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【 CASE REPORT 】
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Abstract:
The low-density lipoprotein-cholesterol (LDL-C) level of a 38-year-old man diagnosed with acute coronary

syndrome was 257 mg/dL. The administration of a proprotein convertase subtilisin-kexin type 9 (PCSK9) an-

tibody in addition to rosuvastatin plus ezetimibe was initiated, reducing his LDL-C level to 37 mg/dL. A ge-

netic analysis revealed both an LDL receptor (LDLR) mutation and a PCSK9 V4I mutation. Nine months af-

ter revascularization, intravascular ultrasound revealed plaque regression in the coronary arteries. LDLR/PCSK
9 mutation carriers are prone to coronary artery disease. Intensive LDL-C lowering by including PCSK9 anti-

body was associated with coronary plaque regression, suggesting the expectation of prognosis improvement.
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Introduction

Familial hypercholesterolemia (FH) is characterized by

marked hypercholesterolemia since birth, and FH patients

are known to develop early coronary artery diseases

(CADs) (1). Therefore, the early diagnosis of this disease is

important for the prognosis.

Evolocumab (AMG-145; Repatha™, Amgen, Thousand

Oaks, USA) is a monoclonal antibody that inhibits propro-

tein convertase subtilisin-kexin type 9 (PCSK9) and lowers

the low-density lipoprotein cholesterol (LDL-C) levels (2).

The Further Cardiovascular Outcomes Research with PCSK9

Inhibition in Subjects with Elevated Risk (FOURIER) trial

recently revealed that the inhibition of PCSK9 with evolocu-

mab combined with statin therapy lowered LDL-C levels

and reduced the risk of cardiovascular events (3). Further-

more, the Global Assessment of Plaque Regression with a

PCSK9 Antibody as Measured by Intravascular Ultrasound

(GLAGOV) Randomized Clinical Trial demonstrated that the

addition of evolocumab to statin therapy produced greater

LDL-C-lowering effects and atheroma regression than statin

monotherapy (4).

The combination of an LDL receptor (LDLR) gene muta-

tion and a PCSK9 V4I mutation in clinically diagnosed FH

is a severe state and causes an individual to be prone to

CAD (5). We herein report the first case of acute coronary

syndrome in a double-heterozygous FH patient (LDLR/

PCSK9) who received a PCSK9 antibody associated with

coronary plaque regression.
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Figure　1.　Coronary angiography. (A) Total occlusion of the mid right coronary artery (arrow). (B) 
Total occlusion of the proximal left anterior descending coronary artery (arrow). (C) Post-stent de-
ployment, with excellent results.
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Case Report

A 38-year-old man was admitted to the emergency depart-

ment complaining of sudden left-sided chest compression.

His cardiac risk factors were dyslipidemia, current smoking

status and a family history. His father had suffered from

myocardial infarction at 40 years of age, and his mother and

older sister showed lipid abnormalities. His body height was

176 cm, and his body weight was 75 kg. Dyslipidemia had

been noted at 18 years of age. His medications included

atorvastatin 10 mg daily, but his adherence was poor.

An electrocardiogram (ECG) in the emergency department

showed severe ST-segment elevation in leads II, III, and

aVF and depression in leads V1-V6. His echocardiogram re-

sults showed hypokinesis in the posterior wall and septum in

the left ventricle. All cardiac enzyme levels, including those

of troponin-T, were normal. Considering these findings, he

was diagnosed with ST elevation myocardial infarction and

underwent emergent coronary angiography (CAG) because

his symptoms persisted and his cardiac enzyme levels had

increased over time. CAG revealed occlusion of the proxi-

mal right coronary artery (RCA) and the proximal left ante-

rior descending coronary artery (LAD) (Fig. 1A and B).

ECG and echocardiogram results showed that the culprit le-

sion was in the RCA, as indicated by the presence of hy-

pokinesis in its posterior wall. Therefore, a 3.5×28-mm

biolimus-eluting stent (BMX-J™; Terumo, Tokyo, Japan)

and a 4.0×33-mm everolimus-eluting stent (Xience Alpine

™; Abbott Vascular, Santa Clara, USA) were implanted in

the RCA, generating excellent results on both angiography

(Fig. 1C) and intravascular ultrasound (IVUS), without any

stent edge dissection or incomplete dilatation.

