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Abstract

Background: Intravenous (IV) immunoglobulin (Ig) treatment is known to alleviate
behavioral deficits and increase survival in the experimentally induced model of
sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal
dysfunction, an array of immunological and apoptosis markers was investigated.

Methods: Sepsis was induced by cecal ligation perforation (CLP) in rats. The animals
were divided into five groups: sham, control, CLP + saline, CLP + immunoglobulin G
(IgG) (250 mg/kg, iv), and CLP + immunoglobulins enriched with immunoglobulin M
(IgGAM) (250 mg/kg, iv). Blood and brain samples were taken in two sets of experiments
to see the early (24 h) and late (10 days) effects of treatment. Total complement activity,
complement 3 (C3), and soluble complement C5b-9 levels were measured in the sera of
rats using ELISA-based methods. Cerebral complement, complement receptor, NF-κB,
Bax, and Bcl-2 expressions were analyzed by western blot and/or RT-PCR methods.
Immune cell infiltration and gliosis were examined by immunohistochemistry using
CD3, CD4, CD8, CD11b, CD19, and glial fibrillary acidic protein antibodies. Apoptotic
neuronal death was investigated by TUNEL staining.

Results: IVIgG and IgGAM administration significantly reduced systemic complement
activity and cerebral C5a and C5a receptor expression. Likewise, both treatment
methods reduced proapoptotic NF-κB and Bax expressions in the brain. IVIgG and
IgGAM treatment induced considerable amelioration in glial cell proliferation and
neuronal apoptosis which were increased in non-treated septic rats.

Conclusions: We suggest that IVIgG and IgGAM administration ameliorates neuronal
dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell
proliferation. In both treatment methods, these beneficial effects might be mediated
through reduction of anaphylatoxic C5a activity and subsequent inhibition of
inflammation and apoptosis pathways.
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Background
Septic encephalopathy is characterized with delirium, coma, and seizure and is a cause

of cognitive dysfunction, morbidity, and mortality in critical illness [1]. Longer mechan-

ical ventilation, ICU stay, and post-ICU cognitive dysfunction were reported in sepsis

survivors who demonstrated delirium as a major sign of septic encephalopathy [2].

There are no specific diagnostic tests and treatment methods for brain dysfunction,

and the exact mechanism of brain involvement in sepsis is not clear. However, endo-

thelial dysfunction and blood–brain barrier (BBB) failure were found responsible as a

mechanism of injury [3]. Treatment modalities targeting inflammation have been sug-

gested for the prevention of septic encephalopathy. Among inflammation factors, the

complement system is a particularly well-known participant in sepsis and anti-C5a anti-

body treatment has been shown to attenuate the BBB failure in septic animals [4, 5]. In

our previous study, intravenous immunoglobulin (IVIg) improved the integrity of the

BBB and inhibited cecal ligation and perforation (CLP)-induced symptoms of sickness

behavior in rats [6]. In this experimental trial, we aimed to delineate mechanisms by

which IVIg treatment prevents neuronal dysfunction. The complement system is acti-

vated by both antibodies (classical pathway) and microorganisms (lectin and alternative

pathways) leading to the formation of membrane attack complexes (C5b-9), which lyse

and destroy target cells. During the activation of complement pathways, anaphylatoxins

C3a and C5a are released and interact with their receptors leading to the activation of

inflammation, apoptosis, and gliosis pathways [4]. Given the well-known significance of

the complement system in sepsis and the well-established regulatory effect of IVIg on

complement activation, we hypothesized that IVIg treatment improves septic encephalop-

athy through the inhibition of complement-mediated neuronal destruction. To test this hy-

pothesis and find out the specific complement factors involved in septic encephalopathy, we

measured the expression levels of an array of complement factors (C1q, C3, and C9 for

evaluation of classical and common complement pathways; C3a, C5a, and their receptors

for anaphylatoxic component of the complement system) and evaluated expression alter-

ations in parallel to cerebral apoptosis and gliosis in the brain samples of septic rats.

Methods
Animals

We used male Sprague–Dawley rats (200–250 g). The animals stayed in groups under

normal conditions with access to enough food and water ad libitum. The procedures of

the study were approved by the Local Ethics Committee for Animal Experimentation

(101/2013 September).

Experimental groups were assigned as five groups: control (n = 16), sham (n = 16),

CLP + saline (n = 16), CLP + immunoglobulin G (IgG) (250 mg/kg, iv) (n = 16), and

CLP + immunoglobulin enriched with immunoglobulin M (IgGAM) (250 mg/kg, iv)

(n = 16). Blood and brain samples were taken in two sets of experiments after CLP to

see the early (24 h) and late (10 days) effects of treatment.

