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Abstract

Background: Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer which can be easily
misdiagnosed. Conclusive prognostic IBC molecular biomarkers which are also providing the perspectives for
targeted therapy are lacking so far. The aim of this study was to reveal the IBC-specific miRNA expression profile
and to evaluate its association with clinicopathological parameters.

Methods: miRNA expression profiles of 13 IBC and 17 non-IBC patients were characterized using comprehensive
Affymetrix GeneChip miRNA 3.0 microarray platform. Bioinformatic analysis was used to reveal IBC-specific miRNAs,
deregulated pathways and potential miRNA targets.

Results: 31 differentially expressed miRNAs characterize IBC and mRNAs regulated by them and their associated
pathways can functionally be attributed to IBC progression. In addition, a minimal predictive set of 4 miRNAs
characteristic for the IBC phenotype and associated with the TP53 mutational status in breast cancer patients was
identified.

Conclusions: We have characterized the complete miRNome of inflammatory breast cancer and found differentially
expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the mRNAs and
pathways likely regulated by these miRNAs are highly relevant to cancer progression. Furthermore a minimal IBC-related
predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients was
identified.
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Background
Inflammatory breast cancer (IBC) is an extremely malig-
nant form of breast cancer characterized by early metasta-
ses formation and high lethality with the 10 year-survival
not exceeding 30% [1]. For one third of patients distant
metastases are already detected within 3 months after
first symptoms appeared [2]. As IBC does not produce
solid tumors it can easily be misdiagnosed as mastitis
or bacterial infection [3]. This makes independent IBC
molecular markers having predictive and prognostic value
and providing the perspectives for targeted therapy highly
desirable.
Today a number of studies on molecular characterization

of IBC patient samples have been published including
* Correspondence: t.samatov@bioclinicum.com; tonevitsky@mail.ru
†Equal contributors
1SRC Bioclinicum, Ugreshskaya str 2/85, 115088 Moscow, Russia
2Moscow State University, Leninskie Gory, 119991 Moscow, Russia
Full list of author information is available at the end of the article

© 2014 Maltseva et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
several genome-wide transcriptomic analyses [4-9]. How-
ever, the suggested mRNA biomarkers differed from one
study to another possibly indicating the heterogeneous
nature of IBC.
MiRNAs are small non-coding RNAs regulating gene

expression which are involved in diverse biological
processes [10]. MiRNAs proved to be reliable markers
of various diseases including cancers [11]. Recently two
pioneering studies have been published discovering
miRNA profile of IBC using PCR-based approach [12,13].
Although they have analyzed a limited number of miRNAs
and identified completely different profiles, they provided
initial insight in the miRNAs regulating RNA networks
characteristic for IBC and highlighted the potential of
miRNAs as IBC molecular biomarkers.
The aim of the present study was to reveal the complete

miRNome and regulated miRNA-mRNA networks of the
IBC. Samples from IBC and non-IBC patients analyzed by
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Table 1 Clinico-pathological characteristics of breast
cancer samples

Breast carcinomas p-valuea,b

nonIBC IBC

Characteristics (nb,%) (n = 17) (n = 13)

Age
a
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the Affymetrix GeneChip miRNA 3.0 microarray platform
formed the basis for this study. Differentially expressed
miRNAs and pathways regulated by them were revealed.
In addition a minimal predictive set of miRNAs charac-
teristic for IBC phenotype was identified taking clinico-
pathological parameters of breast cancer patients into
consideration.
Mean ± SD 57.4 ± 12.4 54.4 ± 13.4 0.27

≤50 5 (29%) 5 (38%) 0.71b

>50 12 (71%) 8 (62%)

Stage

I 4 (24%) 0 (0%) <0.001b

II 1 (6%) 0 (0%)
Methods
Ethics statement
The study was approved by the ethics committee of Scien-
tific Research Center Bioclinicum (Moscow, Russia) and
all participants signed an informed consent statement.
IIA 8 (47%) 0 (0%)

