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1  | INTRODUC TION

Gonadotropin‐inhibitory hormone (GnIH) is a peptide that was 
isolated from the Japanese quail (Coturnix japonica) brain in search 
for an RFamide peptide in vertebrates by using an antibody 
against RF‐NH2.1 The structure of quail GnIH was identified to be 
SIKPSAYLPLRFamide.1 FMRFamide peptide is the first RFamide 
peptide isolated from the ganglia of the venus clam, which had a car‐
dioexcitatory function.2 Since then, many RFamide peptides were 

identified in invertebrate species and studies suggested that they 
act as neurotransmitters, neuromodulators, and hormones.3,4 It had 
been suggested that some RFamide peptides may regulate pituitary 
hormone release because RFamide‐immunoreactive (ir) neurons 
projected close to the pituitary gland in vertebrates.5,6

In quail, gonadotropin‐inhibitory hormone‐immunoreactive 
(GnIH‐ir) neuronal cell bodies were located in the paraventricu‐
lar nucleus (PVN) of the hypothalamus and sent their axons to the 
median eminence (ME), suggesting regulation of anterior pituitary 
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Abstract
Background: Gonadotropin‐inhibitory hormone (GnIH) was discovered in the 
Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses lutein‐
izing hormone release from cultured quail anterior pituitary.
Methods: The authors investigated the existence of mammalian orthologous pep‐
tides to GnIH and their physiological functions in the following 19 years of research.
Main findings: Mammals have orthologous peptide to GnIH, often described 
RFamide‐related peptide, expressed in the hypothalamus and gonads. Mammalian 
GnIH may also suppress gonadotropin synthesis and release by suppressing gonado‐
tropin‐releasing hormone (GnRH) synthesis and release in addition to directly sup‐
pressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH 
may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also 
expressed in the testis and ovary and suppresses gametogenesis and sex steroid pro‐
duction acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at 
all levels of the hypothalamic‐pituitary‐gonadal axis to suppress reproduction. GnIH 
may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal 
reproduction, and stress responses.
Conclusion: Studies suggest that mammalian GnIH is an important neuroendocrine 
suppressor of reproduction in mammals.
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hormone release.1 It was shown that administration of GnIH to the 
cultured anterior pituitary suppresses luteinizing hormone (LH) re‐
lease. Therefore, this peptide was named GnIH.1 In vivo adminis‐
tration of GnIH to quail further suppressed gonadotropin synthesis 
and release, and gonadal activity.7 Following studies have shown 
that vertebrate animals have orthologous peptides to GnIH that 
have a characteristic LPXRFamide (X = L or Q) motif at their C‐ter‐
mini. GnIH orthologous peptides of mammals are also described as 
RFamide‐related peptide (RFRP). It was found that mammalian GnIH 
is also expressed in the gonads and may regulate gonadal activity by 
paracrine/autocrine manner.3

Here, we summarize the structure of GnIH peptide, morphology 
of GnIH neurons in the brain, function of GnIH in the brain, reg‐
ulation of pituitary hormone secretion, and expression of GnIH in 
gonads and its function in mammals in this review. We also describe 
that expression of GnIH or activities of GnIH neurons are not only 

endogenously regulated by developmental stages or estrous and 
menstrual cycles, but also photoperiod and stress in order to regu‐
late reproductive functions according to the environment.

2  | STRUC TURE OF MAMMALIAN GNIH 
PEPTIDES

A cDNA that encodes GnIH peptide (LPXRFamide peptide) precur‐
sor was found by a gene database search in mammals.8 LPXRF (X = L 
or Q) sequence is followed by glycine as an amidation signal and ar‐
ginine or lysine as endoproteolytic basic amino acids in the precur‐
sor (Figure 1). LPXRFamide peptide precursor cDNA encodes one 
LPLRFamide peptide that is described RFRP1 and one LPQRFamide 
peptide that is described RFRP3 (Figure 1). Human, macaque, sheep, 
and cattle LPXRFamide precursor cDNA also encodes LPXRFamide 