At the emergency department, the patient’s LDL-C, high-

density lipoprotein-cholesterol (HDL-C) and triglyceride

(TG) levels were 257, 38 and 378 mg/dL, respectively.

These levels were measured using the direct method accord-

ing to the protocol supplied by the manufacturer. This pa-

tient exhibited dyslipidemia at a young age and had a family

history of dyslipidemia. According to his home doctor, the

LDL-C level while untreated was 272 mg/dL. Therefore, the

patient was suspected of having FH. In addition to his LDL-
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Figure　2.　Clinical courses of the LDL cholesterol concentration levels (upper panel) and detailed 
serial changes in the lipid parameters (lower panel). LDL: low-density lipoprotein
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C level and family history, Achilles’ tendon thickening and

the presence of corneal rings were observed. Achilles tendon

xanthoma (right 11 mm, left 13 mm) confirmed the diagno-

sis of FH according to both Japanese (6) and Western (7-9)

diagnostic criteria. Lipid management combined with rosu-

vastatin 20 mg and ezetimibe 10 mg did not achieve the tar-

get level of the guidelines (10), so a human anti-PCSK9

monoclonal antibody, evolocumab, was introduced. After 2

months, the patient’s LDL-C, HDL-C and TG levels had im-

proved to 37, 41 and 121 mg/dL, respectively, with rosuvas-

tatin 10 mg daily and evolocumab 140 mg administered per-

cutaneously every 2 weeks.

Detailed serial changes in the lipid parameters are shown

in Fig. 2. The time of lipid measurement was just before

evolocumab injection. PCSK9 antibody was initiated to

achieve the target level of the guidelines. As the target level

of the guideline was achieved by the introduction of PCSK9

antibody, the rosuvastatin dose was reduced and ezetimibe

was withdrawn. Evolocumab is approved for subcutaneous

injection at 140 mg once every 2 weeks or 420 mg once

every 4 weeks; given that the effects of these approaches

considered equivalent, injecting 140 mg subcutaneously

once every 2 weeks is more economical.

To examine the phenotype of FH, we performed a genetic

analysis as described previously (5). The genetic analysis re-

vealed that the patient had an LDLR frameshift mutation

(c.1655delT, p.I531TfsX15) and a PCSK9 V4I mutation.

Figs. 3 and 4 show the DNA sequence data of exon 11 of

LDLR gene and exon 1 of PCSK9 gene, respectively.

Three months after the initial percutaneous coronary inter-

vention (PCI), the LAD lesion was successfully stented with

a 3.0×33-mm everolimus-eluting stent (Xience Alpine™;

Abbott Vascular) at a university hospital. No further stent

thrombosis or stent restenosis had occurred at nine months

of follow-up.

In intravascular studies, serial changes on IVUS (40-MHz

IntrafocusⓇ WR, Terumo, at the acute phase; and 60-MHz

AltaViewⓇ, Terumo, at the follow-up phase) demonstrated

that the percent atheroma volume (PAV) (4, 11) was de-

creased at 9 months (41.6%, Fig. 5D) compared with imme-

diately after PCI (45.3%, Fig. 5B). The detailed measure-

ment results are shown in Table. Aggressive LDL-C-

lowering therapy with PCSK9 antibody plus rosuvastatin re-

sulted in coronary plaque regression. The patient’s other

family members were not genotyped.

The patient provided their consent for the publication of

this study. The protocol for the genetic analysis was ap-

proved by the Ethics Review Committee of the National

Cerebral and Cardiovascular Center (M17-56).