IIB 1 (6%) 1 (8%)

III 0 (0%) 1 (8%)

IIIA 2 (12%) 0 (0%)

IIIB 0 (0%) 9 (69%)

IIIC 1 (6%) 1 (8%)

IV 0 (0%) 1 (8%)

Distant metastates

Yes 0 (0%) 2 (15%) 0.18b

No 17 (100%) 11 (85%)

Estrogen receptor status

Positive 12 (71%) 5 (38%) 0.14b

Negative 5 (29%) 8 (62%)

Progesterone receptor status

Positive 9 (53%) 2 (15%) 0.06b

Negative 8 (47%) 11 (85%)

HER2 status

Positive 4 (24%) 2 (15%) 0.67b
Patients and material
Tumor samples were collected from 30 women com-
prising 13 IBC and 17 non-IBC patients. IBC was diag-
nosed according to the well-accepted criteria described
in the AJCC Cancer Staging Manual [14]. IBC patients
presented with diffuse enlargement of the involved
breast as well as erythema and oedema of the skin above
it. Immediately after surgery the tumor samples were
stored in RNAlater buffer (Qiagen, Germany) at −80°C
until RNA extraction.
Tumor samples characteristics are presented in Table 1.

One patient was assigned to each of IIB, III, IIIC and IV
stage subgroups and nine patients were staged as IIIB sub-
group within the IBC group whereas non-IBC patients
tended to have moderate stages (4 stage I, 1 II, 8 IIA, 1
IIB, 2 IIIA and 1 IIIC). Remarkably 15% of IBC patients (2
out of 13) had already distant metastases while no metas-
tases were detected among non-IBC group. These data are
consistent with the known IBC aggressiveness.
Negative 13 (76%) 11 (85%)

Molecular subtypes

HR−HER2− 3 (18%) 7 (54%) 0.19b

HR−HER2+ 1 (6%) 1 (8%)

HR+HER2− 10 (59%) 4 (31%)

HR+HER2+ 3 (18%) 1 (8%)
aStudent’t test, bFisher’s exact test.
HR: Hormone Receptor; HR−: ER and PR negative; HR+: ER and/or PR positive.
RNA extraction
Total RNA was extracted from the breast tissue using
miRNeasy Mini Kit (Qiagen, Germany) as recommended
by the manufacturer. RNA concentrations were deter-
mined by the Nanodrop photometer (NanoDrop, USA).
RNA quality was checked using the Agilent Bioanalyser
2100 System (Agilent Technologies, USA). For all sam-
ples RNA integrity number (RIN) was greater than 7.
Microarray analysis
For complete miRNome profiling the samples were pre-
pared using FlashTag Biotin HSR RNA Labeling Kit as
recommended by the manufacturer [15]. The samples were
hybridized on GeneChip miRNA 3.0 Arrays (Affymetrix)
for 16 h at 48°C. Arrays were washed to remove non-
specifically bound nucleic acids and stained on Fluidics
Station 450 (Affymetrix) and then scanned on Gene-
Chip Scanner 3000 7G system (Affymetrix).
Microarray data processing and bioinformatic analysis
GeneChip miRNA 3.0 microarrays were processed using
Affymetrix Expression Console (version 1.3.1) [15] imple-
mentation of Robust Multichip Average (RMA) method
[16]. The processing included background adjustment
based on a global model for the distribution of probe inten-
sities [16], quantile normalization [17] and summarization
based on Tukey’s median polish procedure [18].
The detection of differentially expressed transcripts

was restricted to human miRNAs, the signals from all
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other microarray probesets were ignored. The detection
of differentially expressed miRNAs was performed using
Bioconductor [19] package limma [20]: moderated t-test
[21] was applied to log-scaled expression values, and the
thresholds were set to 0.01 for the p-value and 1.2 for
the fold change.
Hierarchical clusterization for the heatmap (Figure 1)