F I G U R E  1   A multiple sequence alignment of gonadotropin‐inhibitory hormone (GnIH) precursors. Human (Homo sapiens), rhesus 
macaque monkey (Macaca mulatta), sheep (Ovis aries), cattle (Bos taurus), Siberian hamster (Phodopus sungorus), rat (Rattus norvegicus), 
and mouse (Mus musculus) GnIH (RFRP) precursor polypeptides were aligned by CLUSTAL W Multiple Sequence Alignment. Multiple 
alignment parameters were as follows: Gap open penalty 10, Gap extension penalty 0.05, Hydrophilic residues GPSNDQERK, and Weight 
matrix GONNET. Identified or predicted endogenous peptide sequences are underlined. LPXRF (X = L or Q) sequences are underlined. 
Biochemically identified endogenous peptide sequences are shown in bold. Glycine (G) as an amidation signal and arginine (R) as an 
endoproteolytic basic amino acid are italicized. Asterisk (*) indicates positions which have a single, fully conserved residue. Colon (:) indicates 
conservation between groups of strongly similar properties—scoring >0.5 in the Gonnet PAM 250 matrix. Period (.) indicates conservation 
between groups of weakly similar properties—scoring <0.5 in the Gonnet PAM 250 matrix. Accession numbers are H sapiens pro‐
FMRFamide‐related neuropeptide VF precursor [NP_071433.3], M mulatta Neuropeptide VF [EHH17432.1], O aries pro‐FMRFamide‐related 
neuropeptide VF precursor [NP_001120740.1], B taurus pro‐FMRFamide‐related neuropeptide VF precursor [NP_776593.1], P sungorus GnIH 
precursor [AEF16016.1], R norvegicus pro‐FMRFamide‐related neuropeptide VF precursor [NP_076442.1], and M musculus pro‐FMRFamide‐
related neuropeptide VF precursor [NP_068692.1]. RFRP, RFamide‐related peptide

Rat MEIISSKRFILLTLATSSFLTSNTLCSDELMMPHFHSKEGYGKYYQLRGIPKGVKERSVT
Mouse MEIISLKRFILLTVATSSFLTSNTFCTDEFMMPHFHSKEGDGKYSQLRGIPKGEKERSVS
Hamster MEIISSKRFILLTLATSSLLTSNIFCTEELMMPHFHSKEKEDKYSQPTGISKGEKERSVS
Monkey MEIISSKLFILLTLATSSLLTSNISCADELMMSSLHSKENYDKYSEPRGYP--KREKRLN
Human  MEIISSKLFILLTLATSSLLTSNIFCADELVMSNLHSKENYDKYSEPRGYP--KGERSLN
Sheep MEIISLKRFILLMLATSSLLTSNIFCTDESRIPSLYSKKNYDKYSEPRGDLGWEKERSLT
Cattle MEIISLKRFILLMLATSSLLTSNIFCTDESRMPNLYSKKNYDKYSEPRGDLGWEKERSLT

***** * **** :****:****  *::*  :. ::**:  .** :  *      *: :.

RFRP1 (RFRP2)
Rat FQELKDWGAKKDIKMSPAPANKVPHSAANLPLRFGRNIEDRRSPRARA--------NMEA
Mouse FQELKDWGAKNVIKMSPAPANKVPHSAANLPLRFGRTIDEKRSPAARV--------NMEA
Hamster  FQEVKDWGAKNVIKMSPAPANKVPHSAANLPLRFGRTLEEDRSTRART--------NMEA
Monkey  FEELKDWGPKNVIKMSTPAVNKMPHSVTNLPLRFGRTTEEERSAGATANLPLRSGRNMEV
Human   FEELKDWGPKNVIKMSTPAVNKMPHSFANLPLRFGRNVQEERSAGATANLPLRSGRNMEV
Sheep FEEVKDWGPK--IKMNTPAVNKMPPSAANLPLRFGRNMEEERSTRVMAHLPLRLGKNRED
Cattle FEEVKDWAPK--IKMNKPVVNKMPPSAANLPLRFGRNMEEERSTRAMAHLPLRLGKNRED

*:*:***..*  ***. . .**:* * :********. :: **. . .        * * 

RFRP3
Rat GTMSHFPSLPQRFGR-TTARRITKTLAGLPQKSLHSLASSELLYAMTRQHQEIQSPGQEQ
Mouse GTRSHFPSLPQRFGR-TTAR-SPKTPADLPQKPLHSLGSSELLYVMICQHQEIQSPGGKR
Hamster    RTLSRVPSLPQRFGR-TTARSIPKTLSHLLQRFLHSMATSEVLNAMTCQHGEIQSPGGKQ
Monkey    SLVRQVLNLPQRFGRTTTAKSVCRTLSDLCQGSLHSPCANDLFYSMTCQHQEIQNPDQKR
Human   SLVRRVPNLPQRFGRTTTAKSVCRMLSDLCQGSMHSPCANDLFYSMTCQHQEIQNPDQKQ
Sheep SLSRRVPNLPQRFGRTIAAKSITKTLSNLLQQSMHSPSTNGLLYSMTCRPQEIQNPGQKN
Cattle SLSRWVPNLPQRFGRTTTAKSITKTLSNLLQQSMHSPSTNGLLYSMACQPQEIQNPGQKN

. .*******  :*:   :  : * *  :**  :. ::  *  :  ***.*. :.

