihilation) operator; q is the topological
charge number of the Q-plate and q= 1 in our experiment; and δ is
the value of the optical retardation which can be tuned by the
applied electric field. To manipulate the optical SAM modes,
an additional wave plate (WP) with the operation of JλðηÞ ¼P

m cosðηÞðay↺;ma↺;m þ ay↻;ma↻;mÞ þ i sinðηÞðay↻;ma↺;m þ h:c:Þ is
introduced in the cavity. The control parameter η represents the
phase retardance between ordinary and extraordinary photons,
which is determined by the WP’s thickness (e.g., η= π/4 for a
quarter-wave plate (QWP)). When the Q-plate and WP are
introduced in the cavity, the position and orientation of the cavity
should be re-optimized to maintain the degenerate property.

The optical state in the cavity is evolved under the periodic
unitary: Ûðδ; ηÞ ¼ JQðδÞJλðηÞJλðηÞJQðδÞ which is an one round trip
including both the actions of the Q-plate and WP. Due to its
periodicity, an effective Hamiltonian Ĥeff can be introduced as
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Fig. 1 Experimental setup and the coupling model. a The degenerate cavity consists of two plane mirrors and two lenses. High-order photonic modes are
generated and coupled by repeatedly passing an anisotropic and inhomogeneous medium (Q-plate) and a wave plate (WP) with an input Gaussian mode.
b Schematic of spin and lattice for SAM and OAM modes. The SAM modes with left (↺) and right (↻) circular polarizations are labeled in red and blue,
respectively. The OAM modes are marked as the arrays of balls. The corresponding twisted wavefronts are shown below the coupling modes.
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Ûðδ; ηÞ ¼ e�iĤeffT=_, where T= L/c, with L being the one round
trip (one period) length of the cavity and c representing the
speed of light, denotes the period of a round-trip. The average
lifetime of photons in the cavity is about 5T, which means the
photons pass through the Q-plate 10 times on average (see
section I of SI for more details). The operation of Ûðδ; ηÞ drives
the hopping among SAM and OAM modes (shown in Fig. 1b),
which shares the features of the simplest topological lattice Su-
Schrieffer-Heeger (SSH) model33 in the Floquet version. As a
result, the stable optical state ϕðtÞ

�� �
at time t, which is a

superposition state of SAM and OAM modes ( ↺ð↻Þ;m
�� �

), is

evolved as ϕðt þ TÞ
�� � ¼ e�iĤeffT=_ ϕðtÞ

�� �
. From the point of

view of the self-reproductive condition, the stable optical states
in the degenerate cavity satisfies: ϕðt þ TÞ

�� � ¼ e�iβL ϕðtÞ
�� �

.
β= 2π/λ+ iα is independent of SAM and OAM modes. λ
represents the wavelength of the photons in the cavity and α is
the attenuation coefficient. Combining the evolution and the
reproductive conditions of the optical state in the degenerate
cavity, we obtain

e�iĤeffT=_ ϕðtÞ
�� � ¼ e�iβL ϕðtÞ

�� �
: ð2Þ

As a consequence, the stable photonic state ϕ
�� �

(t is omitted) in
the degeneracy cavity is naturally the eigenstates of Ĥeff with
eigenvalues βL (taking T/ℏ= 1).

Since the Q-plate and WP have same operational forms on
different m, there should not be disorders in the coupling and the
effective Hamiltonian Ĥeff possesses translational symmetry on
m. As a result, if we introduce the Bloch mode kj i in ‘momentum’
space as kj i ¼ P

je
�ijk j

�� � (j=m/2), the Hamiltonian can be

recast in the ‘quasi-momentum’ space as Ĥeff ¼
R π
�π Ĥeff ðkÞdk,

where Ĥeff ðkÞ ¼ EknðkÞ � σ kj i kh j. Ek represents the dispersion
relation, σ= (σx, σy, σz) is the Pauli vector and n(k)= [nx(k),
ny(k), nz(k)] is a unit vector. The eigenstate of Ĥeff ðkÞ can be
represented as ϕsk

�� � ¼ ψs
k

�� �
kj i, where ψs

k

�� �
is the eigenstate of

operator n(k) ⋅ σ and s= ± 1 represents the band index. At the
parameter range of− π ≤ k ≤ π, the eigenenergy of Ĥeff ðkÞ forms
two symmetrical energy bands with ±Ek. In our experiment, this
system possesses the chiral symmetry, since Ĥeff ðkÞ satisfies
ΓĤeff ðkÞΓ ¼ �Ĥeff ðkÞ with Γ= σz (see section II of SI for more
details).