was constructed based on the normalized log-scaled ex-
pression values (i.e., log-scaled expression values decreased
Figure 1 Cluster analysis heatmap for 13 IBC and 17 non-IBC samples
miRNAs. The expression data are represented in a 2D format, with rows in
values are coded with red color and low expression values are coded with
by the mean value and divided by standard deviation) using
Euclidean distance and average cluster method. The
construction was performed by the Heatmap online ser-
vice [22] that utilizes the heatmap tool of R package
gplots [23]. For the hierarchical sample clusterization
the p-value indicating the association of two resulting
clusters with IBC status was obtained using one-sided
binomial test. This p-value is the probability of observing
the same or better classification accuracy for a classifier
based on the expression profile of the 31 differentially expressed
dicating miRNAs and columns indicating samples. High expression
green.



Table 2 Differentially expressed miRNAs

miRNA Fold change value p-value Adjusted p-value

up-regulated in IBC

hsa-miR-3165 1.32 2.4 × 10−5 0.04

hsa-miR-4687-5p 1.62 1.1 × 10−4 0.06

hsa-miR-4259 1.52 1.4 × 10−4 0.06

hsa-miR-3661 1.41 4.6 × 10−4 0.15

hsa-miR-4749-3p 1.57 5.1 × 10−4 0.15

hsa-miR-3170 1.31 9.2 × 10−4 0.22

hsa-miR-4672 1.53 1.1 × 10−3 0.22

hsa-miR-633 1.27 1.2 × 10−3 0.22

hsa-miR-4454 1.80 1.3 × 10−3 0.22

hsa-miR-1260 1.67 1.9 × 10−3 0.28

hsa-miR-4670-5p 1.31 2.3 × 10−3 0.30

hsa-miR-718 1.76 2.4 × 10−3 0.30

hsa-miR-106b 1.56 2.9 × 10−3 0.31

hsa-miR-1244 2.29 3.2 × 10−3 0.31

hsa-miR-4530 1.53 5.5 × 10−3 0.43

hsa-miR-4786-5p 2.35 5.9 × 10−3 0.43

hsa-miR-3646 1.49 6.1 × 10−3 0.43

hsa-miR-142-5p 1.24 7.9 × 10−3 0.47

hsa-miR-2355-5p 1.28 8.0 × 10−3 0.47

hsa-miR-1273c 1.57 8.1 × 10−3 0.47

down-regulated in IBC

hsa-miR-4778-5p 1.72 7.0 × 10−5 0.06

hsa-miR-3164 1.39 1.8 × 10−3 0.28

hsa-miR-4645-5p 1.44 3.0 × 10−3 0.31

hsa-miR-4420 1.26 3.2 × 10−3 0.31

hsa-miR-4510 1.63 3.5 × 10−3 0.32

hsa-miR-548h 1.24 6.1 × 10−3 0.43

hsa-miR-569 1.45 6.2 × 10−3 0.43

hsa-let-7a-2-star 1.33 7.2 × 10−3 0.47

hsa-miR-204 1.45 7.3 × 10−3 0.47

hsa-miR-193a-5p 1.59 9.0 × 10−3 0.50

hsa-miR-489 2.14 9.4 × 10−3 0.51

The miRNAs with p-value <0.01 and fold change >1.5 are marked with bold.
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with no information rate, i.e., a classifier that attributes a
sample to a class with the probability equal to the class
percentage in the data.
The validated target mRNAs of differentially expressed

miRNAs were found using TARBASE [24], miRecords
[25] and miRTarBase [26] databases. The identification
of the enriched pathways was performed using DAVID
online service [27,28].
The construction of a set of 4 miRNAs for the classifi-

cation of IBC vs. non-IBC samples was performed using
the approach of Galatenko et al. [29]. This approach is
based on the Support Vector Machine [30] with linear
kernel and greedy-type transcript selection. During the
construction the set of the samples was randomly
divided into a training set and a testing set. MiRNA
log-scaled expressions were normalized using mean
expression and standard deviation that were calculated
based on the training set. The classifier construction
utilized R packages Kernlab [31] and Caret [32].
The assessment of the connection between resulting