Rat PRKRVFTETDDAERKQEKIGNLQPVLQGAMKL
Mouse TRRGAFVETDDAERKPEK--------------
Hamster      PRRQAFMETDDEEGKHEK--------------
Monkey       SRRLVFQKMDDAELKQEK--------------
Human   SRRLLFKKIDDAELKQEK--------------
Sheep LRRLGFQKIDDAELKQEK--------------
Cattle LRRRGFQKIDDAELKQEK--------------

*:  * : ** * * **              
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peptide‐like sequences that are LPLRSamide peptide in human and 
macaque, and LPLRLamide peptide in sheep and cattle (Figure 1). 
These peptides are described RFRP2 but none of their mature pep‐
tide structures are identified at present. Rodents such as rat, mouse, 
and hamster LPXRFamide peptide precursor cDNAs do not encode 
RFRP2 as in human, macaque, sheep, and cattle (Figure 1). The ma‐
ture peptide structures of human RFRP1 and RFRP3,9 macaque 
RFRP3,10 and cattle RFRP111 and RFRP3,12 mouse RFRP1 and 
RFRP3,13 rat RFRP3,14 Siberian hamster RFRP1 and RFRP315 are 
identified by biochemical methods.

3  | GNIH RECEPTOR AND CELL 
SIGNALING

Hinuma et al8 identified a specific receptor for GnIH (RFRP) in mam‐
mals, which had been an orphan G‐protein coupled‐receptor (GPCR) 
GPR147. Bonini et al (2000) reported two GPCRs for neuropeptide 
FF (NPFF), a neuropeptide that has a C‐terminal PQRFamide motif 
and involved in pain modulation. They were named NPFF1 that is 
identical to GPR147 and NPFF2 that is identical to GPR74.16 Genes 
encoding the precursors of LPXRFamide peptides and PQRFamide 
peptides are thought to be paralogues from an evolutionary stand‐
point.17,18 GPR147 and GPR74 are also thought to be paralogues.19 
Investigations of binding affinities and cell signaling pathways trig‐
gered by RFRPs and NPFFs have shown that RFRPs have higher af‐
finities for GPR147, and NPFFs have potent agonistic activity for 
GPR74, suggesting that GPR147 is the primary receptor for GnIH 
(RFRP).12,16,20

GPR147 is likely to be coupled to Gαi protein because GnIH 
(RFRP) suppresses production of cAMP in Chinese hamster ovarian 
cells transfected with GPR147 cDNA.8 Son et al21 investigated the 
precise cell signaling pathway triggered by GnIH in a mouse gonad‐
otrope cell line LβT2. It was first confirmed that GPR147 mRNA is 
expressed in LβT2 cells. Predicted mouse RFRP1 and RFRP3 sup‐
pressed cAMP production induced by gonadotropin‐releasing 
hormone (GnRH), suggesting that GnIH (RFRP) inhibits adenylate 
cyclase (AC) activity. Mouse GnIH (RFRP) further suppresses extra‐
cellular signal‐regulated kinase (ERK) phosphorylation and gonado‐
tropin subunit gene transcriptions stimulated by GnRH. The results 
suggest that mouse GnIH (RFRP) suppresses GnRH‐stimulated go‐
nadotropin subunit gene transcriptions by inhibiting the AC/cAMP/
protein kinase A (PKA)/ERK phosphorylation pathway.21 This in‐
hibitory pathway of mouse GnIH (RFRP) action was also shown in 
a GnRH neuronal cell line GT1‐7 stimulated by vasoactive intestinal 
polypeptide (VIP).22

