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Depressive disorders (DDs) are one of the most widespread forms of psychiatric

pathology. According to the World Health Organization, about 350 million people in the

world are affected by this condition. Family and twin studies have demonstrated that the

contribution of genetic factors to the risk of the onset of DDs is quite large. Various

methodological approaches (analysis of candidate genes, genome-wide association

analysis, genome-wide sequencing) have been used, and a large number of the

associations between genes and different clinical DD variants and DD subphenotypes

have been published. However, in most cases, these associations have not been

confirmed in replication studies, and only a small number of genes have been proven

to be associated with DD development risk. To ascertain the role of genetic factors in

DD pathogenesis, further investigations of the relevant conditions are required. Special

consideration should be given to the polygenic characteristics noted in whole-genome

studies of the heritability of the disorder without a pronounced effect of the major gene.

These observations accentuate the relevance of the analysis of gene-interaction roles in

DD development and progression. It is important that association studies of the inherited

variants of the genome should be supported by analysis of dynamic changes during DD

progression. Epigenetic changes that cause modifications of a gene’s functional state

without changing its coding sequence are of primary interest. However, the opportunities

for studying changes in the epigenome, transcriptome, and proteome during DD are

limited by the nature of the disease and the need for brain tissue analysis, which is

possible only postmortem. Therefore, any association studies between DD pathogenesis

and epigenetic factors must be supplemented through the use of different animal models

of depression. A threefold approach comprising the combination of gene association

studies, assessment of the epigenetic state in DD patients, and analysis of different

“omic” changes in animal depression models will make it possible to evaluate the

contribution of genetic, epigenetic, and environmental factors to the development of

different forms of depression and to help develop ways to decrease the risk of depression

and improve the treatment of DD.
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INTRODUCTION

Depressive disorders (DDs) comprise one of themost widespread
forms of psychiatric pathology. According to the World Health
Organization, about 350 million people are affected by a DD. The
worldwide prevalence of DDs varies from 3% in Japan to 16.9%
in the USA; in most countries, this prevalence ranges from 8 to
12% (1). It is predicted that, by 2020, DDs will be the second-
leading cause of disability throughout the world after ischemic
heart disease (2).

DD entails a number of unfavorable consequences with
medical and sociological relevance, and affects significantly
the quality of life and adaptive ability. Long-term and
severe depression mixed with chronic somatic or neurological
conditions might lead to attempted suicide.

Despite the great medical and social significance of DDs,
there is no clear conceptualization to explain the causes and
mechanisms of DD development. Several theories have been
suggested to explain the onset of depression and have been
confirmed by biochemical, immunological, and physiological
studies. Parallel to well-known “monoamine,” “cytokine,” and
“stress-induced” (hypothalamus–pituitary–adrenal (HPA) axis
and stress theories) depression models, the phenomena of
altered brain neural plasticity and neurogenesis and circadian
rhythm desynchronosis (the chronobiological model) have been
proposed to explain the onset of depression.

Family and twin studies have provided strong evidence for
the contribution of genetic factors to the risk of depression. For
instance, a meta-analysis of twin research data shows that the
heritability rate for depression is 37% (95% CI: 31%−42%), and
data from family studies show a two- to threefold increase in
the risk of depression in first-degree offspring of patients with
depression (3). Heritability has also been shown to be especially
influential in severe forms of depression (4, 5). The illness severity
depends on whether DDs are inherited maternally or paternally
(6, 7).

Since 1978, when the first study devoted to identifying
possible candidate genes related to DDs was published (8), many
studies have searched for genes involved in the progression
of depression worldwide. Based on the available data on the
putative neurobiological mechanisms underlying DDs, more
than 100 candidate genes have been analyzed to identify
the possible associations between their alleles and the risk
of depression onset or its symptoms. The studies of DD
pathogenesis have yielded conflicting results. Development of
DNA microchip technology has made it possible to conduct
genome-wide associations studies (GWASs) to look for risk
factors of depression onset, independent of the hypotheses to
explain depression pathogenesis available at the time. However,
GWASs using large sets of samples, including thousands of
patients with different forms of DDs and tens of thousands
of patients in meta-analyses, have failed to identify any
specific loci responsible for predisposition to DDs. These
studies have also not unambiguously defined the biological
mechanisms underlying the pathogenesis of the pathology of
DDs. This failure to identify clearly the genetic associations and
underlying mechanisms indicate that depression is a complicated

multifactor heterogeneous psychiatric disorder. It is likely that
the predisposition to DDs is determined by the coordinated
action of many genes and their interaction with each other and
with diverse environmental factors. It is also likely that each gene
by itself makes a relatively small contribution to the pathogenesis
of the disease (9).

In this review, we discuss the principal theories to explain the
development of depression and the genetic evidence in support
of these theories. The final section discusses the results of GWASs
and the possible contribution of epigenetic factors to the risk of
onset of DDs.

BRIEF CHARACTERIZATION OF
DEPRESSIVE DISORDER

Depression
Depression (lat. depressio—gloominess, oppression) is a
psychiatric disorder characterized by a pathologically low mood
(hypothymia) and negative esteem about oneself, one’s status in
the real world, and one’s future (10). In other words, the major
depressive disorder is a complex and heterogeneous illness with
an etiopathogenesis that is based upon multiple factors that may
act at different levels, e.g., psychological, biological, genetic, and
social (11).

Two current reference classifications provide a clinical
description of depression: the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) and the
International Classification of Diseases, 10th Edition (ICD-10).

According to the DSM-IV, one of the principal forms
of depression is major depressive disorder (MDD). For an
appropriate diagnosis, five or more of the following 10 DSM-IV
symptoms must be exhibited:

• Depressive mood present continuously for a minimum 2-week
period prevalent every day and a larger part of the day

• Pronounced elevated emotional psychomotor activity in
children and teenagers

• Diminished ability to feel pleasure and rejoice
• Loss or gain of weight against a marked appetite alteration
• Sleep disturbances: insomnia at night and daytime sleepiness
• Objectively registered psychomotor agitation or motor

retardation
• Feeling of weakness, loss of energy, marked fatigue even after

minimal effort
• Lowered self-esteem and feeling of worthlessness, loss of

self-confidence, ungrounded self-accusation to the extent of
delirium

• Diminished ability to think or concentrate, mental slowness,
lack of resolution

• Thoughts or actions leading to self-injurious or suicidal
ideation.

The abovementioned symptoms must be present continuously
for at least 2 weeks and cause disturbance of a person’s normal
vital activities.

In terms of the manifestation of depressive symptoms, the
contemporary ICD-10 classification identifies a number of
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clinical variants of depression, which are classified according
to their severity, the presence of psychiatric symptoms, and
recurrence of DDs. Episodes of moderate depression (four or
more symptoms exhibited; F32.1) and severe depression without
psychotic symptoms (commonly with a number of symptoms,
usually with lowered self-estimation and suicidal thoughts and
attempts; F32.2), and a recurrent (repeated) DD of moderate or
severe degree (F33.2–F33.3).

It is important to note that the main classifications of DDs
have some differences and that this must be considered when
analyzing the experimental data in studies of depression in
humans. It is possible that some of the differences in results
between studies will be related to the use of different samples
of depressed patients who have been diagnosed according
to different clinical criteria. Moreover, in our opinion, it is
necessary to distinguish exo- and endogenous DD and analyze
this type of DD separately. Exogenous, or reactive, depression
is usually triggered by some situational stress, as losing a job,
the loss of a member of the family, divorce, or relationship
difficulties. As opposed to endogenous depression, exogenous
is environmentally caused, and associated with anxiety and
mood reactivity, and highly sensitive to psychosocial stressors.
Endogenous ormelancholic depression is a form of DD unrelated
to any pronounced exogenous factors (primary severe somatic
illness, illness in a close relative, perceived social problems. In
exogenous DD can clearly determine the causes of this disease.

