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Magnetic resonance image has important application value in disease diagnosis. Due to the particularity of its imaging
mechanism, the resolution of hardware imaging needs to be improved by increasing radiation intensity and radiation time. Excess
radiation can cause the body to overheat and, in severe cases, inactivate the protein. *is problem is expected to be solved by the
image superresolution method based on joint dictionary learning, which has good superresolution performance. In the process of
dictionary learning, the loss function will directly affect the dictionary performance. *e general method only uses the cascade
error as the optimization function in dictionary training, and the method does not consider the individual reconstruction error of
high- and low-resolution image dictionary. In order to solve the above problem, In this paper, the loss function of dictionary
learning is optimized. While ensuring that the coefficients are sufficiently sparse, the high- and low-resolution dictionaries are
trained separately to reduce the error generated by the joint high- and low-resolution dictionary block pair and increase the high-
resolution reconstruction error. Experiments on neck and ankle MR images show that the proposed algorithm has better
superresolution reconstruction performance on ×2 and ×4 compared with bicubic interpolation, nearest neighbor, and original
dictionary learning algorithms.

1. Introduction

Magnetic resonance (MR) imaging is widely used in medical
application and plays an increasingly important role in the
diagnosis of various diseases. When applying MR imaging, a
RF pulse of a specific frequency is applied to the human body
in a static magnetic field, exciting hydrogen protons in the
human body; thus the magnetic resonance phenomenon
occurs [1, 2]. After stopping the pulses, the proton generates
MR signals during relaxation. MR images are generated by
MR signal reception, spatial encoding, and image recon-
struction [2, 3] and have been used in imaging diagnosis of
various systems throughout human body, including

cranium, brain, spinal cord, cardiovascular, articular carti-
lage, soft tissue, pelvic, etc. [4, 5].

In practical applications, images of high resolution usually
provide more details of the image, which can be very useful
for subsequent image processing. Although hardware with
better performance can be used to improve image resolution,
many researchers prefer to adopt image superresolution re-
construction technology due to cost and technical limitations.
Superresolution reconstruction technology refers to the re-
construction of a corresponding high-resolution image from
one or more low-resolution images, which is mainly based on
methods including interpolation, reconstruction, and learn-
ing [6–8]. According to [9–11], the image interpolation

Hindawi
Journal of Healthcare Engineering
Volume 2022, Article ID 2206454, 17 pages
https://doi.org/10.1155/2022/2206454

mailto:liuxiaodong@hit.edu.cn
https://orcid.org/0000-0002-1598-6322
https://orcid.org/0000-0002-9362-372X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2206454


method is to estimate the unknown pixels among the known
pixels according to the law of the pixels in a limited area.
Traditional interpolation model does not consider the image
degradation model and mainly includes nearest neighbor
interpolation, bilinear interpolation, and bicubic interpola-
tion. *e image superresolution method based on interpo-
lation is simple and efficient and canmeet the requirements of
real-time application. However, such methods take into ac-
count the local structure characteristics of the low-resolution
image itself, resulting in distortion in areas with rich texture.
Especially in the case of largemagnification, the reconstructed
image will have serious degradation and blurring phenom-
enon, and the visual quality of the image will be greatly re-
duced. Essentially, the interpolation method does not add
more information to the image. *e method based on re-
construction assumes that the low-resolution image can well
predict the original high-resolution image. *is method
mainly takes the prior knowledge of the image as the con-
straint to estimate high-resolution image, including methods
such as Iterative Backprojection (IBP), Maximum Posterior
Probability, Projection Onto Convex Sets (POCS), etc.
[12–14]. Most of these methods use the prior knowledge of
images such as edge characteristics, nonnegativity of pixels,
and local smoothing characteristics. We use the prior
knowledge to construct constraint conditions and then solve
the optimization problem through iterative algorithm. *is
results in the insufficient use of the prior information of the
image, and when the amplification factor is large, the
reconstructed image is often too smooth [15, 16]. According
to the previous work [17, 18], image prior information that is
more effective has been widely used in recent years, such as
self-similarity, sparsity, etc. *e computational complexity of
the algorithm was increased.

Learning-based methods include methods based on
manifold learning, dictionary learning, and deep learning.
Essentially, the learning-based method is to learn the
mapping relationship between low-resolution images and
high-resolution images, so as to increase the information of
low-resolution images. *e method based on Manifold
Learning assumes that high-resolution image blocks and
low-resolution image blocks are used to form two manifolds
with similar local geometric features in the feature space.*e
feature vector of an image block is extracted by local geo-
metric features and can be reconstructed from adjacent data
points in feature space, and the local compatibility and
smoothness of the target high-resolution image are guar-
anteed by the overlap between the image blocks according to
Manifold Learning [19]. Dictionary Learning is based on
sparse representation theory, and its purpose is to find a code
with complete basis set composition (that is, to extend to the
whole image space). We find the expression coefficients that
are independent from each other as far as possible in the
image, that is, to ensure that the extracted basis is the es-
sential feature of the signal. We must consider two con-
straints when using dictionary learning for superresolution
image reconstruction: firstly, reconstruction constraint, that
is, the reconstructed image is required to be consistent with
the input image after passing the degradation model; sec-
ondly, sparse prior constraint, that is, high-resolution image

blocks can be sparsely represented using high-resolution
dictionaries, and this sparse representation can be recovered
from the corresponding low-resolution dictionary sparse
representation of low-resolution image blocks. In the re-
construction constraint, we obtain the low-resolution image
through the high-resolution image obtained after fuzzy and
downsampling operation. In the joint learning of high- and
low-resolution dictionaries, only the cascading error is
generally considered, not the reconstruction error of high-
resolution image [20]. *e joint dictionary learning
superresolutionmethod is also applied toMR image. Andrea
et al. [21] put forward such MR image superresolution re-
construction based on sparse representation framework, and
MR images shall be carried out in accordance with the
regional segmentation of gray matter, white matter, and
cerebrospinal fluid; adjacent areas from different parts of the
image block are chosen as the training set, to consider the
whole image multiscale edge analysis and dimension re-
duction scheme, significantly improving the calculation
speed and accuracy. Zhang et al. [22] jointly used sparse
prior, nonlocal similarity, and sparse derivative prior to MR
image superresolution. Multiscale first and second deriva-
tives are used to estimate high-frequency information, and
sparse derivative priority-based postprocessing is used to
suppress the fuzzy effect in MR images. Kaur and Sao [23]
proposed a constraint method for sharpening the gradient
distribution of superresolution MR images within the
superresolution framework based on sparse representation.
By establishing a piecewise linear relationship between the
gradient distribution of low-resolution images amplified by
bicubic interpolation and corresponding low-resolution
images, the gradient distribution of upsampled low-reso-
lution images is improved, and the superresolution of MR
images is realized. Huang et al. [24] proposed an exotic
image alignment term in order to combine unpaired data
from different image resolutions/modes. Local image
neighborhoods can be naturally preserved by operating on
the whole image domain (as opposed to image blocks) and
using joint convolution sparse coding. Paired images are
enhanced by unpaired data and additional maximum mean
difference terms during joint learning, which minimizes
differences between their feature distributions.