4  | MORPHOLOGY OF GNIH NEURONS

In mouse and hamster brains, GnIH precursor mRNA is expressed in 
neuronal cell bodies located in the dorsomedial hypothalamic area 
(DMH).13,15,23,24 In rat brains, GnIH precursor mRNA is expressed in 

the periventricular nucleus (PerVN) and between the dorsomedial 
nucleus (DMN) and the ventromedial nucleus (VMN) of the hypo‐
thalamus.8,25 In macaque brains, GnIH precursor mRNA is principally 
expressed in the intermediate periventricular nucleus (IPe) of the hy‐
pothalamus.10 In sheep brains, GnIH mRNA is expressed in the DMN 
and PVN.26

Gonadotropin‐inhibitory hormone neuronal fibers are widely 
distributed in the diencephalic, mesencephalic, and limbic brain 
regions in all mammals investigated.10,15,27,28 Distribution of GnIH 
neuronal fibers and interaction with neurons in the brain were in‐
vestigated in detail in the macaque brain.10 GnIH neuronal fibers 
were abundant in the stria terminalis in the telencephalon, habenu‐
lar nucleus, paraventricular nucleus of the thalamus, preoptic area 
(POA), PVN, IPe, arcuate nucleus (Arc), median eminence, and dorsal 
hypothalamic area in the diencephalon, medial region of the superior 
colliculus, central gray substance, and dorsal raphe nucleus in the 
midbrain. GnIH neuronal fibers are in close proximity to GnRH1, do‐
pamine, pro‐opiomelanocortin (POMC), and GnRH2 neurons in the 
POA, IPe, Arc, and central gray substance of the midbrain, respec‐
tively.10 In sheep, GnIH neurons project to neuropeptide Y (NPY) 
and POMC neurons in the Arc, orexin, and melanin‐concentrating 
hormone neurons in the lateral hypothalamic area, orexin cells in the 
DMN, corticotrophin‐releasing hormone and oxytocin cells in the 
PVN, and GnRH neurons in the POA.29 Kisspeptin is a hypothalamic 
neuropeptide that stimulates GnRH release.30 Kisspeptin neurons 
form two populations in the anteroventral periventricular nucleus 
(AVPV) and Arc. Approximately 35% of Arc kisspeptin cells are con‐
tacted by GnIH neuronal fibers and 25% express GPR147 or GPR74 
in mice.31 Therefore, GnIH may also suppress gonadotropin release 
by suppressing kisspeptin neurons in the Arc.32

5  | REGUL ATION OF GONADOTROPIN 
SYNTHESIS AND RELE A SE

Gonadotropin‐inhibitory hormone neuronal fiber terminals are in 
probable contact with GnRH neurons in rodents,15,23 monkeys,10 
and humans.9 It was further demonstrated that GnIH receptor 
(GPR147) is expressed in GnRH neurons in hamsters.15 Central 
administration of GnIH suppresses the release of gonadotropin in 
Syrian hamsters,23 Siberian hamsters,15 and rats.27,33 Central ad‐
ministration of RFRP3 and RF9, an antagonist of RFRP, to female 
mice decreases and increases GnRH mRNA expression, respec‐
tively.34 GnIH also suppresses the stimulatory effect of kisspeptin 
on GnRH release in mouse hypothalamic culture.22 Administration 
of GnIH (RFRP3) to cultured mouse brain slices decreases the fir‐
ing rate in a subpopulation of GnRH neurons.35 GnIH (RFRP3) also 
suppresses the firing of kisspeptin‐activated vGluT2 (vesicular 
glutamate transporter 2)‐GnRH neurons as well as of kisspeptin‐
insensitive GnRH neurons.36 Suppression of GnRH mRNA expres‐
sion by GnIH (RFRP3) administration was also shown in a novel 
GnRH neuronal cell model, mHypoA‐GnRH/GFP.37 Accordingly, 
GnIH may inhibit the secretion of gonadotropins by decreasing the 
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activity of GnRH neurons in addition to directly regulating pitui‐
tary gonadotropin secretion.

Gonadotropin‐inhibitory hormone may not directly regulate the 
pituitary in rodents, because there are only few or no GnIH neuronal 
fibers in the median eminence of hamsters 15,23 and rats.38 Injection 
of a retrograde tracer Fluoro‐Gold intraperitoneally to rats labeled 
the majority of GnRH neurons but no GnIH neuron.38 On the other 
hand, abundant GnIH neuronal fibers are observed in the median 
eminence of sheep,26 macaque,10 and humans.9 It was demonstrated 
that GPR147 mRNA is expressed in the gonadotropes in the human 
pituitary.9 GnIH (RFRP3) suppresses gonadotropin synthesis and/
or release from cultured pituitaries in sheep,39 cattle,40 and rats.33 
Peripheral administration of GnIH (RFRP3) also suppresses gonad‐
otropin release in sheep,26 rats,41 cattle,40 and humans.42 Pulsatile 
secretion of GnIH (RFRP3) was observed in the hypophyseal portal 
blood of ewes, and a significant reduction in LH response to GnRH 
was observed by GnIH (RFRP3) administration in hypothalamo‐pitu‐
itary‐disconnected ewes.43 Taken together, it is likely that GnIH can 
directly act on the pituitary to suppress gonadotropin synthesis and/
or release from the pituitary at least in relatively large mammalian 
species.