classifier values and TP53 mutational status for the
GSE19536 dataset [33] was performed as follows. The
expression values of 4 selected miRNAs were normalized
using mean expression and standard deviation that were
calculated based on the GSE19536 expression matrix
downloaded from the Gene Expression Omnibus data
repository. MiRNAs with no expression values were
considered to have zero expression and normalized
expression was set to zero for these miRNAs. Then
classifier values (or, more precisely, values of the linear
combination utilized for the classification) were calcu-
lated using normalized expression values without any
changes in classifier coefficients. Finally, the set of
classifier values associated with TP53-mutated samples
was compared with the set of classifier values associated
with TP53-wild type samples using Mann–Whitney U-test.

Results and discussion
MiRNA differential expression profile
The IBC-specific profile of miRNA expression has been
identified using comprehensive Affymetrix GeneChip
miRNA 3.0 microarray platform. The expression data for
1733 miRNAs are presented in the Additional file 1. 31
miRNAs with the fold change of at least 1.2 times and the
p-value not higher than 1% between non-IBC and IBC
groups were considered to be differentially expressed and
are listed in the Table 2.
Remarkably, the majority of them are known to be

associated with breast cancer, and the up-regulation of
highly expressed miRNAs is linked with more aggres-
sive phenotype and poor prognosis. More specifically,
hsa-miR-3165, hsa-miR-4687-5p, hsa-miR-3661, hsa-
miR-4749-3p, hsa-miR-3170, hsa-miR-4672, hsa-miR-
4670-5p, hsa-miR-4786-5p, and hsa-miR-2355-5p have
been detected in breast cancer when compared with
normal breast tissue [34]. Circulating hsa-miR-718 was
suggested to be a fluid biomarker for breast cancer
[35]. Expression of hsa-miR-106b is elevated in higher
stage tumors and correlated with tumor progression
[36]. Hsa-miR-142-5p has been demonstrated to be up-
regulated in lymph node breast cancer patients [37].
Other up-regulated miRNAs have been associated with

different types of malignomas including hsa-miR-1260
and hsa-miR-1273c for melanoma [38], hsa-miR-633 for
endometrial cancer [39], hsa-miR-1244 for hepatocellular



Table 3 Selected pathways highly enriched with the
validated target genes of differentially expressed miRNAs

Pathway Number of genes Adjusted P-value

Phosphoprotein 256 2.3 × 10−18

Acetylation 127 8.0 × 10−17

Transcription 86 1.4 × 10−6

Regulation of kinase activity 28 4.6 × 10−4

DNA binding 100 4.6 × 10−4

Regulation of cell proliferation 45 6.9 × 10−4

Protein biosynthesis 17 2.3 × 10−4

Table 4 mRNAs targeted with 2 differentially expressed
miRNAs

miRNAs Validated target genes

hsa-miR-106b ↑ APLP2, APP, CDKN1A, EEF1A1, PRMT3

hsa-miR-1260 ↑

hsa-miR-106b ↑ ELOVL6, IPO7

hsa-miR-204 ↓

hsa-miR-1260 ↑ ENO1, RPL3

hsa-miR-204 ↓

hsa-let-7a-2-star ↓ HMGA2

hsa-miR-204 ↓

hsa-miR-106b ↑ VEGFA

hsa-miR-548 h ↓

Up- and down-regulated miRNAs in IBC vs. non-IBC patients are indicated by
the upward and downward arrows, respectively.
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carcinoma [40], hsa-miR-4454 and hsa-miR-4530 for ma-
lignant B cells [41].
The miRNAs down-regulated in IBC group include