MAJOR HYPOTHESES OF PATHOGENESIS
OF DEPRESSION: FROM CLINICAL AND
BIOCHEMICAL DATA TO CANDIDATE
GENES OF DEPRESSION

The Monoamine Theory
The monoamine hypothesis of depression, the first theory
historically, was proposed by Joseph Schildkraut in the 1960s.
This theory was based on the successful use of iproniazid
(monoamine oxidase inhibitor) (12–14) and imipramine
(reuptake inhibitor of monoamine neuromediators) for
depression (15, 16). As proposed by this theory, insufficiency
of monoamine neuromediators (serotonin, norepinephrine,
dopamine) in definite structures of the central nervous system
(CNS) may lead to the development of depression. Detailed
analysis of the mechanism of action of these preparations and of
later designed tricyclic antidepressants and reuptake inhibitors of
monoamine neuromediators confirmed the important role of the
imbalance and insufficiency of neuromediators in DDs (17–20).
According to the monoamine theory, the synthesis, vesicular
transport, and receptors of monoamine neuromediators play
an important role in the development of DDs. As a result,
the first genetic studies focused on identifying and analyzing
polymorphisms in genes associated with serotonin, noradrenalin,
and dopamine neurotransmission.

Most studies have analyzed SLC6A4 (previously known
as SERT), which encodes the serotonin transporter that is
responsible for the reuptake of serotonin (5-HTT) from the
synaptic cleft to the presynaptic neuron and thus plays a role

in maintenance of the serotonin level in the presynaptic region.
Interest in this transporter also arises from the observation
that inhibitors of neural serotonin reuptake are used widely in
psychiatry for the treatment of depression, anxiety, and other
conditions.

The serotonin transporter is encoded by the solute carrier
family 6 member 4 gene (SLC6A4) located on chromosome
17q11.1–17q12 (21). In the promotor region of SLC6A4, a 5-
HTTLPR (5-hydroxytryptamine transporter-linked polymorphic
region) polymorphism was shown to be associated with the
availability (the long L allele) or absence (the short S allele) of
the 44 bp fragment (22). The L allele bears 16 GC-rich repeated
elements of 20–23 bp, whereas the S allele carries 14 similar
repeated units that result from the deletion of the region from
the 6th to 8th repeated elements (23). In vitro studies have
shown that the S allele is associated with a lower expression level
of SLC6A4 mRNA and lower serotonin transporter expression
on membranes and, as a consequence, with a lower ability
for serotonin reuptake compared with the L allele (23, 24). A
number of other rare variants of 5-HTTLPR polymorphism,
which contained 15, 19, and >20 repeats, were later reported
(25).

In 2006, the single-nucleotide polymorphism (SNP) rs25531
(A→G) near the 5-HTTLPR polymorphism region was revealed
by Hu and coauthors. This polymorphism appears to show
linkage disequilibrium with 5-HTTLPR, and the G variant is
only found in the L allele carriers. The A→G substitution evokes
the appearance of the LG allele, the functional analog of the 5-
HTTLPR S allele (14, 26). This is because the A→G substitution
creates a strong AP2–DNA-binding site (TFBS) which, in turn,
suppresses the transcription of SLC6A4 in LG allele carriers
(13, 14). It appears that up to 15% of the individuals included in
previous studies as L allele carriers should have been functionally
classified as S allele carriers. This error may have distorted
the results and created false-positive or false-negative evidence.
Moreover, the situation appears to be more complicated and
clearly demonstrates possible problems in interpreting the results
of association analysis of individual polymorphic markers inside
candidate genes.

In 2008, another SNP, rs25532 (C→T) also localized near 5-
HTTLPR, was identified in the promotor region of SLC6A4. This
SNP changes the activity of the 5-HTTLPR/rs2553 combination
of polymorphisms. For instance, the LAC allele (the combination
of the L allele at the 5-HTTLPR polymorphism with the A and C
alleles at the rs25531 and rs25532 polymorphisms) is a variant
that ensures a high level of SLC6A4 expression (27). Further
studies revealed additional SNPs, with functionally significant
changes, such as G56A in exon 2 and 1425V in exon 9. The 1425V
mutation is located in the transmembrane area of 5-HTT, which
is important for the formation of the secondary structure of this
hydrophobic domain.

A polymorphic region comprising three alleles, Stin2.9,
Stin2.10, and Stin2.12, was discovered in intron 2 of SLC6A4.
This variable number tandem repeat polymorphism increases
the expression in proportion to the number of repeated copies
of the 16/17 bp element (12 > 10 > 9), as determined in the
embryonic brain and in human JAR cells (28). Stin2 alleles

Frontiers in Psychiatry | www.frontiersin.org 3 July 2018 | Volume 9 | Article 334

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Shadrina et al. Genetics Factors in Major Depression

respond differently to transcription factors YB-1 and CTCF
which, in turn, can be regulated by lithium chloride, which is
prescribed for the treatment of bipolar disorders (28, 29).

The structure of SLC6A4 may be far more complicated.
Recent publications have reported that the expression of
this gene is modulated by microRNA mir-16 binding sites
in the 3′-nontranslating region of the gene (30). Therefore,
polymorphisms localized within or near microRNA binding sites
may be able to exert a strong effect on SLC6A4 expression and,
consequently, on 5-HTT functions.

It is possible that the abovementioned complexity of SLC5A4
organization may be one reason for the conflicting results
obtained by analyses of the association of this gene’s polymorphic
variants (primarily in the analysis of the L/S polymorphism
of the 5-HTTLPR repeat) with the onset of depression. Meta-
analyses of these studies allow no final conclusion to be drawn
about the role of this polymorphism in the development of
depression. For instance, the meta-analysis conducted by Lopez-
Leon et al. (31) disclosed an elevated risk of DDs in S allele
carriers, whereas no similar association was found in carriers of
other alleles (32–34). The latest meta-analysis of the results of
23 original studies has shown that the S allele raises the risk of
DDs; the risk of depression in S allele carriers is increased 1.14-
fold (CI: 1.05–1.24). Nevertheless, the high level of heterogeneity
of the data included in this meta-analysis should be noted. In
all analyzed models, the association p-value does not reach 0.05.
This may be due to the inclusion in themeta-analysis of studies of
different size samples, including samples comprising fewer than
50 people (35).

In the context of the monoamine theory of DD development,
analysis of a large number of candidate genes has been
performed. They are, in particular, receptor genes for dopamine
(DRD3, DRD4) and serotonin (HTR1A, HTR2A, HTR1B,
HTR2C); genes for noradrenalin (SLC6A2) and dopamine
(SLC6A3); genes for the enzymes monoamine oxidase A
(MAOA), tyrosine hydroxylase (TH), tryptophan hydroxylase 1
(TPH1), catechol-o-methyl transferase (COMT); and the piccolo
presynaptic cytomatrix protein (PCLO). For each of these
genes, polymorphic variants were identified that were associated
with point mutations or tandem repeat polymorphisms. These
polymorphisms were analyzed in samples from patients of
different ethnicity with DD. As for SLC6A4, different studies
have produced conflicting results, and it seems reasonable not
to analyze the results of individual studies but to consider only
the meta-analyses that have shown the existence of associations
between definite variants of the genes and DD development.

One of the first large-scale meta-analyses of genetic case–
control research on DDs was conducted in 2008 by Lopez-Leon
and coauthors. The final analysis focused on 20 polymorphisms
in 18 genes. The pooled odds ratios (ORs) with 95% confidence
intervals (CIs) were calculated. Among the genes of the
monoaminergic system, statistically reliable associations were
found for SLC6A4 and SLC6A3 (31).

In another meta-analysis, Gatt et al. (36) attempted to
identify genes associated with DD and common genes shared by
the five severe psychiatric disorders: MDD, anxiety (including
panic disorders), schizophrenia, bipolar disorder, the attention

deficit–hyperactivity syndrome (36). Table 1 displays the data
for the genes whose products are involved in monoaminergic
neurotransmission.