Interestingly, the eigenstates of Ĥeff can be directly obtained by
measuring the transmission intensities of the cavity. Since the
eigenstates of Ĥeff form a complete basis, the output state of the
cavity could be expanded as ϕout

�� � ¼ P
k;sT

s
k ϕ

s
k

�� �
. According to

the input-output relation of the cavity (see section III of SI for
more details), the transmission amplitude can be expressed as

Ts
k ¼

jκj2=r
1� re�iðsEk�βΔLÞ ϕskjϕin

� �
: ð3Þ

ΔL denotes the cavity’s detuning which equals to L− 2nπ/
βðn 2 NþÞ. κ and r are the coupling and reflection coefficients
respectively of the cavity and they satisfy the condition that
∣κ∣2+ ∣r∣2= 1, which are nearly same for different OAMs. By
choosing an appropriate input state ϕin

�� �
,
P

s ϕskjϕin
� ��� �� could be

independent on k (see section III of SI for more details). The whole
output transmission intensity, which can be directly measured, is
defined as Io ¼

P
k;sjTs

kj2. We can find that in Eq. 3, only when the
term βΔL is closest to sEk, the photonic output state ϕout

�� �
is closest

to the eigenstate ϕsk
�� �

and the relevant Io reaches its local maximum
at the same time (see Supplementary Fig. S2 in section IV of SI for
more details). Moreover, the transmission intensity Io contributed

by all eigenstate ϕsk
�� �

of all k corresponds to the density of state
(DOS) under renormalization (see section III of SI for more details).

Experimental results. From the spectrum of DOS, the energy gap
of the system with the zero DOS can also be directly read out. In
our experiments, the parameter η can be used to control the
coupling strength between SAM modes and the m-th OAM
mode. If η= 0 (there is no WP in the cavity), there is no coupling
between ↺;mj i and ↻;mj i and the simulated system is reduced
to a two-level system. The hopping occurs only between photonic
angular momentum states ↺;mj i and ↻;mþ 2j i, as shown in
Fig. 2a. The measured full spectrum of DOS as a function of δ and
βΔL is shown in Fig. 2b, and the special cases with δ= 0 (closing
gap) and δ= π/8 (opening gap) are shown in the top and bottom
panels of Fig. 2c (the band gap areas are marked in gray),
respectively. The closing and opening of energy gap are depen-
dent on the parameter of δ.

With the increase of the parameter η, the states ↺;mj i and
↻;mj i will couple to each other. As a result, the spin-orbital like
interaction in the system can be realized with addition coupling
between ↺;mj i and ↻;mþ 2j i controlled by δ, as is shown in
Fig. 2d. In such kind of situation, the topological phases appear and
are protected by the band gap. The closing of the gap indicates the
phase transition between the topological phase and the trivial phase.
The measured full spectrum of DOS as function of δ with η= π/8
(the WP is an eighth-wave plate in the cavity) is shown in Fig. 2e.
The band gap closes at δ= ±π/8 and δ= ±3π/8 which indicate two
phase transitions. In Fig. 2f, the DOS with the gap closing at δ= π/8
(top panel) is further compared with the gap opening at δ= π/4
(bottom panel). The spectrum of DOS as function of δ with another
η= π/4 (the WP is a QWP in cavity) is shown in Fig. 2h. The
schematic SOC interation is shown in Fig. 2g. Similarly, there are
two gap closure points at δ= ±π/427,28 and the comparation of
DOS with the gap closing at δ= π/4 (top panel) and with the gap
opening at δ= π/8 (bottom panel) is shown in Fig. 2i. Worthy to
note that our system only has topological protection versus disorder
in the coupling constants but not between disorder in the self-
energy. The slight deformity of the spectra in Figs. 2c, f, i illustrate a
distribution of energies around the main energy, which may be due
to the imperfect degeneracy of the cavity.

The spectra of DOS display the number of states with the same
energy. However, the degeneracy of energy (E−k= Ek) leads to the
indistinguishability of the states with momentum k and− k. To
determine the relationship between the quasienergy Ek and the
quasimomemtum k, which characterizes the corresponding band
structure of the SOC system, we should scan the transmission
intensity Ik ¼

P
sjTs

kj2 as a function of a post-selected Bloch
momentum state kj i (see section V of SI for more details). In
experiment, the state projection is carried out by a spatial light
modulator (SLM). The state kj i with a superposition of OAM
modes is transferred to the Gaussian mode with m= 0 that is
determined by a single mode fiber. However, due to the limitation
of the SLM’s spatial resolution, we can only project the output

state onto
��kexp� ¼ Pj¼N=2

j¼�N=2 e
�ijkexp j

�� � (j=m/2) with N setting to

12.
��kexp� approaches to kj i when N increases to infinity. The

detailed projection process can be found in Methods and the
photon distributions (Supplementary Fig. S3) after the SLM’s
modulation are shown in section VI of SI.