6  | REGUL ATION OF PUBERT Y

Changes in the expression of GnIH in the brain and the testicular ac‐
tivity were analyzed after birth in male mice.44 The testicular activity 
increases progressively until 13 weeks of age and declines in the old 
mice. GnIH neurons appear in 1‐week‐old mice and their number and 
size increase significantly at 3 weeks of age, remain unaltered until 
7 weeks of age, followed by a progressive decline until 13 weeks and 
increase again in the old age.44 Both GnIH expression and GnIH/c‐
Fos co‐expression decrease markedly in the early prepubertal stage 
in developing female mice.45 These results suggest that the decrease 
in GnIH during postnatal development may facilitate puberty in male 
and female mice.

In rats, GnIH gene expression increases with developmental 
age, peaking around the time of puberty in females.46 Iwasa et al47 
investigated the changes in GnIH and GPR147 mRNA levels in the 
rat hypothalamus during development in detail. In male rats, mRNA 
expressions of GnIH and GPR147 both increase from postnatal (P) 
12 and P16, and peak at P35 and P42, respectively, and fall on P49. 
In females, GnIH mRNA expression continues to increase through‐
out development. On the other hand, GPR147 mRNA expression in 
female rats increases from P16, peaks at P28, and decreases from 
P35.47 Central administration of GnIH (RFRP3) from P28 to P36 
twice a day significantly decreases serum LH and estradiol con‐
centration, delay uterine maturation and vaginal opening in female 
rats.48 These results suggest that decreases in GnIH and/or GPR147 
may also facilitate puberty in male and female rats.

Kiyohara et al49 investigated whether thyroid dysfunction af‐
fects pubertal onset through GnIH in female mice. Hypothyroidism 
shows delayed pubertal onset with increased GnIH expression. 

However, GnIH knockout prevents delayed pubertal onset in hypo‐
thyroidism, indicating that increased GnIH expression induced by 
hypothyroidism may delay puberty. Administration of thyroid hor‐
mone suppresses GnIH expression in hypothalamic explants, and 
GnIH neurons express thyroid hormone receptors to convey thyroid 
status. These findings indicate a novel function of GnIH to mediate 
interactions of the hypothalamic‐pituitary‐thyroid (HPT) and go‐
nadal axes that contribute to pubertal regulation.49

7  | REGUL ATION OF ESTROUS AND 
MENSTRUAL CYCLE

The estrous cycle that has metestrus, diestrus, proestrus, and estrus 
phases normally cycles in 4‐5 days in rats and mice. Estradiol secre‐
tion from the ovary gradually increases from the metestrus phase 
to the proestrus phase and rapidly decreases at the estrus phase. 
It is known that relatively low estradiol concentration during me‐
testrus and diestrus phases suppresses GnRH/LH pulse. However, 
high estradiol concentration in the afternoon of the proestrus phase 
increases the frequency and amplitude of GnRH/LH pulse resulting 
in GnRH/LH surge that induces ovulation.50‐52

Estradiol induces kisspeptin precursor mRNA expression in the 
AVPV possibly via ERα.53‐56 Therefore, kisspeptin precursor mRNA 
expression in the AVPV peaks during the evening of proestrus in fe‐
male rats.57 These results suggest that AVPV kisspeptin neurons are 
involved in GnRH/LH surge. On the other hand, kisspeptin neurons 
in the Arc are thought to maintain GnRH pulse, because administra‐
tion of kisspeptin antagonist in the Arc profoundly attenuates LH 
pulse frequency.58

Gonadotropin‐inhibitory hormone neuronal system may also be 
involved in estrogen feedback to GnRH neurons because GnIH neu‐
rons in rodents express ERα.23 Estradiol administration for 4 days 
suppresses GnIH precursor mRNA expression in ovariectomized 
mice.59 The cellular activity of GnIH neurons and GnIH precursor 
mRNA expression is low at the time of LH surge in female hamsters 
or proestrus in female rats and mice, suggesting that reduction in 
GnIH neuronal activity may contribute to GnRH/LH surge.60‐62