It appears that polymorphic variants of the genes that are
in some way associated with the monoamine theory of DD
pathogenesis can influence the risk of developing depression.
However, this influence is not large and cannot be currently
regarded as unambiguously proven because of conflicting results
of both individual studies and meta-analyses.

Stress as a Cause of Depressive Disorders
Chronic stress and stressful life events early in life are strong
proximal predictors of the onset of depression. Although
the response to stress implies stability or maintenance of
homeostasis, long-time activation of the stress system can
cause harmful or even fatal consequences by elevating
the risk of obesity, heart diseases, depression, and other
disorders (37). The Hypothalamic–pituitary–adrenal axis and
its three main components—hypothalamic neurosecretory
cells, pituitary gland, and adrenal cortex—are responsible
for adaptation to changed environmental conditions and for
mobilization of the organism’s reserves during exposure to
stress of different etiologies. The HPA system operates in the
following way (Figure 1). In response to a stressor, neurons in
the hypothalamic paraventricular nuclei secrete corticotropin-
releasing hormone (CRH), which exerts its action on the
hypophysis to initiate the release into the blood circulation of
adrenocorticotropic hormone (ACTH), which stimulates the
release of corticosteroids, particularly cortisol, from the adrenal
cortex. The final hormonal product of the HPA axis, cortisol,
binds to mineralocorticoid receptors (type 1) and glucocorticoid
receptors (type 2) to form hormone–receptor complexes, which
are then transported into the cell nucleus where they interact
with specific DNA regions, the glucocorticoid-response elements,
to activate the expression of hormone-dependent genes (38).

The “stress-induced” theory of DD onset is based on the
assumption that hyperactivity of the HPA system may be an
important mechanism underlying the development of depression
after exposure to stress. A number of examples of abnormal
functioning of the HPA system during depression favor this
hypothesis. First, stressful events during one’s life are the
strongest factors that can initiate depression onset (39, 40).
Second, depressed patients frequently show elevated cortisol
levels (the human endogenous glucocorticoid) in plasma, urine,
and cerebrospinal fluid and corticotropin (ACTH) level in
plasma (41). Depressed patients also exhibit increased size
of the hypophysis and suprarenal glands (42) or decreased
function of corticosteroid receptors (43). Excessive activation
of the HPA axis is observed in 50% of depressed people, and
continuous administration of antidepressants helps to attenuate
this activation (44).

A large cohort of genes is likely to be involved in the normal
functioning of the HPA axis, but only some of these genes
have been actively investigated in the context of DDs. The
genes most likely to be involved in DDs are those encoding
the targets of cortisol and other glucocorticoid hormones
secreted during stress. Polymorphic variants of these genes were
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TABLE 1 | Associations shown in meta-analyses between DDs and polymorphic variants of the genes linked to the exchange of monoamine neuromediators*.

Gene Polymorphism Total number of

studies included

in meta analyses

OR Risk allele

DRD4 Dopamine receptor D4 48-bp VNTR 5 1.73 2-repeat

HTR1A 5-hydroxytryptamine receptor 1A rs6295 (C1019G) 9 0.82 G- allele

MAOA Monoamine oxidase A VNTR polymorphism in promotor region 9 1.23 L- allele

PCLO Piccolo presynaptic cytomatrix protein rs2522833 3 NR C- allele

SLC6A3 or DAT1 Solute carrier family 6 member 3 40-bp VNTR 3 2.06 9/10 - genotype

SLC6A4 or 5-HTT Solute carrier family 6 member 4 44-bp Ins/Del (5-HTTLPR) 24 1.11–1.23* S- allele

TPH2 Tryptophan hydroxylase 2 rs4570625 6 0.77–0.83 G- allele

rs11178997 4 0.75 T- allele

rs17110747 5 0.79 - 0.84 G- allele

*According to Gatt and coauthors with modifications (36).

FIGURE 1 | Schematic diagram of hypothalamic–pituitary–adrenal axis. CRF,

corticotropin-releasing factor; ACTH, adrenocorticotropic hormone; GRs,

glucocorticoid receptor; MRs, mineralocorticoid receptors. ,

Secretion; , stimulation; , inhibition.

analyzed in case-control studies and in some cases, associations
between these variants and development of DD were shown. For
instance, associations between DD onset and polymorphic sites
of the genes coding for the GR (NR3C1) and mineralocorticoid
receptor (MCR; NR3C2) have been reported (45–47). Moreover,

postmortem studies by Klok et al. (46) have shown that MCR
mRNA expression is reduced in the hippocampus in depressed
patients (46).

Associations with DD were also shown for genes CRHR1
and CRHR2, which encode CRH receptors (48). Lui et al. (48)
reported significant associations between depression and the
SNV rs242939 in the CRHR1 gene. These authors also showed
that the haplotype formed by G–G–T alleles of the rs1876828,
rs242939, and rs242941 was most often represented in patients
with MDD compared with controls (48). Szczepankiewicz et al.
(49) found associations between DD and the SNVs rs4076452
and rs16940655 ofCRHR1 gene (49). Xiao et al. (50) also reported
associations between the rs242939 polymorphism ofCRHR1 gene
and recurrent depression (50).

We note that some of the associations described earlier were
included in the meta-analyses by Lopez-Leon et al. (31) or Gatt
et al. (36). These authors did not find any reliable associations
between DDs and polymorphisms in the genes involved in the
functioning and regulation of the HPA axis (31, 36).

Disturbance of Neurogenesis and
Neuroplasticity
A large body of experimental data has recently provided evidence
of a link between the development of depression with disturbance
of normal neurogenesis during brain ontogenetic development
and decreased neurogenesis of the adult brain. These effects are
thought to be caused by metabolism disturbance of neurotrophic
factors, primarily the brain-derived neurotrophic factor (BDNF)
in nervous tissue (51–57).

BDNF is abundantly expressed in the adult brain’s limbic
structures. Some data have shown a connection between the
BDNF-mediated signaling pathway and the functioning of
serotoninergic neurons. For example, BDNF maintains the
survivability and differentiation of serotoninergic neurons, and
serotoninergic transmission exerts a strong influence on BDNF
expression (58–60).

A functional missense polymorphism rs6265 (GI96A) was
described in BDNF that is associated with the substitution of
methionine (Met) with valine (Val) in codon 66 (Val66Met).
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The Met allele was shown to cause disturbed maturation of the
protein and to be associated with decreased BDNF activity (61),
whichmight be caused by two differentmechanisms: the infective
transport of the mutant protein over the regulatory secretory
pathway and the defective transport of BDNFmRNA to dendrites
(62). Val66Met is a frequent polymorphism whose frequency of
alleles is determined by ethnicity. Met allele frequency is 25–
32% in European populations and reaches 40–50% in Asian
populations (63).

Some studies have reported an association of the Val66Met
polymorphism in BDNF with DD onset (64–66), but different
authors attribute the risk of DD to the effect of different allelic
variants. For instance, Frielingsdorf et al. (66) showed that Met
allele homozygotes are at significantly increased risk of MDD
(66), whereas Ribeiro et al. (65) defined the Val allele as an allele
for the risk for depression (65). This inconsistency motivated the
publication of a meta-analysis that combined the results of 14
original studies, but this analysis did not confirm an association
between the polymorphic variant in BDNF with DDs (63, 67).
The effect of this polymorphism may have been observed only
in interaction with other polymorphic systems, such as with
5-HTTLPR polymorphisms or after exposure to severe stress
(68, 69).

The Cytokine Theory
The brain was earlier thought to be an “immune-privileged”
organ that is protected from circulating immune cells by
the blood–brain barrier. It is now well known that immune
system cells can infiltrate into nervous tissue. Pro- and anti-
inflammatory signals can be transmitted to nervous system from
peripheral areas. Also, cytokines and their receptors can be
produced in the CNS by astrocytes, microglia (70) and, in some
cases, neurons. These molecules are believed to participate in the
processes of neuronal development, plasticity, synaptogenesis,
and tissue repair.