With the popularity of deep learning, it has gradually
expanded to the field of image superresolution. At present,
the commonly used deep superresolution networks mainly
include three categories: Feedforward Deep Network,
Feedback Deep Network, and Generative Adversarial Net-
work [25]. For example, feedforward depth network DBPN
[26] provides an error feedback and interdependence
method. *is method uses image degradation and high
resolution and uses the characteristics of phase to improve
the performance of SR. *e feedback depth network RDN
[27] uses dense connected convolution layer to extract rich
local features. SRFBN [28] implements this feedbackmethod
with hidden state in constrained RNN. As the feedback
depth network, EDSR [29] applies the batch normalization
(BN) operation. *e generative countermeasure network
SRGAN [30] takes the residual network as the main network
of feature extraction and adds the perceptual loss function.
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Reference [31] proposed an image superresolution recon-
struction method using attention mechanism with feature
map to facilitate reconstruction from original low-resolution
images to multiscale superresolution images. All these
representative networks perform well on natural images SR.
At present, the researcher presented some deep learning
methods to the superresolution processing of MR images
[32]. Oktay et al. [33] proposed a new image superresolution
method based on residual convolution neural network
model. Hyun et al. [34] proposed a deep convolution net-
work based on K-space data mapping on the basis of U-NET
network to map undersampled data in K-space to MR
images. In order to ensure the invariance of original K-space
data, a data consistency prior was introduced to make
reconstructed MR images have better perceptual effects. Xue
et al. [35] proposed a progressive subband residual learning
superresolution network (PSR-SRN), which consists of two
parallel progressive learning flows, one of which flows
through the subband residual learning unit to learn the
missing high-frequency residual, and the other flow focuses
on the reconstruction of refined MR images. *e two
learning streams complement each other and learn complex
mappings between high- and low-resolution MR images.
Zhang et al. [36] proposed a new hybrid network that
improves the quality of MR images by increasing the width
of the network. *e hybrid block combines multipath
structure and mutation dense block to extract rich features
from low-resolution images. Tan et al. [37] combined the
meta-learning technology of [38] with GAN network to
achieve superresolution of MR images with arbitrary scale
and high fidelity. Reference [39] applies DENSENET to the
superresolution of brain MRI images. 3D CNN architecture
provides more texture details.*en, the performance of deep
learning superresolution network is directly affected by the
amount of data. Since it is difficult to obtain large amount of
MR image data, we prefer to adopt the joint dictionary
learning framework for MR image superresolution.

For this paper, the main contributions are as follows: (1)
We propose a superresolution architecture based on joint
dictionary learning suitable for a small number of MR images.
(2) We propose an error loss function based on reconstruction
quality constraints, adopt the independent calculation of the
reconstruction error of the high- and low-resolution dictio-
naries, consider the individual reconstruction errors of the
high- and low-resolution dictionaries, abandon the traditional
cascade calculation method, effectively reduce the recon-
struction error, and solve the traditional reconstruction error.
*e dictionary joint cascade training does not consider the
problem of individual reconstruction errors of high- and low-
resolution dictionaries. (3) Experiments prove that our pro-
posedmethod can achieve state-of-the-art performance, even if
there is only a less image data.

2. The Architecture of MR Image
Superresolution Algorithm

2.1.0e Framework of Superresolution Algorithm. Under the
framework of the MR superresolution reconstruction based
on joint dictionary learning, we apply the pretrained high-

resolution dictionary and low-resolution dictionary. We
create the low-resolution image training sets with the image
degradation of the corresponding image in the high-reso-
lution image training set. *e high and low part of the
dictionary block of the trained joint dictionary are one-to-
one, by calculating the sparse representation coefficient of the
low-resolution input image or the image feature block with
respect to the low-resolution dictionary, to restore the cor-
responding high-resolution image blocks and reconstruct
images. In order to ensure the effectiveness of the block-to-
block connection of the reconstructed image, the recon-
structed image blocks need to overlap to meet the recon-
struction constraints between the blocks, so that the
reconstructed image block is consistent with the original
image block in the reconstruction area. On the other hand, we
train the joint dictionary with the probability model. In order
to ensure that the image blocks have the same sparse rep-
resentation of the high-resolution dictionary and the low-
resolution dictionary, the image blocks are concatenated and
normalized, and then the input dictionary training algorithm
is performed at the same time. *e image superresolution
algorithm is to represent the image block of the input image
block. We choose the dictionary element that best represents
the characteristics of the input image block from the dic-
tionary. *e number of dictionary elements is variable, and
the high-resolution image reconstructed by searching for
high-resolution image blocks based on this sparse repre-
sentation has clearer texture and edge and better robustness.
*e MR superresolution reconstruction framework based on
joint dictionary learning is shown in Figure 1.

In the superresolution image reconstruction, the sparse
representation of the dictionary of the input image block
needs to be calculated. *e dictionary uses the selected image
to obtain the information (such as edge and texture) that best
represents the essential features of the image in the image
training block through the dictionary training algorithm and
stores it in the form of image block vector. *e task of
superresolution is to enhance the resolution of image and
make the image appear locally compatible and natural, with
obvious edge texture information. Since the human eye is
most sensitive to the high-frequency details in the image, the
task of superresolution is to increase the high-frequency
details in the enlarged image that did not exist before. *e
process of using the existing information of the low-reso-
lution image to predict the high-frequency details of the
enlarged image needs the basis of prediction, and the basis is
the dictionary. *e process of dictionary training is to pre-
process a certain kind of image set, extract the details (such as
edges and textures) of high-resolution images, sample image
blocks, and obtain the training data set through the dictionary
training. *e dictionary obtained through training is re-
dundant dictionary, in which the number of bases is far
greater than the dimension of each basis, and each atom
represents some detail information of the image.

*e dictionary can reduce the size of the data set, thus
greatly reducing the calculation amount of the image
superresolution algorithm. If the original image features are
directly used to carry out the superresolution algorithm, the
computational efficiency will be low due to the huge amount
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of data. In addition, the dictionary is trained to ensure that
all the features of image blocks exist in the dictionary, and
the dictionary is redundant; that is, different image blocks to
be represented have several representations. Searching the
most sparse representation according to the dictionary is
beneficial to high-resolution image reconstruction.

2.2. Sparse Representation and Reconstruction

2.2.1. Sparse Representation. For image data, if I(x, y) is an
image signal, then it can be expressed as a linear super-
position of the basis function ϕi(x, y).