The representative theoretical and experimental band structures
with different δ (0, π/12 and π/6) at η= π/4 are shown in Fig. 3.
Note that due to the limited N (N= 12), the obtained transmission
intensity is a bit concentrated at kexp ¼ 0 and π. With the
improvement of the spatial resolution of SLM, the experimental
results will approach to the ideal results by increasing N. Since the
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band structure represents the refined DOS, the band gap of the
simulated topological system also can be read out directly.

It is well known that the SOC systems exhibiting different
topological phases can be distinguished by their winding numbers.
According to the intrinsic chiral symmetry determined by the form
of the unitary operation Ûðδ; ηÞ in one period, the topological bulk
invariant in such system can be defined by the winding number of
the unit vector n(k) in Hamiltonian Ĥeff . The vector n(k) winds
around a fixed axis z with varying k and the trajectory forms a circle
on the Bloch sphere. Through performing the polarization Pauli
measurements of σi (i= x, y, z) on the post-selected state kj i, the
transmission intensity Ik is modified to Iik ¼

P
ssniðkÞjTs

kj2.
Therefore, the unit vector n(k) and the corresponding winding
number can be derived from the variation of the transmission peaks
(see section VII of SI for more details).

For a periodic driving system, its topological phases should be
characterized by two different timeframes (different sequences of
the operations in the cavity)34,35. The different timeframes give
the same dispersion relationship but different windings of the
unit vector n(k), which correspond to different topologies (see
section II of SI for more details). For the 1st timeframe in Fig. 4a,
the evolution operation is Ûðδ; ηÞ ¼ JQðδÞJλðηÞJλðηÞJQðδÞ. By choos-
ing the parameters to be δ= π/2 and η= π/4, the experimental
(top panel) and numerical (bottom panel) transmission inten-
sities I

xþ
k by projecting the SAM mode to the horizontal

polarization state ð
��↻�þ ��↺�Þ= ffiffiffi

2
p

representing the eigenstate
of σx with eigenvalue+ 1, are shown in Fig. 4b.

Different from the transmission intensity Ik in Fig. 3b (which is
homogeneous along k), the normalized height of the transmitted
peaks of I

xþ
k is periodically modulated along k and exhibit the
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Fig. 2 detected photonic density of state (DOS) in (η, δ) space. a, d, and g The coupling among the photonic angular momentum with η= 0, π/8, π/4,
respectively. The coupling of SAM modes with different η are denoted as no lines, dashed lines and solid lines between nearby modes, respectively.
b, e, and h. The normalized transmission intensity as a function of the normalization cavity detuning parameters βΔL/π and δ/π. c, f, and i The spectra of
DOS when the gap closes and opens at different δ. The band gap areas are marked in gray.
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variations of snx(k). Furthermore, the height of the transmitted
peaks as a function of the quasimomentum k can be devided into
two complementary parts: one is for βΔL > 0 corresponding to the
upper band (s= 1), and the other is for βΔL < 0 corresponding to
the lower band (s=−1). Since n(k) in each band defines the same
winding number, without loss of generality, we choose the upper
band to calculate the topological winding number.

We further detect the normalized height of the transmitted
peaks of Ix�k by projecting the SAM mode of the output photons

to the vertical state ð ↻j i � ↺j iÞ= ffiffiffi
2

p
, which is the eigenstate of σx

with eigenvalue− 1. The value of nx(k) is determined by Ixk ¼
I
xþ
k � Ix�k and the corresponding experimental results are shown
in Fig. 4c (upper panel). The value of ny(k) can be determined by
Iyk ¼ I

yþ
k � Iy�k , where I

yþ
k and Iy�k represent the normalized height

of the transmitted peaks by projecting the SAM modes to ð ↻j i �
i ↺j iÞ= ffiffiffi

2
p

and ð ↻j i þ i ↺j iÞ= ffiffiffi
2

p
, respectively. The experimental

results are shown in the lower panel of Fig. 4c. Error bars are
estimated according to the fluctuation of the output intensities.

In the x− y plane, we find that the normalized vector
[nx(k), ny(k)] winds twice anticlockwise around the chiral axis
as the quasimomentum k traverses in the first Brillouin zone
[− π, π]. The corresponding experimental result is shown in
Fig. 4d, which indicates that the SOC system possesses a
nontrivial topology phase in the 1st timeframe with δ= π/2 and
η= π/4. The nontrivial topological insulator would support edge
states at interfaces where the topological invariant changes. For
instance, when the coupling between SAM breaks at the center of
the lattice (m= 0) with some unique designs (see section VIII of
SI and Supplementary Fig. S4 for more details), the interface
between the nontrivial topological bulk and “vacuum" can
support edge states. It is worth mentioning that the winding
numbers are protected by symmetry when the strength of the
disorder is less than the bandgap. However, the increasing
disorder can move the edge to the bulk bands.