Intravenous infusion of GnIH (RFRP3) blocks estrogen‐induced 
LH surge in ewes.63 GnIH gene expression is also reduced in the 
preovulatory period in ewes.63 These results suggest that reduction 
in GnIH may also be involved in the induction of GnRH/LH surge 
in ewes. On the other hand, GnIH precursor mRNA expression was 
higher in the late follicular phase just before GnRH/LH surge in fe‐
male rhesus macaque, suggesting that GnIH fine tunes GnRH/LH 
surge in primates.64 The opposite changes of GnIH during GnRH/
LH surge between ewe and primates suggest a higher functional 
role of GnIH in primates. It may be possible that GnIH acts more 
as a translator of environmental and social information in the reg‐
ulation of menstrual cycle, such as translating environmental or 
psychological stress to inhibit ovulation, rather than a member of 
the rigid periodic machinery that propels the reproductive cycle in 
primates.
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8  | REGUL ATION OF SE A SONAL 
REPRODUC TION

It has been suggested that photoperiodic mammals rely on the an‐
nual cycle of changes in nocturnal secretion of melatonin from the 
pineal gland to regulate seasonal reproduction. Therefore, how pho‐
toperiod and melatonin regulate GnIH synthesis and/release was 
investigated in photoperiodic mammals such as hamster and sheep. 
The level of GnIH precursor mRNA and the number of GnIH‐ir cell 
bodies are reduced in sexually quiescent male hamsters acclimated 
to short‐day (SD) photoperiod compared with sexually active ani‐
mals maintained under LD photoperiod independent from gonadal 
steroids.15,24,65‐67 The photoperiodic regulation of GnIH gene ex‐
pression is abolished in pinealectomized (Px) male hamsters, and 
continuous administration of LD hamsters with melatonin reduces 
GnIH gene expression to SD levels, indicating that photoperiodic 
regulation of GnIH is dependent on melatonin.15,65 GnIH gene ex‐
pression level can be increased in SD hamsters if they were exposed 
with dim light at night that can reduce melatonin.68 On the other 
hand, GnIH gene expression is not modulated by photoperiod in the 
laboratory rat, a nonphotoperiodic breeder.65 Central administration 
of hamster GnIH peptides (RFRP1 and RFRP3) suppresses LH release 
5 and 30 minutes after administration in LD. On the other hand, both 
peptides stimulate LH release 30 minutes after administration in SD. 
These results suggest that GnIH peptides (RFRP1 and RFRP3) fine 
tune LH levels via its receptor expressed in gonadotropin‐releasing 
hormone‐immunoreactive (GnRH‐ir) neurons in an opposite fashion 
across seasons in male hamsters.15

Gonadotropin‐inhibitory hormone‐immunoreactive neurons in 
the dorso‐ventromedial hypothalamus are approximately threefold 
higher in sexually active male jerboa a semi‐desert rodent, cap‐
tured in the spring compared to sexually inactive autumn animals, 
like hamsters.69 On the other hand, there is a significant increase 
in GnIH cell body number during the nonbreeding season (summer) 
compared to the breeding season (winter) in the adult female brush‐
tail possum brain.70

Thyroid hormones are also implicated in the regulation of sea‐
sonal reproduction. Triiodothyronine (T3) is decreased in hamsters 
housed in SD, and injections of exogenous T3 stimulate testicular 
growth in SD Siberian hamsters. Administration of T3 to SD hamsters 
also increases GnIH‐ir cells in the dorsomedial hypothalamus com‐
pared with SD controls.71 It is thought that thyroid‐stimulating hor‐
mone (TSH) in the pars tuberalis of the adenohypophysis regulates 
local thyroid hormone availability in the mediobasal hypothalamus. 
In SD‐adapted male Djungarian and Syrian hamsters, central admin‐
istration of TSH for 4‐6 weeks restores the summer phenotype of 
testicular activity, kisspeptin, and GnIH expression.72

In Soay sheep, a SD breeder, GnIH shows a generally moderate 
increase in the hypothalamus in LD. However, GnIH expression in 
the ependymal cells surrounding the base of the third ventricle is 
highly photoperiodic, with levels being undetectable in animals held 
on SD but consistently high under LD.73 In ovariectomized (OVX) 
ewes treated with estradiol, lesser expression of GnIH and lesser 