Discussion

The c.1655delT, p.I531TfsX15 mutation present in exon

11 of the LDLR gene detected in this report has already

been reported (1). Because this mutation alters the reading

frame of the codon, inducing a stop codon in the EGF pre-

cursor homology region of mature LDLR, it produces trun-

cated LDLR protein lacking the EGF precursor homology

region, the O-linked carbohydrate region, the membrane-

spanning domain and the cytoplasmic-tail region. Although
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Figure　3.　DNA sequence data of exon 11 of LDLR gene. The arrowhead in the upper panel indicates 
the c.1655delT, p.I531TfsX15 mutation. (･･･ACACT･･･) instead of the normal subject data 
(･･･ACATCT･･･).
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Figure　4.　DNA sequence data of exon 1 of the PCSK9 gene. The arrowhead indicates the c.10G>A, 
p.V4I mutation [GGGCACC(G/A)TCA] instead of the normal subject data (GGGCACCGTCA).

PCSK9, exon 1, c. 10G>A, p.V4I muta

no functional assay has been reported for this mutation, the

truncated protein is considered to lose its function as a cell

surface LDLR protein (12). In addition, this mutation is de-

fined as pathogenic in ClinVar (13). Therefore, the LDLR

activity is considered to have been completely lost.

We recently reported that there were no changes in the

levels of serum lipids, such as LDL-C, due to the presence

or absence of V4I mutation in the PCSK9 gene in FH het-

erozygotes, but patients with both V4I mutation in the

PCSK9 gene and a mutation in the LDLR gene showed a

30% increase in the serum untreated LDL-C level and fre-

quency of coronary artery disease compared with patients

with a mutation in the LDLR gene only (5). Therefore, in

patients with a mutation in the LDLR gene, the PCSK9 V4I

mutant may function as a modifier of the clinical manifesta-

tion. In addition, when we prepared a plasmid with a V4I

mutation in the PCSK9 gene, introduced it into HEK 293

cells, and compared it with a wild-type (WT) plasmid-

introduced strain, we confirmed that PCSK9 V4I mutant was

expressed intracellularly and secreted outside the cell, and

the expression of LDLR and the uptake of LDL into the cell

were also the same as with the PCSK9 WT plasmid (Hori et

al. in preparation). Therefore, we believe that the presence

of only the V4I mutation in the PCSK9 gene does not affect

the LDLR activity. In contrast, in patients with a truncated

mutation in LDLR (resulting in half of the typical LDLR

activity), overlapping of the V4I mutation in the PCSK9

gene may further reduce the LDLR activity. However, the

mechanism has not been clarified.

Arteriosclerotic plaques can regress for a long time (14),

according to large-scale clinical studies (15), thus verifying

the close relationship between LDL-C levels and the inci-

dence of atherosclerotic diseases and eliciting significant in-

terest in the mechanism underlying this interaction. Further-
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Table.　Detailed Measurement Results Obtained by Intravascular Ultrasounds (IVUSs).

Status
Lumen volume 

(mm3)

Vessel volume 

(mm3)

TAV 

(mm3)

Length 

(mm)

PAV 

(%)

ΔPAV 

(%)

ΔTAV 

(mm3)

initial IVUS 145 264 120 10 45.3

9 months IVUS 151 259 108 10 41.6 -3.7 -12

TAV: total atheroma volume, PAV: percent atheroma volume, ΔPAV: differences in PAV between initial and 9 

month IVUS, ΔTAV: differences in TAV between initial and 9 month IVUS

Figure　5.　(A) Intravascular ultrasound (IVUS) images (arrowhead site in Fig. 1C) immediately 
after PCI. (B) IVUS images (arrowhead site in Fig. 1C) immediately after PCI. The yellow zones 
indicate plaque. (C) IVUS images (arrowhead site in Fig. 1C) nine months after PCI. (D) IVUS images 
(arrowhead site in Fig. 1C) nine months after PCI. The yellow zones indicate plaque. PCI: percutane-
ous coronary intervention

(A)

(C)

(B)

(D)

more, with IVUS, changes in coronary plaques over time

can be observed easily. In addition, with the introduction of

statins, which can significantly improve the lipid profile,

plaque regression following drug intervention has been con-

firmed. Recently, with the advent of intravascular endoscopy

and optical coherence tomography (OCT), aspects of plaque

regression have gradually become apparent. We analyzed

coronary plaque progression/regression using IVUS and re-

ported that combination therapy with a statin and ezetimibe

resulted in coronary plaque regression after 9 to 12 months

of treatment (11).