hsa-miR-204 which has been characterized as a tumor
suppressor in breast cancer [42], ovarian cancers and
pediatric renal tumors [43]. Hsa-miR-193a-5p is also less
expressed in IBC patients and is known to play a suppres-
sive role in breast cancer [44]. Another down-regulated
miRNA is hsa-miR-489 targeting Smad3 transcription
factor thus inhibiting epithelial-mesenchymal transition of
breast cancer cells which prevents metastases formation
and makes the cells more susceptible to chemotherapy
[45]. The let-7 family of miRNAs is reduced in rare self-
renewing breast tumor-initiating cells [46].
Consistent with the expression level of the above listed

miRNAs, down-regulated hsa-miR-548h is more abun-
dant in normal lung tissue than in lung cancer [47], and
hsa-let-7a-2 is less expressed in aggressive hepatocellular
carcinoma [48] and its down-regulation is correlated with
poor survival in lung cancer [49].
The hierarchical clustering of breast cancer samples

according to the differentially expressed miRNAs is
presented in Figure 1. Remarkably, the patients were
indeed separated into non-IBC and IBC clusters with
the only one IBC sample misclassified resulting in the
p-value of 9.5 × 10−7.
All these data are consistent with the more aggressive

nature of IBC and suggest the differentially expressed
miRNAs to be molecular biomarkers for IBC. Notably,
the revealed miRNA pattern does not overlap with the
previously identified profiles [12,13]. This can be ex-
plained by the larger number of miRNAs covered by the
comprehensive microarrays used in this study as com-
pared to both previous studies.
During IBC progression breast tumors are infiltrated

by inflammatory cells, in particular monocytes/macro-
phages [50,51]. We checked miRNA profile of these cells
which has been recently published [52]. Only 6 out of 20
up-regulated in IBC miRNAs are pronouncedly expressed
in macrophages, namely hsa-miR-142-5p, hsa-miR-106b,
hsa-miR-4454, hsa-miR-2355-5p, has-miR-1273c and hsa-
miR-4687-5p (Table 2). This moderate intersection clearly
indicates that the identified miRNA profile is indeed IBC-
specific and cannot be due to the migrated macrophages.

mRNA targets of differentially expressed miRNAs
The mRNAs which have been validated to be targets for
the differentially expressed miRNAs were found using
online databases as described in Methods. All 31 differ-
entially expressed miRNAs have 428 target mRNAs in
total. We performed pathway enrichment analysis for
these genes (Table 3). The top of revealed pathways
includes phosphoproteins, regulation of kinase activity
and cell proliferation all known to be highly relevant to
malignant progression. Besides, acetylation, transcrip-
tion, DNA binding and protein biosynthesis are the key
interrelated steps in gene expression and their deregu-
lation is involved in cancer progression [53].
The same mRNA can be targeted by more than one

miRNA thus providing for more efficient and specific
regulation [54]. Table 4 lists the mRNAs regulated by 2
differentially expressed miRNAs. These 11 mRNAs are
more likely involved in the IBC progression.
More specifically, amyloid beta precursor-like protein

2 (APLP2) is targeted by hsa-miR-106b and hsa-miR-
1260. These miRNAs are up-regulated in IBC thus
potentially suppressing the expression of this gene. Not-
ably, hsa-miR-106b and hsa-miR-1260 follow the more
stringent criteria in t-test, namely p-value <0.01 and fold
change >1.5, supporting their functional relevance.
Remarkably, APLP2 mRNA is known to be down-
regulated in neuroendocrine tumors and lung cancer
[55,56]. The same two miRNAs target amyloid beta
precursor protein (APP) which has been identified as a
hub protein in differentially expressed networks between
ER+ and ER- breast cancer patients [57]. Another target of
these miRNAs is cyclin-dependent kinase inhibitor 1A
(CDKN1A). Low expression of this gene in breast cancer
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patients is associated with poor survival after chemo-
therapy which is consistent with the aggressiveness of
IBC [58]. Hsa-miR-106b and hsa-miR-1260 also regu-
late alpha 1 subunit of eukaryotic translation elongation
factor 1 (EEF1A1). This protein is involved in regulation
of epithelial-mesenchymal transition in breast cancer
cells [59]. At the same time EEF1A1 has been identified
as a reliable reference gene for quantitative PCR assay
of breast cancer patient biopsies, i.e. this mRNA is
equally abundant across multiple breast cancer samples
[60]. Finally these two miRNAs target protein arginine
methyltransferase 3 (PRMT3) mRNA, an enzyme inter-
acting with DAL-1/4.1B protein thus inducing apoptosis
in breast cancer cells [61].
Fatty acid elongase 6 (ELOVL6) is targeted by hsa-