On the other hand, the 2nd timeframe, with the evolution
unitary Û

0ðδ; ηÞ ¼ JλðηÞJQðδÞJQðδÞJλðηÞ, is constructed by exchanging
the Q-plate and WP in the cavity, which is shown in Fig. 4e. The
corresponding experimental results of nx(k) and ny(k) are shown
in Fig. 4f. In the x− y plane, n(k) winds 0 round in Fig. 4g. As a
result, although the SOC system in both timeframes have the
same band structure, they have completely different winding
numbers.

Discussion
In conclusion, we have experimentally demonstrated a compact
optical spin-orbital coupling system in a degenerate cavity. The
optical OAM degree of freedom serves as a synthetic dimension,
and the interaction strength of SOC, introduced by the Q-plate
and WP in the cavity, can be tuned conveniently. The DOS, band
structures, and topological windings of the synthetic topological
insulator, which shares the famous features of SSH model, are
directly obtained by detecting the transmission intensity of the
cavity. Through manipulating the parameters of the cavity, we
obtain multiple DOS to observe the closing of the band gap
directly and investigate the topological phases in different time
frames.

Our work provides a versatile platform based on an OAM
degenerate cavity to explore richer topological physics. Higher-
dimensional physics can then be exploited in the compact plat-
form. The 2-leg ladder model can be achieved by introducing an
additional Q-plate with q=−1 into the cavity. Moreover, the
setup is compatible with other synthetic dimensions, including
the frequency degree of freedom22. By introducing the external
gauge fields in the cavity, topological systems with the famous
Hofstadter’s butterfly spectrum can be directly investigated20.
Two-dimensional topological systems are generally more robust
than one-dimensional topological systems. The topological
properties of one-dimensional systems come purely from
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symmetries, while the topological properties of two-dimensional
systems come from gauge fields.

Moreover, non-Hermitian interactions would be realized
through involving the gain/loss of the spin degree of freedom in
the cavity and the non-Hermitian physics can also be well-
studied36,37. The introduced nonlinearities or gain/loss would
create “boundaries" inside the bulk and make the topological
systems without boundaries still present topological bulk prop-
erties. The degenerate cavity containing many optical angular
momentum may also suit for employing as all-optical devices,
such as quantum memory and optical filters38.

Methods
The operation of Q-plate. The Q-plate is composed of liquid crystal molecules
with different optical axes, each of which is equivalent to a half-wave plate32. The
optical axis of cylindrical coordinate satisfies

αðr; ϕÞ ¼ qϕ; ð4Þ
where q are constants. The Jones formalism of Q-plate MQ can be written as

MQ ¼ cosðδ=2ÞIþ i sinðδ=2Þ cos 2α sin 2α

sin 2α � cos 2α

� �
; ð5Þ

where δ is the optical retardation and is controlled by the applied electric field.
Within the paraxial approximation, a left (right)-circular polarized plane wave

E ¼ E0
1
± i

� �
eimϕ , denoted as

��↺ð↻Þ;m�
(where ↺(↻) denotes the left (right)-

circular polarized SAM modes and m is the topological charge of OAM, passes
through the Q-plate, and the plane wave would change to

E0

E0
¼ cosðδ=2Þ 1

± i

� �
þ i sinðδ=2Þei½ð± 2qþmÞϕ� 1

�i

� �
: ð6Þ

The vortex phase e±i2qϕ (topological charge is 2q) is introduced during the spin-to-
orbital angular momentum conversion.

The phase hologram. Within the paraxial approximation, the state mj i of the
photon carrying OAM with topological charge m can be approximately expressed
as

mj i ¼ E0e
imϕ; ð7Þ

where the phase ϕ ¼ tan�1ðy=xÞ in cartesian coordinates (x, y). The phase of
��kexp�

at the position of (x, y) is

φðkexp ;NÞðx; yÞ ¼ arg
Pj¼N=2

j¼�N=2
e�ijkexp j

�� �

¼ arg
Pm¼N

m¼�N
e�imðkexp=2þϕÞ;

ð8Þ

where j=m/2. For an 8-bit SLM, the modulation phase from 0 to 2π is mapped to
gray value 0 to 255. The hologram of basis

��kexp��kexp�� is given by

Hðkexp ;NÞðx; yÞ ¼ ½modðφðkexp ;NÞðx; yÞ; 2πÞ ´ 255�; ð9Þ
where Hðkexp ;NÞðx; yÞ represents the gray value at (x, y) position on SLM. The

hologram Hðkexp ;NÞðx; yÞ on SLM is parameterized by ðkexp;NÞ.

Data availability
All of the data supporting the conclusions are available within the article and the
Supplementary Information. Additional data are available from the corresponding
authors upon reasonable request.
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