GnIH‐GnRH contacts were concurrent with the breeding season.74 
The number of GnIH‐ir neurons in female goat hypothalamus is also 
lower in the follicular phase than in the luteal and anestrous stages.75 
Mean GnIH (RFRP3) pulse amplitude and frequency are also higher 
during the nonbreeding (anestrous) season compared with the luteal 
and follicular phases of the estrous cycle in the breeding season in 
ewes.43

9  | MEDIATION OF STRESS RESPONSES

Because stress has inhibitory effects on reproduction,76 it was hy‐
pothesized that stress may suppress the hypothalamic‐pituitary‐go‐
nadal (HPG) axis by activating the GnIH system. Kirby et al (2009) 
showed that both acute and chronic immobilization stress up‐reg‐
ulates GnIH expression in the DMH of adult male rats. Adrenal 
glucocorticoids (GC) may increase GnIH expression because adre‐
nalectomy blocks stress‐induced increase in GnIH expression and 
53% of GnIH cells express receptors for GC.77 Administration of a 
high dose of lipopolysaccharide, an endotoxin, increases GnIH and 
GPR147 mRNA levels in both OVX and gonadal intact female rats, 
while kisspeptin and GnRH mRNA levels are decreased.78 Food re‐
striction also up‐regulates GnIH mRNA expression and suppresses 
ovarian development and follicular growth in prepubertal ewes.79 
Metabolic challenges, such as short‐term fasting and high‐fat diet, 
are less effective in decreasing LH secretion in GPR147‐deficient 
male mice, suggesting that the GnIH‐GPR147 inhibitory pathway 
mediates gonadotropin suppression by metabolic stress.80 Stressful 
stimuli also activate GnIH‐ir neurons or increase GnIH expression 
in rats and mice.81‐83 It was further shown that GnIH administration 
activates hypothalamic‐pituitary‐adrenal (HPA) axis in rats,81 mice,84 
and rhesus monkeys.85 Administration of GnIH (RFRPs) induces anx‐
iety‐related behavior in rats 81 and mice,84 suggesting that GnIH also 
mediates behavioral stress responses, although its mechanism of ac‐
tion should be investigated in future studies.3,86

Son et al87 investigated the mechanism of activation of GnIH 
precursor mRNA transcription by corticosterone (CORT) using a 
GnIH‐expressing neuronal cell line, rHypoE‐23, derived from rat hy‐
pothalamus. GR mRNA is expressed in rHypoE‐23 cells and CORT 
treatment for 24 hours increases GnIH mRNA expression. They fur‐
ther characterized the promoter activity of the rat GnIH precursor 
gene stimulated by CORT. CORT‐responsive region at 2000‐1501 bp 
upstream of GnIH precursor coding region includes two GC re‐
sponse elements (GREs) at 1665 and 1530 bp, and mutation of 1530 
GRE abolishes responsiveness to CORT. Finally, CORT‐stimulated 
GR recruitment was demonstrated at the GnIH promoter region 
containing the 1530 GRE.87

10  | GONADAL GNIH AC TIONS

Zhao et al88 investigated the locations of GnIH, GPR147, and GPR74 
in the testis of Syrian hamster. GnIH was found in spermatocytes and 
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round to early elongated spermatids. GPR147 was found in myoid 
cells and pachytene spermatocytes, maturation division spermato‐
cytes, and round and late elongated spermatids, whereas GPR74 
was found only in late elongated spermatids. These results suggest 
a possible autocrine and/or paracrine role for GnIH in spermatogen‐
esis.89 In mice, GnIH (RFRP3) treatment causes dose‐dependent de‐
crease in germ cell proliferation and survival markers and increase 
in apoptotic markers. GnIH (RFRP3) administration also suppresses 
testosterone synthesis in the testis both in vivo and in vitro.90 It was 
also shown that GnIH (RFRP3) suppresses synthesis and release of 
testosterone in the male pig.91 GnIH and GPR147 are also expressed 
in the epididymis of male rat. Intratesticular administration of RFRP3 
decreases spermatozoa and increases degenerated and vacuolated 
epididymal epithelial cells.92