miR-106b and hsa-miR-204. The expression of these
miRNAs is changed in opposite directions implying
balanced and delicate regulation of the target mRNA.
The functional link of this rate-limiting enzyme of de novo
lipogenesis to the breast tumorigenesis has been revealed
using mouse models [62]. The expression of the protein
of nuclear import importin 7 (IPO7) is also regulated
by these oppositely directed miRNAs. This protein is
known to be involved in the regulation of prostate
cancer cells proliferation [63]. Additionally the importin
7-mediated nuclear import plays an important role in
the keratin 19 tumor suppressor mechanism in breast
cancer cells [64].
The mRNA of enolase 1 (ENO1) is targeted by both

up-regulated hsa-miR-1260 and down-regulated hsa-
miR-204. The increased level of this protein is associated
with a poor prognosis for breast cancer patients and
involved in tamoxifen and methotrexate resistance of
breast cancer cells [65,66]. Another target of these miR-
NAs is the gene RPL3 coding for the ribosomal protein
L3. This protein is a member of the Pes1-Bop1 complex
involved in the colorectal tumorigenesis [67].
The decreased in IBC patients hsa-let-7a-2-star and hsa-

miR-204 are expected to increase the level of the tran-
scriptional regulator high mobility group AT-hook protein
2 encoded by the HMGA2 gene. Remarkably, the rare
self-renewing breast tumor-initiating cells have been
described to contain more of HMGA2 mRNA in combin-
ation with reducing of its regulator hsa-let-7a-2-star [46].
Also recently the overexpression of this gene was found to
make the breast cancer cells more metastatic [68,69].
Finally the VEGFA mRNA is targeted by the oppositely

directed hsa-miR-106b and hsa-miR-548 h. This gene
encodes vascular endothelial growth factor A, a protein
with well-established role in cancer progression. Its in-
creased expression is associated with loss of wild type
tp53 status and predicts poor outcome for the breast
cancer patients [70] which can functionally be explained
by the induction of angio- and lymphangiogenesis [71].
Recently an angiogenesis-independent function of VEGFA
has been reported, namely the protein produced by tumor
cells can act in an autocrine manner to promote cell
growth, and reducing its expression resulted in a differen-
tiated phenotype in vitro and inhibited tumor forming
capacity in vivo [72].
The presented data support the functional relevance of

the revealed miRNA-mRNA networks to the IBC progres-
sion and denote potential targets for the IBC-specific
therapy.

A predictive set of 4 miRNAs associated with TP53
mutation status
As IBC is characterized by high aggressiveness and poor
survival we tried to identify a minimal set of miRNAs
which could reliably classify patients to IBC or non-IBC
group and have overall predictive value for breast cancer
patients. We have investigated sets of 4 miRNAs using a
bioinformatic approach based on the Support Vector
Machine [30] with linear kernel and greedy-type tran-
script selection as described in Methods. The collection
of the samples was randomly divided into a training set
and a testing set. The classifier was constructed based
solely on the training set which contained 7 IBC and 9
non-IBC samples. It used the expression values of hsa-
let-7a, hsa-miR-582-5p, hsa-miR-591 and hsa-mir-16-2-
3p as follows. Normalized log-scaled expression values
of these miRNAs were combined in a linear combination
with weights of −1.73, 1.36, −0.57, and −0.56, respect-
ively. Then the value of this linear combination was
compared with a threshold of 0.49, namely the higher
values attributed a sample to IBC class and the lower
values attributed a sample to non-IBC class. This means
that the sample classification performed by this classifier
is based on the value of the linear combination:

L ¼ −1:73Exprlet−7a
þ1:36ExprmiR−582−5p–0:57ExprmiR−591

–0:56ExprmiR−16–2−3p–0:49;

where Expr is a normalized log-scaled expression of the
corresponding miRNA for the sample, and positive
values of L attribute a sample to the IBC class while
negative values of L attribute a sample to a non-IBC
class. In case of the training set this classifier success-
fully classified 14 samples and 2 IBC samples were mis-
classified as belonging to non-IBC class resulting in the
accuracy of 87.5%. For the testing set comprising 6 IBC
and 8 non-IBC samples only one sample was misclassi-
fied (a non-IBC sample was attributed to IBC class), and
hence the resulting accuracy was 92.9%. The fact that
miRNAs from the identified predictive set are not differ-
entially expressed is due to the used algorithm which is
aimed at the maximization of a cumulative informative



Figure 3 Kaplan-Meier survival curves for the patients from
GSE19783 dataset classified using the IBC-specific predictive
set of 4 miRNAs. The blue curve corresponds to the patients closer
to the IBC class (L > 0). The red curve corresponds to the patients
closer to non-IBC class (L < 0).
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power of a miRNA set irrespectively of the individual in-
formative power of selected miRNAs.
We hypothesized that the identified set of 4 miRNAs

could be associated with clinico-pathological characteris-
tics of breast cancer patients in general. To test this
hypothesis we used published miRNA dataset of 101
breast cancer patient collection with GEO accession num-
ber GSE19783 [33]. The analysis revealed significant asso-
ciation of miRNA set with the TP53 mutational status
characterized by the p-value of 1.7 × 10−4 (Figure 2). The
dataset included 64 wild-type TP53 samples and 37 sam-
ples with mutated TP53.
The tumor suppressor gene TP53 encodes a transcrip-

tion factor which possesses multiple functions. It has
been reported to often have missense mutations in many
cancers compromising its suppressor function. Although
current experimental data on the acquisition of onco-
genic activities by the mutant forms of this protein are
too heterogenous to directly conclude about its impact
on tumor development and outcome, TP53 is considered
to be an important prognostic marker [73]. In combin-
ation with other parameters, e.g., expression profile of
selected genes, TP53 mutational status can provide the
information on the overall survival and response to
treatment for breast cancer patients [74].
Figure 3 demonstrates overall survival of the patients

from the dataset GSE19783 classified using the same IBC-
specific set of 4 miRNAs. The patients with the expression
pattern characteristic for IBC have poor prognosis (blue
curve) whereas the non-IBC-like patients have better
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Figure 2 Association of a predictive set of 4 miRNAs with the
TP53 mutational status. Classifier values L for TP53-mutated (Mut)
and TP53 wild-type (WT) samples. Smaller bar shows the estimate of
the mean value, larger bar shows a 95% confidence interval for the
mean value. Vertical line shows mean value ± standard deviation.
survival (red curve). Although the Cox F-test p-value is
only 7.3% here indicating moderate statistical signifi-
cance, the result is consistent with the clinical value of
TP53 status and points out to the functional relevance
of IBC-specific miRNA expression pattern.

Conclusions
We have characterized the complete miRNome of in-
flammatory breast cancer and revealed differentially
expressed miRNAs which reliably classify the patients to
IBC and non-IBC groups. We found that the mRNAs
and pathways likely regulated by these miRNAs are
highly relevant to cancer progression. Also we identified
a minimal IBC-related predictive set of 4 miRNAs asso-
ciated with the TP53 mutational status and survival for
breast cancer patients. The described miRNAs should be
investigated in future as potential biomarkers and targets
for therapy.

Additional file

Additional file 1: miRNA expression data of the patients.
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