I(x, y) � 􏽘
i

αiϕi(x, y). (1)

αi is the sparsity coefficient corresponding to each basis
function. *e image coding depends on the basis function,
while the sparsity coefficient αi changes with different im-
ages. *e purpose of sparse representation is to find a
complete coding of the base set (that is, to extend to the
entire image space) and to find the expression coefficients
which are as independent to each other as possible in the
image, that is, to ensure that the extracted basis functions are
the essential features of the image.

*e meaning of signal sparsity is that the original signal is
decomposed and represented sparsely in a specific over-
complete signal feature space (sparse representation), and the
signal, which is represented by the selected feature compo-
nent through linear combination, meets the requirement of
proximity with the original signal on the condition that their
error (represented by mean-square deviation) is within the
prescribed margin of error. Under this circumstance, the
number of features selected from the feature space represents
the sparsity. Figure 2 is the sparse structure representation of
MR images, in which the image block array is part of the
“basis function” obtained after feature extraction of randomly

selected image blocks from MR images. A test image block is
selected and sparse decomposition is performed according to
(1). *ree feature blocks are selected from the test image
block; i.e., the sparsity is 3.*e image block gradient feature is
selected here because the combination of gradients in dif-
ferent directions can describe the whole image.

2.2.2. Image Reconstruction. *e reconstruction process of
joint dictionary image is based on the input single low-res-
olution image, using the pretrained joint dictionary to obtain
the sparse representation system, so as to obtain the high-
resolution reconstructed image of the corresponding scene. It
is assumed that D ∈ Rn×K(K〉n) is an overcomplete dictio-
nary containing K atoms, and the input image signal x ∈ Rn

can be represented by a linear combination of dictionary D,
and the sparse representation meets the sparse condition.

x � Dα, 􏽘
K

i�1
αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
0≪K. (2)

Assume that L is a mapping matrix, representing the
degradation process of the image; then the degradation

Training high-resolution
image block dictionary
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image block dictionary
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Low-resolution dictionarys
parse representation coefficient
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Figure 1: MR image superresolution architecture based on joint dictionary training.

~ 1.2× +0.8× +0.5×~

Figure 2: Sparse representation of MR image blocks.
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process of the image can be expressed by the following
formula, in which x is the high-resolution image, and y is the
corresponding low-resolution image. Equations (2) and (3)
are underdetermined matrix, based on compressed sensing
theory; in (3) the solution of α0 is unique under weak
condition. And if the dictionary meets the near isometric
condition, for different kinds of degradation matrices, the
sparse representation coefficients of any linear combination
of high-resolution image x can be perfectly reconstructed
from low-resolution images.

y � Lx � LDα, L ∈ R
k×n

(k< n). (3)

When reconstructing high-resolution image x of the
corresponding scene of a single low-resolution image y, two
constraints need to be considered: (1) reconstruction con-
straints, that is, the reconstructed image x is required to be
consistent with the input image y after x passing through the
degradation model; (2) sparse prior constraints, that is, a
high-resolution image block can be sparsely represented by a
high-resolution dictionary, and the sparse representation
can be restored from a low-resolution dictionary sparse
representation corresponding to a low-resolution image
block. In the process of reconstructing a superresolution
image, firstly, a sparse prior is used to calculate the sparse
representation of the local image block under the condition
of compatibility between adjacent blocks, and then the
sparse representation is used to reconstruct the entire image
under the condition of satisfying the reconstruction con-
straints. Essentially, the local model of sparse prior here is
used to find the high-frequency detail information of the
local image block, and the global model of reconstruction
constraint is used to remove any possible artificial errors to
make the image more continuous and natural.

When obtaining the sparse representation of the input
image block, the image needs to be preprocessed so that the
low-resolution image block to be sparsely represented rep-
resents texture information, and then the sparse represen-
tation of the texture information of the low-resolution image
block concerning dictionary Dl is solved as formula (4):

min ‖α‖0,

s.t. FDlα − Fy
����

����
2
2 ≤ ε.

(4)

In formula (4), ‖.‖0 is the 0 norm, which represents the
sparsity of the sparsity coefficient α, ‖.‖22 is the square of the 2
norm, which represents the sparse approximation error of the
low-resolution local image block, F is the feature operator for
extracting the image texture detail information, and ε is a
small constant. *e optimization of formula (4) is an NP
problem. When the main sparseness is sufficiently sparse,
formula (4) can be effectively restored using formula (5).

min ‖α‖1,

s.t. FDlα − Fy
����

����
2
2 ≤ ε,

(5)

min
α

λ‖α‖1 + FDlα − Fy
����

����
2
2. (6)

Formula (6) is the generalized Lagrangian multiplier
algorithm of the equivalent formula (5). *e first term is the
sparsity measurement, the second term is the sparse rep-
resentation error, and λ is the balance coefficient. *is
problem is essentially a linear regression of the sparsity
coefficient λ under the L1-norm. *ere are various dictio-
nary learning methods, such as K-SVD and OMP methods.
*is article uses Matlab package to solve the dictionary,
multiplying the obtained sparse coefficient α and the high-
resolution dictionary Dh to reconstruct the corresponding
high-resolution image. *e flowchart of image reconstruc-
tion algorithm under sparse representation is shown in
Figure 3.

x � Dhα. (7)

2.3. Proposed Loss Function of Joint Dictionary. *is section
may be divided by subheadings. It should provide a concise
and precise description of the experimental results, their
interpretation, and the experimental conclusions that can be
drawn.

*e single dictionary in the image field is mainly used for
sparse representation of the image. Its training process is as
follows: (1) calculate the feature space of the input image
blocks set X � [x1, x2, . . . xa], xi ∈ Rn, i � 1, 2, . . . , a; (2)
find the conditions of the dictionary Dn×k: each image
feature block can be adaptively and sparsely represented by
certain base combinations in the dictionary optimally. *is
requires that the representation error is small enough and
the coefficients are sparse enough to be represented by
formula (6), where the representation coefficients of the
dictionary and the feature block are both pending items. *e
research on the training algorithm of a single dictionary is
mainly an optimization algorithm that satisfies two condi-
tions. Usually this is an iterative process that includes two
optimization processes. *e two processes in the iteration
include two optimizations of dictionary and coefficient.

Training the joint dictionary requires the use of high-
resolution image block sets and low-resolution image block
sets. On one hand, the feature space of the image block that
needs to be extracted includes both high-resolution image
block feature space X and low-resolution image block
feature space Y.*e image features extracted here must meet
the condition that if X is regarded as a mapping to Y, then
the extracted feature satisfies invariance or the mapping
function. *is condition is the focus of the construction of
the mapping relationship between X and Y and has an
important impact on the final reimage effect; on the other
hand, it is mainly about sparse representation, that is, to
obtain the sparse representation coefficient αl of the low-
resolution image block and pass the mapping relationship or
the invariance relationship to obtain the representation
coefficient αh of the high-resolution image block, and then it
reconstructs the high-resolution image.