Gonadotropin‐inhibitory hormone and GPR147 are primarily ex‐
pressed in the granulosa cell layer of large preovulatory follicles as well 
as in the corpus luteum in primary cultures of granulosa‐lutein cells of 
premenopausal women.93 Immunoreactivities of GnIH and GPR147 
are mainly localized in the granulosa and theca cells of antral folli‐
cles during proestrus and estrus and in luteal cells during metestrus 
and diestrus in female pig.94 Singh et al95 investigated the changes 
in GnIH (RFRP3) expression in the ovary of mice during the estrous 
cycle. The immunoreactivity of GnIH (RFRP3) was mainly localized 
in granulosa cells of the healthy and antral follicles during proestrus 
and estrus, and in luteal cells during diestrus 1 and 2 phases. A signif‐
icant increase in GnIH (RFRP3) immunoreactivity during late diestrus 
2 coincided with the decline in corpus luteum activity and initiation 
of follicular growth and selection.95 Singh et al96 further showed that 
GnIH (RFRP3) inhibits follicular development and steroidogenesis in 
the ovary of mice in vivo and in vitro. Oishi et al93 investigated the 
role of GnIH and GPR147 in the human ovary. Treatment of human 
granulosa‐lutein cells with GnIH (RFRP3) reduces FSH‐, LH‐, and for‐
skolin‐stimulated progesterone production and steroidogenic acute 
regulatory protein (StAR) expression. GnIH (RFRP3) also suppresses 
gonadotropin‐ and forskolin‐induced intracellular cAMP accumula‐
tion. These results suggest that GnIH (RFRP3) acts via GPR147 to 
suppress gonadotropin signaling in human granulosa cells.93 Wang et 
al97 further showed that GnIH (RFRP3) induces cell cycle arrest at 
G2/M in porcine ovarian granulosa cells.

11  | CONCLUSION

Gonadotropin‐inhibitory hormone is a peptide that was first isolated 
from the quail brain, which has a characteristic LPXRFamide (X = L 
or Q) motif at their C‐termini. Mammals also possess GnIHs having 
C‐terminal LPXRFamide (X = L or Q), which are also named RFRP1 
that has a C‐terminal LPLRFamide sequence and RFRP3 that has 
a C‐terminal LPQRFamide sequence (Figure 1). The mature struc‐
tures of human GnIHs (RFRP1 and RFRP3), macaque GnIH (RFRP3), 
and cattle GnIHs (RFRP1 and RFRP3), mouse GnIHs (RFRP1 and 
RFRP3), rat GnIH (RFRP3), and Siberian hamster GnIHs (RFRP1 and 
RFRP3) are currently identified by biochemical methods.

The GPCR, GPR147 is the primary receptor for GnIH. GPR147 
is likely to be coupled to Gαi protein in target cells. GnIH suppresses 
GnRH‐stimulated gonadotropin subunit gene transcriptions by in‐
hibiting the AC/cAMP/PKA/ERK phosphorylation pathway. GnIH 
also suppresses the same pathway in GnRH neuronal cell line.98 
Morphological evidence supports that GnIH suppresses the secre‐
tion of gonadotropins by decreasing the activity of GnRH neurons 
in addition to directly regulating pituitary gonadotropin secretion. 
GnIH may also suppress gonadotropin release by suppressing kiss‐
peptin neurons in the Arc.

Measurements of GnIH and GPR147 contents and gonadal ac‐
tivities during developmental stages suggest that decreases in GnIH 
and/or GPR147 may facilitate puberty in mammals. GnIH may also 
mediate interactions of the HPT and HPG axes in pubertal regula‐
tion. Reduction in GnIH neuronal activity may contribute to GnRH/
LH surge in rodents. GnIH may also be involved in the regulation of 
seasonal reproduction regulated by melatonin and thyroid hormones.

Various stressors increase GnIH neuronal activity or GnIH pre‐
cursor gene expression suggesting that stress suppresses the HPG 
axis by activating the GnIH system. CORT‐stimulated GR recruit‐
ment in the GnIH promoter region is likely to be the mechanism of 
activation of GnIH precursor mRNA transcription under stress. GnIH 
may also mediate behavioral stress responses, although its mecha‐
nism of action is less understood at present.

Gonadotropin‐inhibitory hormone and GPR147 are expressed 
in the gonads and likely to suppress gametogenesis and sex ste‐
roid synthesis in an autocrine/paracrine manner. Thus, mammalian 
GnIH may act at all levels of the HPG axis to suppress reproduction. 
Nineteen years of studies after the discovery of GnIH in quail sug‐
gest that GnIH is also an important neuroendocrine suppressor of 
reproduction in mammals.
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