The hypothesis of bidirectional communication between the
immune system and the CNS was suggested in the 1990s.
According to this hypothesis, the immune system can interact
with the CNS as well as being involved in neuropathological
processes. In 1999, Maes M. proposed the inflammatory
response system (IRS) model of depression, which claimed
that the occurrence of depression depends on activation of
the IRS. According to this model, depression can be regarded
as a psychoneuroimmunological disease in which peripheral
activation of the immune system through the release of
anti-inflammatory cytokines can cause the various behavioral,
neuroendocrine, and neurochemical changes observed in this
disorder (71). This theory was later extended and is now referred
to as the “cytokine theory.”

Cytokines constitute a heterogeneous class of mediator
molecules produced as regulators of the immune response by
immunocompetent cells such as lymphocytes and microphages.
Cytokines can be classified into two groups: proinflammatory
and anti-inflammatory cytokines. Proinflammatory cytokines are
either immediately or indirectly involved in the inflammatory
process: interleukin 1 (IL-1), IL-2, IL-6, and IL-12; interferon γ

(IFNγ); and tumor necrosis factor α (TNFα). Anti-inflammatory

cytokines include IL-4, IL-10, and IL-13, which suppress the
immune response and thereby prevent both cell activation and
the production of proinflammatory molecules. Some cytokines,
such as IL-8, exert both the pro- and anti-inflammatory
functions, according to their concentration.

Immunological changes during depression and psychiatric
side effects caused by the use of cytokines in the treatments for
hepatitis and cancer provide evidence in favor of this theory. For
instance, stressors increase the expression of proinflammatory
cytokines such as IL-1β, TNFα, and IL-6) in blood and brain (72,
73). DD patients display increased granulocyte and macrophage
counts in peripheral blood (74).

In addition to associations with the depression, associations
between inflammatory markers and some symptoms, such as
apathy, cognitive dysfunction (75), and impaired sleep (76),
have been reported. For instance, sleep impairment in depressed
patients is associated with increased levels of IL-6 and the soluble
forms of intercellular adhesion type 1 molecules in plasma (76)
and with the activation in blood cells of nuclear factor-κB (NF-
κB), the principal transcription factor involved in initiation of
the inflammatory response (77). In other studies, about 50% of
the patients chronically administered IFNα developed symptoms
of depression, which further supports the role of inflammation in
DD pathogenesis (78, 79).

We note, however, that the average cytokine levels in the
plasma are elevated only slightly in DD patients compared with
healthy people and that these levels are sometimes close to the
physiological norm. In autoimmune or infectious diseases, the
cytokine levels increase considerably more. Therefore, DD is not
considered as a typical autoimmune disease (74).

IL1B is located at locus 2q14.1 on chromosome 2. Several SNPs
have been reported for this gene, and two—rs1143627 (−31T/C)
and rs16944 (−511C/T)—are associated with DD. Some studies
have reported an association between rs16944 (−511C/T) and
depression onset and with a positive response to treatment
with some antidepressant medications (80–83). Borkowska et al.
(81) reported a positive association with recurrent depression
(P = 0.064) for the polymorphic haplotype comprising the
rs1143627 SNP C allele and the rs16944 SNP T allele (81).
By contrast, Yu et al. (82) did not confirm an association of
the rs14944 SNP with major depression, although the severity
of depression symptoms was elevated in allele C homozygotes
(82). Similarly, Hwang et al. (84) failed to find any reliable
associations of rs16944 SNP with senile depression or the severity
of depression symptoms (84).

The SNPs rs1143627 (−31T/C) and rs16944 (−511C/T) are
found in the promoter region of the gene and can affect the
expression of this gene, which influences the IL-1β level. Chen
et al. (85) showed that SNP rs1143627 localizes in the TATA
box area in the IL1B promoter and that the T allele of this
polymorphism is associated with increased production of IL-1β
(85). However, other investigations have failed to find any reliable
associations of SNP rs1143627 with IL-1β production in vitro,
although one study found an association between elevated IL-
1β expression in vivo and the C allele (86). Data concerning
the influence of rs16944 (−511C/T) on IL1B expression are
also conflicting. For instance, Hall et al. (87) showed that this
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SNP influences the expression directly (87). On the other hand,
some data support the concept that the −511C/T polymorphism
influences the expression of the gene only when acting in concert
with the−31T/polymorphism (85).

Therefore, the current data concerning an association of
polymorphic variants of the IL1B promoter area do not allow any
unambiguous conclusions to be drawn about the role of this gene
in the development of depression.

Another actively studied gene, IL6, encodes the
proinflammatory cytokine IL-6 and is located at the 7p15.3
locus. The functional polymorphism rs1800795 (174G/C) is
located in the gene’s promoter region and influences gene
expression both at the mRNA and protein levels. The IL-6
level is lower in C allele carriers under conditions of immune
system activation (88). No association of this polymorphism
with major depression, depression in children, or postbrain
stroke depression has been found (89–91). However, this
polymorphism has been reported to affect the progression
of depressive symptoms in hepatitis C patients administered
the immunomodulators IFNα and ribavirin (92). Another
interesting observation in that study was the interaction between
the 5-HTTLPR polymorphism in the serotonin transport gene
(SLC6A4) and rs1800795. A “protective” effect of the 5-HTTLPR
polymorphism was observed only in the presence of the low-
expressing genotype for IL6 (CC). Consequently, in the genetics
of depression, the transition from the analysis of individual
polymorphic variants to the analysis of their combinations
including two, three, or more loci seems to be very important.

The Circadian Rhythm Theory
Circadian rhythms oscillate with ∼24-h periodicity and are
responsible for regulating a wide variety of physiological
and behavioral processes. Endogenous cyclic oscillations are
regulated in humans and other mammals by the circadian
pacemaker—the suprachiasmatic nucleus (SCN) neurons of the
anterior hypothalamus (93). The circadian pacemaker can change
its pattern so that the circadian rhythm may be advanced,
delayed, or remain constant in various pathological states or
when affected by different pharmacological preparations and
hormones; for instance, melatonin regulates the function of
the biological clock through melatoninergic receptors residing
in the hypothalamic SCN (94). At the cellular level, the
“molecular clock” refers to a network of “clock” genes,
which are transcriptional regulators organized in a feedback-
sustained transcription–translation network. This mechanism
helps maintain the rhythmic expression of target genes during
a 24-h cycle (95). The basis of the molecular clock is the negative
feedback loop, in which the expression of PER and CRY proteins
is inhibited by their interactions with the transcriptional factors
CLOCK and BMAL1 and by blocking their binding to E-box
regulatory elements in the promoters of the genes for PER and
CRY protein family members. Posttranslational modifications of
the molecular clock system components by signal molecules such
as casein kinase δ/ε and glycogen synthase kinase 3-beta play
important roles in the maintenance of circadian rhythms (96).

Sleep disorders (early awakening, insomnia, and inability to
resume sleep after waking) are observed in 80–90% of patients

with depression, and insomnia is regarded as a risk factor for the
onset of depression (97). Therefore, disturbance of the normal
functioning of circadian system proteins may play a role in DDs.
Additional evidence for the role of circadian rhythm genes in
DD onset was provided by studies of two familial syndromes
of sleep disturbance: familial advanced sleep-phase syndrome
and delayed sleep-phase syndrome (DSPS). Both syndromes are
caused bymutations in the genes PER2, CKie, PER3, and CLOCK,
which encode circadian system proteins (98). People with
these mutations frequently experience depressive symptoms. In
addition, people with a history of depression have elevated
expression of the circadian system genes CLOCK, PER1, and
BMAL1 compared with healthy volunteers (99). Case–control
studies have shown associations between depression onset and
polymorphic variants of the genes encoding circadian system
proteins, including BMAL1, CLOCK, NPAS2, PER3, CRY1, and
TIMELESS. However, none of these genes was confirmed in the
meta-analysis (100).

Other Candidate Genes
Investigations of the candidate genes selected according to the
principles of DD etiopathogenesis theories have identified only
five genes whose polymorphic variants are reliably associated
with DD onset according to the results of meta-analyses
(Table 1). However, all of these genes have been discussed only
in terms of the monoamine theory of depression.