*e image blocks corresponding to the two feature
spaces of image block are cascaded to form a new image
feature block space. Assume that the training image block
satisfies P � Yl, Xh􏼈 􏼉, and Xh � x1, x2, . . . , xn􏼈 􏼉, Yl �
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y1, y2, . . . , yn􏼈 􏼉 represent the features extracted from the
high- and low-resolution image blocks. M and N are the
dimensions of the low-dimensional image feature block and
the high-dimensional image feature block, respectively. *e
objective function of the loss function optimization-based
joint dictionary fusion learning for superresolution MR
imaging is described as

min
Dh,Dl,α{ }

Xc − Dcα
����

���� + λ
1
N

+
1

M
􏼒 􏼓‖α‖1, (8)

where Xc �
(1/

��
N

√
)X

h

(1/
��
M

√
)Y

l􏼢 􏼣, Dc �
(1/

��
N

√
)Dh

(1/
��
M

√
)Dl

􏼢 􏼣,

Dh � argmin
Dh,α{ }

‖Xh − Dlα‖
2
2 + λ‖α‖1, Dl � argmin Dl,α{ }‖Yl−

Dlα‖22 + λ‖α‖1. *e image blocks and feature blocks have the
same sparse representation coefficient with respect to the
corresponding dictionary and then loss function for the dic-
tionary training of the two image feature spaces.*e dictionary
pairs meet the requirements of being trained with the training
image block P � Yl, Xh􏼈 􏼉, and Xh � x1, x2,􏼈 . . . , xn},

Yl � y1, y2, . . . , yn􏼈 􏼉. In the training of joint dictionary loss
function, the cascading error is used, which is the sum of the
reconstruction error of low-resolution image blocks and the
reconstruction error of high-resolution image blocks.

3. Proposed Joint Dictionary with Loss
Function Optimization

According to (8), the features and problems of the joint
dictionary are as follows: *e training object is the set of two
image blocks P � Yl, Xh􏼈 􏼉 after feature extraction; feature
selection is very important. *e gradient features of the first-

and second-order gradients (image texture and edge in-
formation) are used here, and it is assumed that the cor-
responding feature blocks in the two feature spaces have the
same sparse representation coefficients. *e reconstruction
error of low-resolution image feature dictionary is not
guaranteed, nor is the reconstruction error of high-resolu-
tion image feature dictionary. Instead, the sum of error after
cascading is solved by weighting. *is paper proposes an
optimization algorithm of the joint dictionary loss function,
aiming at solving the problems of the joint dictionary. Its
optimization idea is shown in Figure 4.

*e mapping relationship between the two feature
spaces is yi � Γ(xi), and Γ(•) can be linear or both nonlinear
and unknown. For any image block yi, xi􏼈 􏼉, the ideal dic-
tionary pair Dy, Dx􏽮 􏽯 satisfies the following equations:

Ci � argmin
αi

yi − Dyαi

�����

�����
2

2
+ λ‖α‖1, ∀i � 1, . . . , N,

Ci � argmin
αi

xi − Dxαi

����
����
2
2, ∀i � 1, . . . , N,

(9)

xi􏼈 􏼉
N

i�1 represents the training sample in space X, yi􏼈 􏼉
N

i�1 is
the training sample in space Y, and ci􏼈 􏼉

N

i�1 is the sparse
representation coefficient. For a given input image y, the
process of obtaining a high-resolution image block x is as
follows: (1) obtain the sparse coefficient; (2) estimate x �

Dxc so that the reconstructed image block’s error is mini-
mized, namely:

L Dx, Dy, x, y􏼐 􏼑 �
1
2

􏼒 􏼓 Dxc − x
����

����
2
2. (10)

*en the optimization formula of the optimized dic-
tionary pair D∗x, D∗y􏽮 􏽯 is

Algorithm: Image super-resolution reconstruction algorithm under
sparse representation
1: Input: Joint dictionary pair Dh and Dl , Low resolution image Y ;
2:  Initialization: Set high resolution image X= 0 ; Upsampling using
bicubic interpolation from Y to Y' ; 
3: Cycling

5: m = mean (y)
6: Extract normalized gradient feature yp from image block y
7: Solve the iptimal problem:

minα Dα – y + λ||α||

8: Generate high-resolution image blocks x = Dha
9: Reconstruct high-resolution image blocks xp = x + m
10: Place image block xp in image X ;
11: End the loop;
12: Calculate the average value of the pixel values in the overlapping area
of image X ;
13: Output: High resolution imge X

4: For each image block yp : P×P, execute in image Y' :

~ ~ 2

2

Figure 3: *e flow of image superresolution algorithm under sparse representation.
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min
Dx,Dy

1
N

􏽘

N

i�1
L Dx, Dy, xi,yi􏼐 􏼑, s.t.

zi � argmin
α

yi − Dyα
�����

�����
2

2
+ λ‖α‖1, i � 1, . . . , N,

Dx(:, k)
����

����2≤ 1, Dy(:, k)
�����

�����≤ 1, k � 1, . . . , K.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

In order to ensure that the input image block y can be
well represented by the dictionary Dy, the reconstruction
error function is added:

L �
1
2

􏼒 􏼓 c Dxci − xi

����
����
2
2 +(1 − c) Dyci − yi

�����

�����
2

2
􏼔 􏼕, 0< c≤ 1. (12)

Formula (12) is a nonlinear and nonconvex function,
and it is optimized using an iterative optimization method.

*e first step: Fix Dy; then the optimization formula
becomes

min
Dx

􏽘

N

i�1

1
2

Dxci − xi

����
����
2
2,

s.t.
ci � argmin

α
yi − Dyα

�����

�����
2

2
+ λ‖α‖1, i � 1, . . . , N

Dx(:, k)
����

����2≤ 1, k � 1, . . . , K.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

*is is a quadratic programming problem with quadratic
constraints, which can be solved by the conjugate gradient
descent method.

*e second step: Fix Dx and optimize Dy. *e mini-
mization formula (15) is a two-layer optimization problem.
*e upper optimization is based on the variable zi, which is a
low-level ℓ1 minimization problem. *e gradient descent
method is used to find a suitable gradient descent direction
and then apply the chain derivative rule of differentiation.

zL

zDy

�
1
2

􏽘
j∈Ω

z cRx +(1 − c)Ry􏽨 􏽩

zci

dci

dDy

+(1 − c)
zRy

zDy

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

џ
Rx � Dxc − x

����
����
2
2

Ry � Dyc − y
�����

�����
2

2

⎧⎪⎪⎨

⎪⎪⎩

(14)

cj is the j th element of c, and Ω is the index set of j.
Suppose that 􏽥c is the index in cj􏽮 􏽯

j∈Ω corresponding toΩ. 􏽦Dx

and 􏽦Dy are subsets of Dx and Dy; then:

zRx

z􏽥c
� 2 􏽥D

T

x Dxc − x( 􏼁,
zRy

z􏽥c
� 2 􏽥D

T

y Dyc − y􏼐 􏼑,

zRy

zDy

� 2 Dyc − y􏼐 􏼑c
T

.