FH is an autosomal-dominant inherited disorder that is

caused by mutations in the LDLR and PCSK9 genes (16). In

Japan, one FH homozygote patient is estimated per million,

and one FH heterozygote patient is estimated per 500 (17).

In 1973, Khachadurian et al. reported on families with a

background of genetically dominant hypercholesterolemia

and on those with recessive inheritance (18). In 1974,

Brown and Goldstein found that genetically dominant hyper-

cholesterolemia was caused by mutations in the LDLR gene,

which became known as FH (19). It has become clear, how-

ever, that some patients with the FH phenotype do not ex-

hibit mutations in the LDLR gene. A report in 1986 found

that a mutation in the apolipoprotein B-100 (APOB) gene,

which is a ligand for LDLR, resulted in a decreased binding

affinity to LDLR and defective familial apoB-100 (FDB),

producing the pathology of FH (20). Two frameshift muta-

tions (the 5-bp insertion at codon 395 in exon 9 and the

single-nucleotide deletion at codon 531 in exon 11) were

detected in the mutant LDLR genes responsible for FH (12).

In the present case, we detected the second of these two

mutations by a genetic analysis. In 2003, Abifadel reported

that PCSK9 is the third leading causative gene of FH (21).

Conversely, autosomal recessive hypercholesterolemia

(ARH) has been clarified as a genetic disease of the autoso-

mal recessive genetic form (22, 23), and its pathogenic
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genes have been reported (24).

LDLR gene abnormalities have been confirmed in 53% of

FH patients (5). In Japan, FH due to an APOB gene abnor-

mality has not been described. The frequency of the E32K

mutation in the PCSK9 gene has been reported to be ap-

proximately 5% in FH cases (5, 25, 26). In Western coun-

tries, the incidence of FH with a PCSK9 gene mutation is as

low as 0% to 1.5% (27, 28). However, Japan has many

cases of FH due to PCSK9 gene mutations. Indeed, in Ja-

pan, the V41 mutation of the PCSK9 gene is relatively fre-

quent. It has been reported that the double heterozygote

combined with an LDLR gene mutation results in a high

LDL-C level (5). We recently reported that double heterozy-

gotes are classified as homozygotes and that evolocumab

was more effective in double heterozygote cases than in

other homozygote cases in a study of 106 FH homozygote

cases (29).

FH results in a higher LDL-C level than non-FH with hy-

percholesterolemia (30), and a person with an FH-causative

gene mutation has a higher risk of CAD than does a person

without the mutation, even if they have similar LDL-C lev-

els (31). CAD is believed to develop when the lifetime cu-

mulative LDL-C level exceeds a certain level in FH patients

with delayed treatment initiation and in patients with other

risk factors who require stronger lipid-lowering agents (7).

Although the effects of plaque regression on other pheno-

types, such as ARH, should be investigated, it is more im-

portant to note the family history and to focus on physical

findings, such as Achilles tendon hypertrophy, in patients

with markedly high LDL-C levels.

In a meta-analysis of clinical test results using statin

preparations, a linear correlation was reported between the

LDL-C levels and plaque regression, and the degree of

plaque regression reportedly increased as the LDL-C levels

decreased (32, 33). In the present case, using evolocumab,

we reduced the LDL-C levels from 257 to 37 mg/dL. There-

fore, this regression of plaque might be a natural result.

A limitation of this study was that we were unable to ob-

serve the plaque volume and characteristics using OCT.

Therefore, the plaque regression that was observed using

IVUS may have been reasonable. Another limitation of this

study is that plaque regression by statin therapy could not

be ruled out. The use of PCSK9 antibody is allowed only in

combination with statin therapy, according to the Japanese

health insurance system. Finally, the IVUS images from two

time points were acquired at different facilities, so our

analysis may not have been appropriately conducted.

To our knowledge, this is the first report of a case of re-

duced LDL-C levels and plaque regression in a double-

heterozygous FH patient with an LDLR mutation and a

PCSK9 V4I mutation following treatment with PCSK9 anti-

body and statin.
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