The association research is not confined solely to the DD-
related candidate genes studied in terms of DD etiopathogenesis
theories. Other genes have also been actively studied, primarily
those analyzed for other neurological and psychiatric disorders.
Moreover, these studies have revealed a large amount of reliable
associations that have passed through testing in large meta-
analyzes (Table 2). These association studies have revealed genes
encoding functionally diverse proteins, from chondroitin sulfate
biosynthesis enzymes to the key enzyme of the renin–angiotensin
system (RAS). On the one hand, this may reflect the limited
understanding of DD etiopathogenesis, although the currently
known associations suggest new hypotheses. On the other hand,
many of the associations revealed are in some way linked to
neurogenesis and neuroplasticity processes, and DDs may be
regarded as disorders linked to disturbance of neural tissue
ontogenesis.

Associations between DD and polymorphic variants of the
genes angiotensin-converting enzyme (ACE), apolipoprotein E
(APOE), and methylenetetrahydrofolate reductase (MTHFR)
are of special interest. These genes have been discussed in
the context of another theory of DD etiopathogenesis—the
vascular theory—which postulates that DD occurs because of
disturbance in the blood supply to neural tissue. According to
this theory, vascular disorders can cause DD as well as other
mental illnesses such as schizophrenia and manic–depressive
psychosis. It is possible that there is a continuum of these
diseases, which are separated by only a thin line; for example,
some clinical subtypes of depression are characterized by marked
psychotic symptoms (F32.3 in ICD-10). Presumably, there may
be a complex link between genetic variants and the occurrence
of various pathologies along the continuum. For example,

Frontiers in Psychiatry | www.frontiersin.org 7 July 2018 | Volume 9 | Article 334

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Shadrina et al. Genetics Factors in Major Depression

TABLE 2 | Association shown by meta-analyses between DD and polymorphic variants of genes not linked with the general hypotheses of DD etiopathogenesis.

Gene Function Polymorphism Total number of

studies

OR Risk allele

ACE (angiotensin I

converting enzyme)

Encodes the key enzyme of the RAS; it

catalyzes conversion of angiotensin I to

angiotensin II and is involved in blood

pressure control

Ins/Del 15 1.18–

1.20

DD vs. II/ID

genotype

APOE (apolipoprotein E) The protein encoded by this gene forms

part of chylomicrons and very low-density

lipoproteins; it plays an important role in

lipid and cholesterol exchange, and

activates lipoprotein lipase and lecithin

choline acyltransferase

ε2/3/4 7 0.51 ε3 vs. ε2

MTHFR

(methylenetetrahydrofolate

reductase)

The protein encoded by this gene plays a

key role in folic acid metabolism by

converting

5,10-methylenetetrahydrofolate, a

coenzyme involved in homocysteine

remethylation

rs1801133 10 1.14–

1.20

T-allele

CHST11 (carbohydrate

sulfotransferase 11)

The protein encoded by this gene plays a

key role in chondroitin sulfate biosynthesis

rs1344677 2 1.32 T-allele

PTPRR (protein tyrosine

phosphatase, receptor

type R)

The protein encoded by this gene is a

member of the protein tyrosine

phosphatase family, which is involved in

the regulation of many cellular processes,

such as cell growth, differentiation,

mitosis, and oncogenic transformation.

rs4760933 2 0.60 G-allele

ADCY9 (adenylate cyclase

9)

Encodes the enzyme that catalyzes the

conversion of adenosine monophosphate

(AMP) to cyclic AMP

rs2239307 2 0.65 C-allele

ITPR1 (inositol

1,4,5-trisphosphate

receptor type 1)

Encodes an intracellular receptor for

inositol 1,4,5-trisphosphate, which

mediates release of calcium from the

endoplasmic reticulum

rs9311395 2 0.78 G-allele

DNAJB2 (DnaJ heat

shock protein family

(Hsp40) member B2)

Encodes a neuronal chaperone that may

help to protect against the development of

neurodegenerative processes

rs7596956 2 0.72 C-allele

EHD3 (EH domain

containing 3)

The protein encoded by this gene controls

cell membrane reorganization and

endocytosis processes through the

transport of endosomes to cell

membranes and endosome recycling in

the Golgi complex

rs590557 2 0.65 G-allele

FREM3 (FRAS1 related

extracellular matrix 3)

Encodes an extracellular matrix protein

that may play a role in cell adhesion

rs7676614 2 1.32 A-allele

GNB3 (G protein subunit

beta 3)

Encodes a G-protein that acts as a

modulator and switch in transmembrane

signaling systems and exhibits GTPase

activity

rs5443 3 1.38 T-allele

PHACTR3 (phosphatase

and actin regulator 3)

The protein encoded by this gene is

associated with the nuclear scaffold in

proliferating cells and can bind to actin

and the phosphatase 1 catalytic subunit

rs8122984 2 0.76 G-allele

HS6ST3 (heparan sulfate

6-O-sulfotransferase 3)

The protein encoded by this gene modifies

heparin sulfate and contributes to the

formation of structures needed for heparin

sulfate interaction with different proteins;

such interactions are involved in cell

proliferation, differentiation, adhesion,

inflammation, and other processes

rs17767562 2 0.76 C-allele

KLHL29 (kelch like family

member 29)

Unknown rs1653765 2 0.69 G-allele

(Continued)
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TABLE 2 | Continued

Gene Function Polymorphism Total number of

studies

OR Risk allele

LHFPL2 (lipoma HMGIC

fusion partner-like 2)

Unknown rs12651937 2 0.76 C-allele

SLC25A21 (solute carrier

family 25 member 21)

Encodes a protein that ensures

oxodicarboxylate transport across the

inner mitochondrial membrane

rs17105696 2 0.51 G-allele

UGT2A1 (UDP

glucuronosyltransferase

family 2 member A1

complex locus)

Encodes a protein that takes part in phase

II detoxification of xenobiotics and

catalyzes the conjugation of lipophilic

substrates with glucuronic acid

rs6832167 2 0.68 G-allele

VGLL4 (vestigial like family

member 4)

Encodes a coactivator of transcription

factors

rs6781822 2 1.35 T-allele

According to Gatt and coauthors with modifications (36).

genetically determined vascular disorders provoke increased risk
for different mental disorders. Progression of a particular disease
(e.g., schizophrenia, depression, manic–depressive psychosis)
may be determined by other genetic factors, such as those
associated with neuromediator functions.

GENOME-WIDE ASSOCIATION ANALYSIS
OF DEPRESSIVE DISORDER

As noted above, >20 genes have been associated with DD onset
and confirmed bymeta-analyses. Inmost cases, these associations
involve genes that are not directly linked to the general theories
of depression ethnopathogenesis. Association studies appeared
to be connected with transition to genome-wide methods of
association analysis without any suggestions about the genetic
risk factors of depression.

In the first stage of GWASs, families with members that
have experienced multiple depression events, severe course of
the disorder, or an early age at its clinical onset were analyzed
with special interest in patients with rare monogenic forms
of depression. The results of these studies are summarized in
Table 3. These studies have reported associations with extended
genomic regions (even as long as full-length chromosomes), and
the identification of the candidate genes seems to be provisional.
This identification mainly based on the DD candidate genes
mapped earlier in these genome regions.

GWASs have been used increasingly in the past decade to
identify loci that control complex traits. In this analysis, as
many as hundreds of thousands to several millions of SNPs
distributed over the whole genome are identified in groups of
persons having a particular trait of interest. Analysis of the
genotype–phenotype associations makes it possible to establish
a link between the allelic variant in some particular region
of the genome with the trait studied. The principal difference
between GWASs and candidate gene studies using the case–
control method is that there is no preliminary hypothesis to
explain the contribution of polymorphic variants of genes to
the development of a pathology of interest. However, for a
study to achieve statistically significant results, its algorithm

requires very large samples of both patients and healthy persons.
It can be extremely difficult to achieve clinical homogeneity
in very large samples, especially when studying psychiatric
diseases because there is always a subjectivity factor affecting the
diagnostic accuracy in the relevant international classifications
with almost no instrumental methods for assessing the patient’s
condition.