(15)

For the derivative d􏽥c/dDy, use the following algorithm to
calculate the derivative:

z y − Dyc
�����

�����
2

2
zcj

+ λsign cj􏼐 􏼑 � 0, for j ∈ Λ � j | cj ≠ 0􏽮 􏽯. (16)

Let Ω � j||cj|> 0+􏽮 􏽯; therefore:

z y − 􏽦Dy􏽥c
�����

�����
2

2
zcj

+ λsign cj􏼐 􏼑 � 0, for j ∈ Ω. (17)

Equivalently find 􏽦DT
y

􏽥Dy􏽥c − 􏽥D
T

yy + λsign(􏽥c) � 0, where 􏽥c

is a continuous function of Dy. Use implicit derivation:

z 􏽥D
T

y
􏽥Dy􏽥c − 􏽥D

T

yy􏼚 􏼛

z􏽦Dy

�
z −λ∗ sign(􏽥c)􏼈 􏼉

z􏽦Dy

,

⇒
z 􏽥D

T

y
􏽥Dy

z􏽦Dy

􏽥z + 􏽥D
T

y
􏽥Dy

z􏽥z

z􏽦Dy

−
z 􏽥D

T

y􏽥c

z􏽦Dy

� 0.

(18)

*erefore:

z􏽥c

z􏽦Dy

� 􏽥D
T

y
􏽦Dy􏼒 􏼓

− 1 z 􏽥D
T

yy

z􏽦Dy

−
z 􏽥D

T

y
􏽥Dy

z􏽦Dy

􏽥c⎛⎝ ⎞⎠. (19)

Here, the solution is required to be unique and ( 􏽥D
T

y
􏽥Dy)

exists. In order to solve formula, the gradient element
dz/dDy � 0 is maintained.
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*e joint dictionary pair training process based on loss
function optimization used in this paper is shown in
Figure 5.

4. Results and Analysis of the Experiment

4.1.DataandSettingsof theExperiment. *is paper proposes
an optimization algorithm of the joint dictionary loss
function, aiming at solving the problems of the joint dic-
tionary. *e frame optimization idea is shown in Figure 4.
*e mapping relationship between the two feature spaces is,
and can be linear or both nonlinear and unknown.

*e data set in this paper mainly uses T1-weighted
images (T1WI) and T2-weighted images (T2WI) from MR
image sequences, which are derived from the open source
data set. Different tissues have different signal intensity and
image gray level in T1WI and T2WI. Small sample spatial
data sets are formed due to differences in magnetic reso-
nance equipment, magnetic field intensity, and imaging
location. Among them, the small sample spatial data set
includes neck, ankle transverse section, ankle longitudinal
section, neck, head, major artery, carotid artery, knee, foot,
and other human body parts, and the total number of
samples from each part is about 70 on average. An example
of the dataset is shown in Figure 6.

*is paper adopts the superresolution reconstruction
algorithm framework of MR image and uses the optimized
joint dictionary loss function for training. 10 images were
selected from the open source MR dataset as the sample for
dictionary training. *e initial parameters are set as follows:
dictionary size is 512, balance parameter λ is 0.1, block size is
5× 5, overlap block is 4, and the number of sample blocks is
150,000. *e dictionary generated by training is shown in
Figure 7.

4.2. Results and Analysis of the Experiment. *e traditional
dictionary training method requires a large number of
training samples to ensure the validity of the training dic-
tionary block. *e more the training samples, the richer the
prior knowledge, and the trained dictionary can make the
reconstructed image closer to the actual image. However,
sample abundance does not guarantee the validity of training
samples. Poor quality samples can not only improve the
quality of image reconstruction, but also reduce the effect of
superresolution reconstruction. *erefore, this paper adopts
the method in quality screening to screen the quality of
training samples to ensure the complexity of training sample
data. In the experiment, in order to compare the effect of
image reconstruction, the original MR image data was taken
as high-resolution image data, and the corresponding low-
resolution image was obtained by double-cubic down-
sampling. Two training data sets and test data sets with
different superresolution scales are obtained, which are ×2
and ×4, respectively. PSNR and SSIM were used to evaluate
the reconstruction quality of MR images by different
superresolution algorithms.

Firstly, the influence of various parameters on the
performance of dictionary learning is analyzed, and the

optimal combination of parameters is found. *e following
group of experiments show that a set of dictionaries are
generated with the change of image block size, and the image
effect is reconstructed under the same test image with dif-
ferent block conditions. Other parameters remain un-
changed, and the variable parameter is the size of image
block. *e image block of the dictionary is consistent with
that of the test image. When the superresolution ratio is 1 : 2,
eight high-resolution dictionaries with blocks from 3× 3 to
10×10 are generated in the experiment, and three of them
are taken as shown in Figure 8. You can see that as the image
block size increases, the dictionary block becomes more
complex. *e PSNR/SSIM values obtained are shown in
Table 1.

PSNR and SSIM values of superresolution reconstruc-
tion generated by training dictionaries of different image
blocks corresponding to test samples are shown in Table 1.
*e data is plotted using dictionary blocks and PSNR/SSIM
as coordinates, as shown in Figures9 and 10. *e abscissa of
the data points in Figures 9 and 10 only represents the
segmentation of the dictionary and the image. For example,
the abscissa indicates that the segmentation of the dictionary
is 5× 5 and so on. As can be seen from the figure, when the
size of overlapping blocks remains unchanged, increasing
the block size will reduce PSNR value and SSIM value. In
other words, the bigger the block, the better. If the block size
is larger, the number of dictionary blocks represented by
dictionary blocks will increase for an image feature block,
which will increase the reconstruction error. It can be
concluded from the figure that the optimal dictionary block
value is 5× 5.

At superresolution ratio 1:4 experiment generated block
is 5 × 5 to 9 of 13 × 13 high-resolution dictionary, the three
high-resolution dictionary is shown in Figure 11. It can be
seen in the figure with the increase of chunking dictionary

Algorithm: Joint dictionary pair training algorithm
1: Input: Training image block pair {(yi, xi)}N, dictionary sizeK;
2: Initialization: Initialize Dx

(0) and Dy
(0) , n=0, t=1;

3: Cycling
4: For i=1,2,...,N , execute

∂L ∂[γRx +(1–γ)Ry]
=∂Dy j∊Ω

Σ ∂zi dDy

∂zi

5: Calculate the gradient a = dL(Dx , Dy , xi, xi)/ dDy according to the
following formula

6: Update: Dy
 = Dy

 – η (t)*a
7: Normalize the column vector of Dy:
8: t = t +1
9: End the loop;
10: Update: Dy = Dy
11: According to the following formula and Dy , update Dx

12: n = n + 1 ;

14: Output: dictionary pair Dx
(n)

 and Dy
(n)

.

13: End until convergence;

i=1

(n)(n)

(n+1)

(n+1) (n+1)
(n)

(n) (n)

(n)

∂Ry
∂Dy

1
2

+(1–γ)

1 2
2 2

2

2
2

≤ 1, k = 1,..., K2|| ||
||Dx (:,k)x||Σ Dxzi–xi
zi=argmins.tmin

i=1Dx

N ||yiDya|| +λ||a1, i = 1,..., N
α

Figure 5: Joint dictionary pair training based on loss function
optimization.
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more and more complex, but it was too big block lead to too
much when calculating the dictionary block singular matrix,
which makes the dictionary piece of information loss, block
the less effective dictionary block, the greater the results is.
*is results in a decrease in PSNR and SSIM.

*e data in Table 2 are the corresponding PSNR values
and SSIM values generated by superresolution

reconstruction of test samples with different block training
dictionaries. In order to distinguish the influence of block on
reconstruction more intuitively, a graph with abscissa of
image block and ordinate of PSNR/SSIM is drawn, as shown
in Figure 11.

*e abscissa in the figure only represents the segmen-
tation of the image. It can be seen from the figure that the

Neck 1 Neck 2 Neck 3

Ankle 1 Ankle 2 Ankle 3

Figure 6: MR test images.

Figure 7: Training dictionary after loss function optimization.

(a) (b) (c)

Figure 8: High-resolution dictionary blocks (superresolution 1 : 2). (a) *e dictionary is 3× 3. (b) *e dictionary is 6× 6. (c) *e dictionary
is 10×10.
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optimal PSNR/SSIM value corresponds to 10×10 image
blocks. It can be seen that the feature of image blocks being
too small indicates insufficiency, while the feature of image
blocks being too large indicates limitations of the algorithm
itself. By comparing the results of superresolution ratios 1 : 4
and 1 : 2, they have their own optimal blocks. *e image
blocks of superresolution ratio 1 : 4 are basically two times as

large as the image blocks of superresolution ratio 1 : 2.*is is
because the local information of the image required by the 4-
fold superresolution becomes larger, and the image blocks
naturally become larger accordingly.

In the former two experiments, the fixed overlap block is
4, but in the overlap block experiment, the larger the overlap,
the better.*e experiment did not consider the best situation

Table 1: *e PSNR/SSIM values using different block constructed dictionaries (superresolution 1 : 2).

Dictionary block size Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
5× 5 32.24/0.9407 28.87/0.8996 32.04/0.9302 30.59/0.9145 30.34/0.9208
6× 6 32.30/0.9412 28.87/0.8984 32.06/0.9309 30.53/0.9060 30.31/0.9084
7× 7 31.99/0.9328 28.75/0.8875 31.95/0.9251 30.32/0.9025 30.14/0.9003
8× 8 31.62/0.9297 28.44/0.8716 31.65/0.9195 30.09/0.8894 29.89/0.8936
9× 9 31.20/0.9158 28.21/0.8658 31.33/0.9102 29.80/0.8721 29.52/0.8835
10×10 30.92/0.9021 27.95/0.8513 31.18/0.9031 29.60/0.8684 29.27/0.8748
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Figure 9: Superresolution PSNR/SSIM values of dictionary images constructed with different blocks (superresolution ratio 1 : 2). (a) *e
curve of PSNR value changing with dictionary block. (b) *e curve of SSIM value changing with dictionary block.
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Figure 10: High-resolution dictionary blocks (superresolution 1 : 4). (a)*e dictionary is 5× 5. (b)*e dictionary is 9× 9. (c)*e dictionary
is 13×13.
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of the overlap block. Next, we use the corresponding
maximum situation of different overlap blocks to see
whether the best block changes. *e experimental param-
eters are the same as above experiment. *e changing pa-
rameters are only block size and overlapped block. For
example, the block size is n× n. *e value of overlap block is
n− 1. Under the condition of superresolution ratio of 1 : 2,
the experimental results are shown in Table 3.*e data in the
table represent the PSNR/SSIM value of superresolution
reconstruction of each test sample under the corresponding
blocks and overlapping blocks. *e data are drawn as Fig-
ure 12 for more intuitive comparison.

In Figure 12 abscissa of data points indicate only the
dictionary blocks. For example, abscissa 5 indicates that the
dictionary blocks are 5× 5, and so on. As can be seen from
the figure, it is still better to use the 5× 5 dictionary for
reconstruction, too small blocks have insufficient features,
too large blocks need more pixels to be calculated, and the
increase of dictionary representation blocks caused by larger
feature blocks will increase errors and affect PSNR/SSIM
values. In this experiment, the maximum overlap block is

used to achieve the best reconstruction condition for each
component block. It can be seen that the optimal block value
is still 5× 5.

When the superresolution ratio is 1 : 4, the experimental
results are shown in Table 4. *e obtained data were plotted
with block size as abscissa and PSNR/SSIM as ordinate, as
shown in Figure 13. As can be seen from the figure, when the
superresolution ratio is 1 : 4, the superresolution recon-
struction effect of the dictionary divided into 10×10 training
blocks is the best. As can be seen from the above experi-
ments, the block size has a maximum value and is related to
the superresolution ratio. *e larger the superresolution
ratio is, the larger the required block will be, and the change
of overlapping blocks will not change the result of the
optimal block. For MR images, the optimal block with the
superresolution ratio of 1 : 2 is 5× 5 and the optimal block
with the superresolution ratio of 1 : 4 is 10×10.

Using the same parameters, the variable parameter is the
sampling number of image sample blocks, which can be
overlapped to extract data. *e superresolution ratio is 1 : 2.
*e experimental results are shown in Table 5. *e data in
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Figure 11: Superresolution PSNR/SSIM values of dictionary images constructed with different blocks (superresolution ratio 1 : 4). (a) *e
curve of PSNR value changing with dictionary block. (b) *e curve of SSIM value changing with dictionary block.

Table 2: *e PSNR/SSIM values under different dictionary blocks (superresolution ratio 1 : 4).

Dictionary block size Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
5× 5 29.82/0.8755 25.34/0.7913 29.16/0.8758 27.09/0.8172 27.54/0.8201
6× 6 30.00/0.8778 25.49/0.7948 29.38/0.8782 27.22/0.8315 27.72/0.8285
7× 7 30.30/0.8813 25.61/0.7996 29.49/0.8799 27.18/0.8243 27.91/0.8366
8× 8 30.40/0.8857 25.71/0.8107 29.72/0.8823 27.23/0.8366 28.02/0.8434
9× 9 30.43/0.8902 25.69/0.8238 29.78/0.8904 27.27/0.8430 28.05/0.8541
10×10 30.75/0.9008 25.75/0.8323 29.94/0.8987 27.32/0.8503 28.11/0.8635
11× 11 30.67/0.8912 25.77/0.8285 29.90/0.8922 27.22/0.8354 28.12/0.8634
12×12 30.53/0.8905 25.71/0.8274 29.82/0.8913 27.19/0.8255 27.93/0.8413
13×13 30.31/0.8821 25.60/0.8002 29.64/0.8810 27.08/0.8141 27.78/0.8224
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the table are sampled from image blocks and the trained
dictionaries are taken as abscissa and PSNR/SSIM as ordi-
nate to draw an image, as shown in Figure 14.