A number of studies have searched for loci associated with
MDD or individual symptoms of depression. The results are
summarized in Table 4. This table focuses mainly on those
studies that analyzed primarily the risk of depression as a disease
and not the endophenotypes (e.g., clinical onset age, severity of
particular symptoms, patients’ responses to therapy). As well,
Table 4 includes the most statistically significant results from the
analyzed articles.

The first GWAS of a large representative sample (1738 DD
patients, 1802 controls) was reported by Sullivan et al. (106). In
this study, no association with any of SNPs achieved the value
of genome wide significance. The maximum significance was
found for the rs2715148 (p = 7.7 × 10−7). Also, in this genomic
region near PCLO gene 10 more SNPs were associated with
DD with relatively low significance (p= 10−5-10–6). They were
mapped to a 167 kb region where PCLO was located (106). PCLO
protein localizes in the cytoplasmic matrix of the presynaptic
active zone and plays a significant role in brain monoaminergic
neurotransmission. A possible role of this region in depression
onset was confirmed by Hek et al. (115), who showed an
association between the rs2522833 SNP in PCLO and DD in a
population-based study from the Netherlands (115). Aragam et
al. (113) found a close statistically significant association between
DD development for the rs2715148 SNP (P = 5.64 × 10−7) in
PCLO in women (113). This study found another SNP in LGSN
that was associated with DD occurrence in men (rs9352774,
P = 2.26 × 10−4). This gene is actively expressed in the human
crystalline lens and encodes a protein related to GS-I and, to a
lesser degree, to GS-II glutamine synthetases. This protein may
play a role in glutamate exchange in both the retina and the
nervous system.

A role of glutamate in DD was found in a GWAS conducted
by Rietschel et al. (109). They found an association between DD
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TABLE 3 | Mapping the loci associated with predisposition to different forms of depression in family studies using SNP panels of DNA markers.

Reference Clinical phenotype Chromosome Candidate gene

(101) Recurrent depression with early onset 15q25.3–26.2 NTRK3 (neurotrophin 3 receptor)

(102) Recurrent depression, depression-predominant bipolar

disorder

12q23 NA

(103) Depression with early (31 years of age) onset; depression

with anxiety

chromosomes 3centr, 7p and 18q NA

(104) Recurrent depression without symptoms of bipolar

disorder

1p36, 12q23.3-q24.11 and 13q31.1-q31.3 NA

(105) Depressive disorder chromosomes 17 and 8 SLC6A4 (solute carrier family 6 member 4)

and the rs7713917 SNP (P = 5.87 × 10−5) located in a putative
regulatory region of HOMER1, which encodes proteins involved
in glutaminergic processes via interaction with the metabotropic
glutamate receptors mGluR1 and mGluR5.

We reiterate that the associations discovered in most GWASs
did not attain a genome-wide significance level, primarily
because of the genetic architecture of complex traits predisposing
to depression. Adjustments of the genome-wide significance level
are very rigorous, and we believe that SNP markers with a
probability value close to the genome-wide threshold level should
also be considered.

Some studies have achieved a genome-wide significance
level. Kohli et al. (112) were the first to report an association
between DDs and the rs1545843 SNP in SLC6A15 (solute
carrier family 6, neutral amino acid transporter, member 15)
in a recessive model of the effect of this polymorphism on
the risk of DDs (112). This gene encodes the neutral amino
acid transporter, and different rs1545843 alleles were shown to
have different SLC6A15 expression levels in the hippocampus
of epileptic patients. The authors presented additional evidence
to support the involvement of this association and showed that
the presence of the risk allele correlated with lower SLC6A15
expression in the hippocampus, smaller hippocampus volume,
and neuronal integrity in vivo. Lower expression of Slc6a15 was
also observed in the hippocampus of mice with elevated chronic
stress susceptibility.

Kohli et al. (112) reported abundant data in support of the
association between SLC6A15 and DD. However, subsequent
GWAS disclosed no significant associations with this gene. The
data obtained in GWASs are often not reproducible, and only one
gene, PCLO, appeared to be associated with DD in two GWASs.

The Psychiatric Genomics Consortium (PGC) performed
a meta-analysis of GWAS data. Unlike the conventional
meta-analyses, which summarize the statistical data for each
constituent analysis examined, the PGS study brought together
and examined individual genotypic and phenotypic data from
patients from different research centers. The PGS published
the results of its genome-wide comparative analysis of 9240
samples collected from DD patients and 9519 samples from a
control group of nine European populations (122). However,
in the PGS analysis, none of SNPs identified in earlier studies
achieved a genome-wide significance level. The SNPs with the
most significant values were rs11579964 (P = 1.0 × 10−7),

which mapped near CNIH4, NVL, and WDR26, and rs7647854
(P = 6.5 × 10−7), which mapped near C3orf70 and EHHADH.
A subsequent replicative study conducted using an independent
sample (6783 patients with MDD and 50,695 controls) did not
confirm the associations mentioned.

Therefore, no locus has been shown to be consistently
associated with a DD at a whole-genome significance level.
Associations shown in independent samples have also not been
reproduced. This lack of significance and reproducibility may
reflect the particular features of the GWAS methodology, which
has focused on polymorphic sites with a high minor allele
frequency (>5%) in the associative analysis. These frequent
polymorphic variants themselves are probably not pathogenically
essential, but there may be disequilibrium linkages with rare
variants of genes associated with DD pathogenesis. These rare
variants may be specific for different populations. As a result, any
association between the disease and a frequent polymorphic site
may be found in one sample and may reflect the disequilibrium
linkage of this polymorphic site with a rare, pathogenically
significant variant in that sample. However, the pathogenically
significant site may be missing in another sample and, as a
consequence, no association of frequent polymorphism with DD
occurrence will be found. In addition, the important role of
rare genomic variants (a frequency <1%) has been reported in
association with other mental disorders, such as schizophrenia
and autism (123, 124).

To overcome these problems, transition from the analysis of
polymorphic DNA markers using microarrays to low-coverage
DNA sequencing may provide a new direction for research to
identify DD-associated genetic variants. The first study of this
kind was conducted within the CONVERGE Project (125) and
included genome sequencing with an average coverage of 1.7
× in >9000 Chinese females; 5000 females out of this group
were patients with melancholic depression, which is recognized
as a more severe form of depression. This study found two loci
bearing an association at a 10−8 significance level: one on the
5′-side of SIRT1 (SNP rs12415800) and the other in an LHPP
intron (SNP rs35936514). This association was confirmed in an
independent sample of melancholic Chinese women, and the
significance values combined for the two samples were 2.53 ×

10−10 for SIRT1 and 6.45 × 10−12 for LHPP. It is important
to note that both associated SNPs occur frequently (e.g., the
minimal allele frequencies were 45.3 and 26.2%), yet neither is
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TABLE 4 | Genome-wide association studies of major depressive disorders (MDDs) and recurrent depressive disorders (RDDs).