It can be seen from Figure 14 that 10000 pieces of the
following samples quantity is too little, because in the algo-
rithm they do not conform to the requirements of the sample
piece, MR images have a lot of black or dark area is larger, the
gray level change is not big, and at zero or near zero all
samples will be removed, which makes the actual partici-
pation in computing block greatly reduced. *erefore, as a
training sample block, there are not enough features to reduce
the value of PSNR/SSIM during reconstruction. On the
contrary, the great increase of the number of blocks does not
bring great changes to PSNR/SSIM, and there is nomaximum
value, showing fluctuations. All the training sample blocks are
involved in the dictionary training. Too many blocks will
increase the training time and have no positive significance
for the generation of high-definition dictionaries.*erefore, it
can be seen from the figure that 150,000 sample blocks should
be selected. *e following is an experimental verification of
the superresolution ratio of 1 : 4. *e data in Table 6 were
sampled from image blocks with different numbers of trained
dictionaries as abscissa and PSNR/SSIM as ordinate to draw
an image, as shown in Figure 15.

As can be seen from the figure, superresolution ratio 1 : 4
and superresolution ratio 1 : 2 have the same conclusion in
block selection, while superresolution ratio 1 : 4 cannot train
the dictionary when the number of blocks is 1000, so it has
higher requirements on the number of dictionaries. In
consideration of reducing the dictionary training time, it is
appropriate to choose the number of 150,000 blocks.

Several parameters affecting the superresolution effect
are analyzed, and the optimal parameters of the super-
resolution MR image are obtained, as shown in Table 7.

Finally, we have the comprehensive comparison, and
Table 8 shows the reconstruction effects of different
superresolution methods, including bicubic interpolation,
nearest neighbor, joint dictionary learning, and our
superresolution method based on joint dictionary loss
function optimization, where the values highlighted in bold
are the best under the corresponding image quality evalu-
ation indexes. It can be seen from Table 8 that the joint
dictionary loss function optimization method we proposed
is optimal in both the neck and ankle reconstruction results.

Compared with bicubic interpolation, nearest neighbor,
and joint dictionary, the PSNR of the proposed method is
2.61 dB, 5.69 dB, and 0.45 dB higher on ×2 superfractal scale

on average. SSIM increased by 0.0317, 0.0688, and 0.0059 on
average. Compared with the original combined dictionary,
the maximum improvement of PSNR value and SSIM value
after optimization is about 1 dB and 0.0088, respectively.*e
average improvement of PSNR of reconstruction quality on
×4 superscale was 1.30 dB, 4.84 dB, and 0.25 dB, respectively.
*e average SSIM increases by 0.0321, 0.0944, and 0.0057.
Compared with the original combined dictionary, the
maximum improvement of PSNR value and SSIM value after
optimization is about 0.85 dB and 0.0065, respectively. *e
results of image reconstruction show that the proposed
superresolution method based on error loss function opti-
mization is superior to other algorithms.

4.3. Discussion. As experimental results, the original image
features are directly used to carry out the superresolution
algorithm, and the computational efficiency will be low due
to the huge amount of data. Joint dictionary fusion learning
has widely used imaging, feature extraction, and classifi-
cation. *e high-resolution and low-resolution dictionaries
are trained and ensure that all the features of image blocks
exist in the dictionaries. *e dictionary is redundant; that
is, the different image blocks are represented with several
representations. We optimize the loss function of dictio-
nary learning with the joint high- and low-resolution
dictionary block pair and increase the high-resolution
reconstruction error. Experiments show that, compared
with algorithms such as bicubic interpolation, nearest
neighbor, and original dictionary learning, the algorithm in
this paper has a better superdivision reconstruction per-
formance. With the future applications, our proposed
method in our paper is superior to the original super-
resolution image reconstruction with double sparse rep-
resentation dictionary learning. *e advantage including
the proposed algorithm applies the objective function of the
loss function optimization-based joint dictionary fusion
learning, which improves the performance of image re-
construction from the low resolution to high resolution.
*e disadvantage lies in that the novel loss function will
increase a little complexity of the time consuming com-
pared with the original optimization. Some results are
shown in Table 9. Because the computing consuming of the
superresolution algorithm is not high, the computing is
little for the application. *e proposed dictionary learning-
based MR superresolution is feasible and effective for the
applications. *e method only uses the low-resolution and

Table 3: Comparison of superresolution PSNR/SSIM for different block and overlap block training dictionaries (superresolution ratio 1 : 2).

Block size Overlapped block Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
3× 3 2 31.30/0.9154 28.21/0.8639 31.22/0.8966 30.26/0.9013 29.70/0.8944
4× 4 3 31.96/0.9273 28.70/0.8834 31.73/0.9143 30.54/0.9087 30.19/0.9123
5× 5 4 32.24/0.9407 28.87/0.8996 32.03/0.9302 30.59/0.9145 30.34/0.9208
6× 6 5 32.29/0.9411 28.90/0.9001 32.07/0.9297 30.55/0.9102 30.32/0.9175
7× 7 6 32.11/0.9328 28.83/0.8926 32.03/0.9274 30.40/0.9056 30.26/0.9122
8× 8 7 31.90/0.9240 28.71/0.8854 31.93/0.9203 30.26/0.9048 30.08/0.9068
9× 9 8 31.71/0.9188 28.60/0.8738 31.80/0.9185 30.10/0.9003 29.93/0.9002
10×10 9 31.43/0.9201 28.42/0.8687 31.65/0.9033 29.95/0.8875 29.70/0.8917
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Figure 12: Comparison of superresolution PSNR/SSIM for different blocks of a dictionary (superresolution ratio 1 : 2). (a) *e curve of
PSNR value. (b) *e curve of SSIM value.

Table 4: Comparison of superresolution PSNR for different block and overlap block training dictionaries (superresolution ratio 1 : 4).

Block size Overlapped block Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
3× 3 2 29.22/0.8619 25.05/0.7746 28.78/0.8607 26.91/0.8014 27.11/0.8273
4× 4 3 29.45/0.8677 25.16/0.7832 28.93/0.8704 26.97/0.8085 27.26/0.8344
5× 5 4 29.82/0.8755 25.34/0.7913 29.16/0.8758 27.09/0.8172 27.54/0.8401
6× 6 5 30.19/0.8824 25.57/0.7988 29.43/0.8812 27.26/0.8200 27.81/0.8503
7× 7 6 30.63/0.8875 25.72/0.8104 29.68/0.8875 27.30/0.8276 28.06/0.8556
8× 8 7 30.80/0.8908 25.88/0.8233 29.96/0.8908 27.35/0.8302 28.25/0.8623
9× 9 8 30.92/0.8994 25.94/0.8399 30.03/0.8966 27.43/0.8483 28.30/0.8701
10×10 9 31.11/0.9109 25.96/0.8487 30.15/0.9043 27.44/0.8514 28.31/0.8722
11× 11 10 30.91/0.9025 25.91/0.8410 30.09/0.9002 27.32/0.8311 28.22/0.8614
12×12 11 30.87/0.8902 25.90/0.8315 30.05/0.8954 27.30/0.8292 28.17/0.8600
13×13 12 30.63/0.8843 25.76/0.8184 29.88/0.8871 27.19/0.8145 27.98/0.8496
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Figure 13: Comparison of superresolution PSNR/SSIM for different blocks of a dictionary (superresolution ratio 1 : 4). (a) *e curve of
PSNR value. (b) *e curve of SSIM value.
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high-resolution images for the different parts of the body,
and it does not need all high-resolution and low-resolution
images from the same person. In the practical applications,
it is necessary to train the dictionary with the training

samples including the MR contrast and body part. Our
method does not need the training to be separate for
different parts of the body, and they only train one time for
acquisition parameters including different TE, TRs, etc.

Table 5: *e PSNR/SSIM value corresponding to the number of sample blocks of different sampling images (superresolution ratio 1 : 2).

Number of sample image blocks Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
1000 31.98/0.8945 28.64/0.8735 31.74/0.9101 30.45/0.8997 30.10/0.9043
5000 32.15/0.9076 28.79/0.8804 31.94/0.9189 30.52/0.9021 30.23/0.9067
10000 32.20/0.9207 28.81/0.8861 31.96/0.9184 30.56/0.9076 30.28/0.9112
50000 32.29/0.9412 28.84/0.8922 31.99/0.9245 30.57/0.9132 30.31/0.9183
100000 32.24/0.9407 28.87/0.9011 32.03/0.9302 30.59/0.9145 30.34/0.9208
150000 32.31/0.9413 28.91/0.9003 32.04/0.9301 30.60/0.9166 30.37/0.9207
200000 32.26/0.9409 28.84/0.8937 32.04/0.9308 30.58/0.9152 30.35/0.9211
500000 32.32/0.9415 28.86/0.8986 32.01/0.9255 30.61/0.9105 30.35/0.9200
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Figure 14: PSNR/SSIM value corresponding to the training dictionary using different number of samples (superresolution ratio 1 : 2).
(a) *e curve of PSNR value changing with the number of samples. (b) *e curve of SSIM value changing with the number of samples.

Table 6: *e PSNR/SSIM value corresponding to the number of sample blocks of different sampling images (superresolution ratio 1 : 4).

Number of sample image blocks Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5
1000 — — — — —
5000 29.78/0.8625 25.29/0.7820 29.11/0.8679 27.04/0.8026 27.43/0.8247
10000 29.75/0.8632 25.30/0.7838 29.15/0.8712 27.09/0.8134 27.48/0.8296
50000 29.77/0.8714 25.35/0.7916 29.16/0.8745 27.11/0.8196 27.53/0.8377
100000 29.82/0.8755 25.34/0.7913 29.16/0.8758 27.09/0.8172 27.54/0.8401
150000 29.84/0.8761 25.38/0.7924 29.18/0.8832 27.08/0.8195 27.54/0.8412
200000 29.81/0.8759 25.36/0.7908 29.17/0.8807 27.09/0.8187 27.51/0.8407
500000 29.85/0.8764 25.39/0.7923 29.16/0.8776 27.10/0.8201 27.53/0.8411
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Figure 15: PSNR/SSIM value corresponding to the training dictionary using different number of samples (superresolution ratio 1 : 4).
(a) *e curve of PSNR value changing with the number of samples. (b) *e curve of SSIM value changing with the number of samples.

Table 7: Optimal parameters of MR image superresolution.

Superresolution ratio Equilibrium parameters Overlapped block Dictionary block size Number of sampling blocks
1 : 2 0.1 4 5× 5 150000
1 : 4 0.1 9 10×10 150000

Table 8: Comparison of the quality of several superresolution reconstructed images.

Image *e multiple of image
superresolution Bicubic interpolation Nearest neighbor image block Joint dictionary Dictionary optimization

algorithm

Neck1 2 37.84/0.9473 33.19/0.9002 40.29/0.9751 41.24/0.9839
4 30.84/0.8856 26.92/0.8027 31.95/0.9042 31.98/0.9102

Neck2 2 34.30/0.9166 30.57/0.8695 37.78/0.9503 38.09/0.9584
4 27.74/0.8211 25.70/0.7834 29.10/0.8497 29.95/0.8562

Neck3 2 35.50/0.9004 31.31/0.8712 36.68/0.9179 36.95/0.9203
4 28.80/0.8329 26.28/0.7998 30.05/0.8712 30.14/0.8744

Ankle1 2 31.31/0.8834 30.03/0.8587 34.57/0.9199 35.07/0.9257
4 26.72/0.8003 22.07/0.7105 27.56/0.8262 27.74/0.8310

Ankle2 2 30.52/0.8781 28.92/0.8398 32.48/0.9087 32.55/0.9132
4 25.50/0.7858 22.40/0.7416 26.31/0.8200 26.31/0.8211

Ankle3 2 33.26/0.9072 30.21/0.8708 33.89/0.9163 34.48/0.9214
4 29.06/0.8587 24.05/0.7729 30.02/0.8711 30.35/0.8842

Table 9: Comparison of time consuming of several superresolution reconstructed images (ms).

Image *e multiple of image superresolution Bicubic
interpolation Nearest neighbor image block Joint

dictionary
Dictionary optimization

algorithm

Neck1 2 35.7 43.1 65.9 75.5
4 42.4 49.7 69.4 74.8

Neck2 2 36.3 44.2 66.2 74.3
4 41.3 49.4 69.2 75.2
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5. Conclusion

*is paper proposes a superresolution algorithm of MR image
based on joint dictionary loss function optimization. In order
to solve the problem that the joint dictionary loss function
applies cascading error and does not guarantee the recon-
struction error of the high-resolution image dictionary, the
algorithm constructs a new loss function, ensuring that while
the sparse coefficients are sparse enough, in the iterative
training process, the high- and low-resolution dictionaries are
trained separately to reduce the error generated by the joint
high- and low-resolution dictionary block and increase the
high-resolution reconstruction error, thus ensuring that the
learned high-resolution dictionary can well reconstruct theMR
image. In order to verify the effectiveness of the algorithm, a
comparative experiment was carried out with a variety of
superresolution algorithms, and a quantitative analysis was
carried out based on the experimental results. *e results show
that the proposed algorithm has a better reconstruction effect
in MR image superresolution and maintains the best effect in
large-scale superresolution at the same time. *e proposed
method in this paper further improves the application per-
formance of the joint dictionary superresolution method on
MR images and also provides an experimental framework and
method for subsequent MR image superresolution.
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