Reference Clinical

phenotype

DNA-marker with the

smallest P-value

P-value Gene near SNP Gene function, metabolic pathway

(106) MDD rs2715148 7.7 × 10−7 PCLO (piccolo presynaptic

cytomatrix protein)

The protein encoded by this gene is part of the

presynaptic cytoskeletal matrix involved in the

formation of active synaptic zones and

transport of synaptic vesicles

(107) RDD rs4238010 5.80 × 10−6 CCND2 (cyclin D2) The protein encoded by this gene is involved in

control of cell cycle regulation (Gl/S transition)

in complex with CDK4 or CDK6 kinases

(108) RDD rs9416742

rs999845

1.30 × 10−7

3.1 × 10−6
BICC1 (bicaudal C

homolog 1)

Encodes an RNA-binding protein that is

involved in gene expression regulation by

modulating protein translation in

embryogenesis

(109) MDD rs2765501

rs7713917

1.66 × 10−7

5.87 × 10−5

CD5L (CD5 Molecule Like)

Near gene HOMER1 (homer

scaffolding protein 1)

Encodes a protein that participates in

regulation of the inflammatory response

The protein encoded by this gene is a member

of the HOMER scaffold protein family, which

plays an important role in calcium signalization

in many cell types

(110) RDD, MDD rs17077450 1.83 × 10−7 Near gene DSEL (dermatan

sulfate epimerase-like)

The protein encoded by this gene is involved in

metabolism of dermatan sulfate and

chondroitin sulfate

(111) RDD, MDD rs12462886

rs110634

1.73 × 10−6

6.78 × 10−7
No

ATP6V1B2 (ATPase H+

Transporting V1 Subunit B2)

Gene desert

Encodes a protein that is a noncatalytic subunit

of vacuolar ATPase complex VI

(112) MDD rs545843 5.53 × 10−8 SLC6A15 (solute carrier

family 6 member 15)

Encodes a protein that is a

potassium-dependent transporter of

uncharged amino acids that can play a role in

the transport of neuromediator precursors in

neurons

(113) MDD rs1558477

rs2522840

2.63 × 10−7

4.38 × 10−6

ADCYAP1R1 (ADCYAP

receptor type I)

PCLO (Piccolo Presynaptic

Cytomatrix Protein)

The protein encoded by this gene is a receptor

for pituitary adenylate cyclase-activating protein

1, which is involved in adenylate cyclase

activation

The protein encoded by this gene is part of the

presynaptic cytoskeletal matrix involved in the

formation of active synaptic zones and

transport of synaptic vesicles

(114) MDD rs11579964

rs7647854

4× 10−6

5 × 10−6

NVL (Nuclear VCP-Like)

C3or70 (chromosome 3

open reading frame 70)

Encodes the AAA–ATPase superfamily protein

NVL, whose different protein isoforms have

been localized to distinct regions of the nucleus

and have different functional properties

Unknown

(115) DD

symptoms

rs8020095

rs161645

3× 10−6

8 × 10−8

GPHN (gephyrin)

NUDT12 (Nudix Hydrolase

12)

Encodes the tubulin-binding protein gephyrin,

which is involved in glycine receptor

“anchorage” of the cytoskeleton; it is needed

for the localization of GABAA receptors in the

postsynaptic membrane.

Encodes a protein that regulates the

concentration of individual nucleotides

according to ambient conditions

(116) MDD rs8050326

rs11152166

3 × 10−7

3 × 10−6

IRF8 (Interferon Regulatory

Factor 8)

CCBE1(Collagen And

Calcium Binding EGF

Domains 1)

Encodes the transcriptional factor of Interferon

Regulatory Factor Family (IRF), that regulates

the expression of genes stimulated by type 1

IFNs

Encodes a protein that participates in

extracellular matrix remodeling

(117) MDD with late

onset age

rs7647854 5 × 10−11 C3orf170 (chromosome 3

open reading frame 170)

Unknown

(118) DD rs10485715 8 × 10−9 BMP2 (Bone

Morphogenetic Protein 2)

Encodes a protein that is a secreted TGF-beta

superfamily ligand that is important in bone and

cartilaginous tissue formation

(Continued)
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TABLE 4 | Continued

Reference Clinical

phenotype

DNA-marker with the

smallest P-value

P-value Gene near SNP Gene function, metabolic pathway

(119) DD in

hepatitis C

patients

rs1863918 8 × 10−8 ZNF354C (Zinc Finger

Protein 354C)

Encodes a protein that is a transcriptional factor

that binds to 5′-CCACA-3′-type sequences

(120) MDD\symptoms rs9825823 7 × 10−10 FHIT (Fragile Histidine Triad) Encodes a P1-P3-bis(5’-adenosyl)

triphosphate hydrolase, an enzyme involved in

the metabolism of purines

(121) MDD rs12552 6.1 × 10−19 OLFM4 (olfactomedin 4) Encodes a protein that is an antiapoptotic

factor that promotes tumor growth;

rs1432639 4.6 × 10−15 NEGR1 (neuronal growth

regulator 1)

Encodes a protein that serve as cell - adhesion

molecules and regulate cellular processes as

neurite outgrowth and synapse formation

rs12129573 4.0 × 10−12 LINC01360 (long intergenic

non- protein coding RNA

1360)

Unknown

chr5_103942055_D 7.5 × 10−12 Unknown Unknown

rs8025231 2.4 x 10−12 Unknown Unknown

included in the microarrays used widely for SNP marker typing
and, therefore, may have been ignored in earlier GWASs.

Further analysis of the data in this project showed that
frequent SNPs accounted for 20–30% of the DD risk dispersion,
which suggested that the heritability of DD is evenly distributed
over all chromosomes with preferential localization of DD-
associated SNPs in both the coding and the 3′-untranslated areas
of genes. DD patients showed an elevated frequency of unique
mutations in gene coding regions, primarily in the genes actively
expressed in nervous tissue (126).

Importantly, this study included a specific ethnic group (Han
Chinese), which is sufficiently homogeneous, and only females,
who show a higher heritability level as mentioned above, with
a severe form of DD. This design included a more rigorous
approach to inclusion of samples and consideration of factors
such as the patients’ sex, clinical DD variation, clinical onset
age, and other factors that can affect the risk of disease and its
progression. However, these factors may exert no influence on
the risk of DD development; for example, the clinical onset age
was recently shown to not affect the association analysis results
in the Chinese CONVERGE sample (127).

Another study also found that ethnicity was important (128).
That study included a combined analysis of the results obtained
in the CONVERGE investigation of Chinese and of studies
conducted by the PGC in different European populations.
These studies found that some SNPs influence the risk of
DD onset in both ethnic groups mentioned but, at the same
time, detected a set of SNPs specific to each ethnic group.
The highest contribution of genetic factors in both ethnic
groups was observed in females and in recurrently depressed
patients.

Powers et al. (116) attempted to include environmental factors
into GWASs (116). They included as a factor stress-provoking
events when including case–control pairs of patients in the
study—a method referred to as propensity score matching. This
analysis allowed them to reduce the heterogeneity of the samples

with regard to the stress factor and to compare DD patients and
healthy controls exposed to similar stressors.

The genetic structure of depression appears to be extremely
complicated and involves a large number of loci, which cause
various phenotypic effects and display complex interlocus
interactions. Studies of the genetic structure suggest the need for
a transition from the analysis of individual SNPs to that of sets
of SNPs and, finally, to include a polygenic risk score, as used in
genetics research of schizophrenia (129).

To address similar problem, a strategy for studying gene
networks created by uniting signals from numerous SNPs and
subsequent functional analysis of the signaling and metabolic
pathways have been used with success. This approach provides
for an increase in the power of comparative analysis of weak
signals from numerous loci. The study by Song et al. (130) is
an example of such an analysis. On the basis of a GWAS of
samples from European cohorts, the authors conducted a search
and analysis of DD-linked SNPs and genes with these SNPs
to discover signal pathways linking these genes to each other
(130). Five resulting signal paths were found to play a role in
DD pathogenesis. Three of them were claimed to be connected
in some way with the negative regulation of gene expression
(GO:0016481, GO:0045934, GO:0010629) and were related to
some DD-associated SNPs: rs3213764 in ATF7IP; rs2301721 in
HOXA7; rs6720481 in LRRFIP1; rs2229742 in NRIP1.

Okbay et al. (118) and Hyde et al. (131) offered an alternative
approach for sampling (118, 131). To diagnose DDs, they
compiled a questionnaire to be completed by the respondents.
Depression was diagnosed on the basis of the respondents’
answers to the questionnaire with no clinical diagnosis by
a psychiatrist. Although the accuracy of the diagnosis may
be questioned, the questionnaire included questions on a
wide range of phenotypic traits, and respondents could not
associate them with any diagnoses. Data from biobanks or mass
genotyping services such as 23 andMe allowed them to markedly
increase the sample size. For example, the study by Hyde et
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al. (131) included >450,000 individuals, and analysis of their
questionnaire data allowed them to diagnose depression in about
120,000 participants (131). Samples of this size are an order
of magnitude greater than those included in the PGC studies
or CONVERGE Project, and help to minimize the problems
caused by DD diagnostic errors. The authors managed to identify
17 SNP markers in 15 loci whose significance level was >5 ×

10−8, which reflects the size of the sample analyzed. The DNA
markers detected differ from those associated with DD in the
PGC studies, although they both analyzed samples of European
origin. Therefore, the problem of the reproducibility of results
obtained in the GWASs remains to be solved.

A possible way to solve this problem is to conduct a meta-
analysis of GWA studies. This analysis was carried out by Wray
et al. (121). This meta-analysis identified 44 independent loci
that were statistically significant (P < 5 × 10−8). Of these loci,
30 are new and 14 were significant in a prior study of MDD
or depressive symptoms, and 6 shared loci with schizophrenia.
Thus, the increase in sample sizes in the meta-analysis, on the
one hand, allows the confirmation of the results obtained earlier
with GWAS for the previously described loci associated with
MDD. On the other hand, it increases the power of the study,
by increasing the sample size, making it possible to identify new
loci associated with the MDD.

Several methods were proposed for calculating of genetic
risk score (GRS): simple count genetic risk score (SC-GRS),
odds ratio weighted genetic risk score (OR-GRS), direct logistic
regression genetic risk score (DL-GRS), polygenic genetic risk
score (PG-GRS) and explained variance weighted genetic risk
score (EV-GRS). Currently, the most widely used method is
polygenic risk score (PGRS) (132). This approach has been
used to obtain evidence of a genetic effect even when no single
markers are significant, to establish a common genetic basis
for related disorders, and to construct risk prediction models
(133). Currently, alternative approaches to statistical analysis
of GWASs data are proposed, where the analysis is not of
individual DNA markers, but their combinations. Recently,
several papers have been published using PGRS for the MDD
and other psychiatric disorders (134–136). The possibility of
using the PGRS to evaluate the cumulative contribution of
several polymorphic variants of genes to the formation of
endophenotypes ofMDDwas demonstrated.Whalley et al. (135),
using the PGRS, divided the MDD into two subtypes, one of
which is close to schizophrenia (135).

CONCLUSIONS

Summing up the last quarter-century of investigation of the
role of genetic factors in DD onset and progression, we note
the polygenicity of inherited diseases with no pronounced effect
of the principal gene. This has been made clear by recent
studies undertaken in the CONVERGENCE and PGC studies
and by analysis of candidate genes, which show that each of
the genes implicated probably make a small contribution to
DD progression. The important role of intergenic interactions
has not been studied to date and will require new methods

to analyze the data of association studies by including the
contribution of combinations of two or more polymorphic DNA
markers.

As noted above, DD typically has a high phenotypic
heterogeneity, which may be manifested in differing severity
of the main symptoms, and this heterogeneity limits the use
of association studies. An approach to analyzing very large
samples with minimally rigid assessment criteria for the DD
phenotype (an extreme example is the variant identified by the
23andMe company associated with self-diagnostics of DD) is one
possibility, but this must be supplemented by analysis of small
and clinically highly homologous samples. This kind of analysis
may not clear up the uncertainty about the genetics of DD on
the whole, but it will make it possible to identify certain genetic
variants underlying individual subphenotypes of DD.

A small but growing body of evidence suggests that
mitochondrial dysfunction may play a role in the development
of MDD. MDD was found to be associated with an increased
production of mtROS, which could indicate a dysfunction of
mitochondria (137, 138). Gardner et al. (139) found a decrease of
mitochondrial ATP production rates and mitochondrial enzyme
ratios in the muscle of patients with major depressive disorder
and chronic physical conditions compared to controls (139). As
well, decreased levels of an important part of electron transport
chain, i.e., CoQ10, were found in the serum and peripheral blood
mononuclear cells received from patients with MDD, which may
also indicate a dysfunction of mitochondria (140).

Currently, however, there have been few studies on the
role of genetic variants in mitochondrial DNA associated
with MDD. A deletion in mtDNA in a child was associated
with mitochondrial disease symptoms and with mild-moderate
unipolar depression (141). Sequeira et al. (142) have analyzed
post-mortem brain samples from human subjects and were failed
to show associations of themitochondrial haplogroups andmajor
depression. However rare homoplasmic mutations with possible
functional consequences were reveled in major depression cases,
in the ATP synthase 8 (ATP8), ATP synthase 6 (ATP6), ND5
and cytochrome b (CYTB) genes, while another subject with
depression demonstrated subthreshold heteroplasmy rate at a
variant in the displacement loop (D-loop) part of mtDNA (142).
Veronese et al. (143) found no significant associations between
specific mitochondrial haplogroups and depressive symptoms
either (143). Thus, changes in the functioning of mitochondria
may be caused both by an abnormality of the mitochondrial
DNA, and by variants of nuclear genes that encodemitochondrial
proteins. The meta-analysis conducted by Huo et al. (141)
identified SCL25A37 as a novel MDD risk gene, and Zhang et al.
(144) have showed that a haplotype T-C consisting of rs12457810
and rs12964485 in the 5’-upstream region of NDUFV2 may be a
protective factor for the development of MDD in Han Chinese
(144, 145).

It is also important to supplement the association studies
of inherited genome variants with analysis of dynamic
modifications occurring during DD. There is much interest
in the epigenetic changes that can modify a gene’s functional
status without changing its coding sequence. These epigenetic
modifications can be caused by the action of different factors
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and can be stably inherited after disappearance of the factor
causing the change. These epigenetic factors primarily involve
DNA methylation and histone modification (methylation and
acetylation). In recent years, several studies have analyzed
changes in DNA methylation in DD. The first genome-wide
analysis of methylation profiles in DD was by Sabuncian et al.
(146), who assessed DNA methylation in postmortem frontal
cortex material from DD patients and healthy people. In a
number of regions, methylation differed reliably between healthy
individuals and DD patients (146). A subsequent replicative
investigation confirmed this modification of the methylation
status in DD patients of the proline rich membrane anchor
1 gene, PRIMA1, which codes for the protein responsible
for the assembly of acetylcholine esterase into tetramers and
its “anchorage” in the neuron cellular membranes (147).
This gene has not been mentioned in association with DD
onset. Methylome changes were reported in peripheral blood
of twins discordant with regard to DD occurrence. This
study also reported on associative studies showing that, in
some cases, the changes were related to genes linked to the
development of the disorder (e.g., ZBTB20, AGTPB1, TBC1D8,
and CLSTN1) (148). A number of studies have focused on
associations between DD and histone methylation or acetylation
(149, 150). Changes in lysine methylation of histone K27H3
were found postmortem in the BDNF promotor region in
the prefrontal and frontal cortex of DD patients, and these
changes correlated well with the expression level of BDNF.
However, in this review, we do not analyze in detail the role
of epigenetic factors in the development of the pathogenesis
of DD.

Investigation of changes in the epigenome, transcriptome,
and proteome in DD is probably limited by the nature of this
disease and the need for brain tissue, which is possible only
postmortem. Researchers must work with an extremely limited
number of samples from patients, many of whom are on long-
term treatment for both DD and somatic conditions. Therefore,
to understand fully the entire process involved in DD onset and
progression, studies of DD pathogenesis must be supplemented
with experiments using different animal models of depression,
which would permit an evaluation at different levels of the
nervous system organization.

A threefold approach that combines gene-association studies
with assessment of the epigenetic status of DD patients and
analysis of the changes in animal models of depression,
despite the limitations of such models (34), will enable
researchers to identify the contributions of genetic, epigenetic,
and environmental factors to different forms of DDs and to
develop ways to reduce the risk of depression and to provide
adequate treatment.
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