CLP procedure

To assess cerebral complement expression alterations, apoptosis, and gliosis induced by

sepsis and to delineate the impact of IVIg treatment on these parameters, a CLP-based
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sepsis model was performed as described previously [7]. After intraperitoneal ketamine

administration (100 mg/kg), a longitudinal midline abdominal incision was made with a

scalpel. A small scissor was used to extend the incision and gain entry into the periton-

eal cavity. The cecum was isolated and exteriorized with blunt anatomical forceps; care

was taken not to breach or damage the mesenteric blood vessels. To induce high-grade

sepsis, the cecum was ligated and perforated by a single through-and-through puncture

midway between the ligation using an 18-G needle. After removing the needle, a small

amount of feces was extruded from both the mesenteric and antimesenteric penetration

holes and the cecum was relocated into the abdominal cavity. Following the closure of

the wound, the animals were resuscitated by injecting warmed saline (37 °C; 5 ml per

100 g body weight) subcutaneously. The sham-operated rats underwent the same pro-

cedure, except for the ligation and perforation of the cecum. The control rats received

neither any surgical intervention nor IVIg treatment. At the early stage (24 h) of the

sepsis model, the survival rate of the CLP + saline group was 6/8 (75%), whereas in the

control, sham, CLP + IgG, and CLP + IgGAM group, the survival rates were 8/8

(100%). In the late stage (10 days), the survival rates were 5/8 (62.5%) in the CLP + sa-

line group, 7/8 (87.5%) in the CLP + IgG and CLP + IgGAM groups, and 8/8 (100%) in

the control and sham groups.

Administration of immunoglobulins

The animals were given human IgG, 250 mg/kg (Octapharma; Vienna, Austria), or

IgGAM, 250 mg/kg (Pentaglobin; Biotest, Dreieich, Germany), intravenously via penile

vein 5 min after the CLP procedure. After the IV injection, the animals were placed

back in their cages for recovery.

ELISA for serum total complement activity and complement levels

To assess the effects of IVIg treatment on systemic complement activity and to validate

the complement activity inhibiting effect of IVIg, serum total complement activity

(CH50), C3, and soluble C5b-9 levels were measured by ELISA kits (Neoscientific,

Cambridge, MA, USA), as per the manufacturer’s instructions. Optical density was

measured at 450 nm, and concentrations were calculated by referring to a standard curve.

Real-time PCR

Expression levels of major complement factors, complement regulators, and apoptosis

factors in septic encephalopathy model were evaluated by real-time PCR. Total RNA

from each brain sample was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA,

USA), and RNA was quantified by OD 260. Four micrograms of total messenger RNA

(mRNA) were reverse transcribed using superscript II reverse transcriptase and oligo

dT primer (Invitrogen). Specific primers (Additional file 1: Table S1) were optimized

using primer3 software and generated by Qiagen (Hilden, Germany). The specificity of

the primers was verified with a Blast search through NCBI. The quantitative real-time

PCR reactions were performed with the SYBR Green kit (Roche Diagnostics,

Mannheim, Germany) using 2 μl of cDNA and 0.6 μl of each primer in a 20-μl final

volume. Quantitative PCR was performed using Light Cycler (Roche Diagnostics) for

40 cycles at 95 °C for 15 s and at annealing temperatures of 60 °C for 20 s and 72 °C
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for 30 s. All samples were studied as duplicates, and three housekeeping genes were

used as reference genes. Data were analyzed according to ΔΔCt method, and the re-

sults were expressed as relative mRNA levels.

Immunoblotting analyses

To confirm the real-time PCR results of most crucially altered complement and apoptosis

factors at the protein level, immunoblotting experiments were conducted. Twenty micro-

grams of each brain lysate was loaded and separated by 4–20% SDS–polyacrylamide

gradient gel electrophoresis and then transferred to 0.45-μm polyvinylidene fluoride

membranes (100 V, 80 min). After blocking for 1 h in Phosphate buffered saline with

tween 20 (PBST) (10 mM sodium phosphate, 0.9% NaCl, and 0.1% Tween 20) containing

5% non-fat dry milk, blots were incubated overnight at 4 °C with the primary antibodies

(Additional file 2: Table S2) in PBST containing 3% non-fat milk. The blots were washed

four times with PBST (40 min) and incubated for 1 h with horseradish peroxidase-

conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) in

PBST containing 3% non-fat dry milk. Immunoreactivity of the protein bands were de-

tected by enhanced chemiluminescent autoradiography (ECL kit, Amersham Pharmacia

Biotech, Piscataway, NJ). A molecular weight standard (Bio-Rad Laboratories, Hercules,

CA) was loaded in the last lane of each gel to assess relative molecular mass of detected

bands. The immune blot bands were quantified through measurement of band intensity

with ImageJ software using the same pixel scale for all pictures. Band intensities were nor-

malized by β-actin expression and expressed as arbitrary units.

TUNEL and immunohistochemistry

The presence and intensity of infiltrating immune cells, apoptosis, and gliosis were

evaluated with immunohistochemical methods. Brain samples were first evaluated by

standard hematoxylin and eosin (H&E) staining. To investigate the presence of potential

infiltrating immune cells and reactive gliosis, immunohistochemistry studies were

performed. Brain samples were first treated with 4% paraformaldehyde overnight at

4 °C, immersed in 40% sucrose overnight at 4 °C, and subsequently snap frozen in liquid

nitrogen. Seven-micrometer-thick frozen sections were serially incubated with 0.3% H2O2

for 20 min, 10% goat serum for 1 h, and primary antibodies (Additional file 2: Table S2)

overnight at 4 °C. The sections were then incubated in biotinylated goat anti-human IgG

(1:2000, Vector Laboratories, Burlingame, CA), and the immunoreactivity was developed

by serial incubation with avidin–biotin peroxidase (Vector Laboratories) for 1 h and di-

aminobenzidine [8]. TUNEL staining was done with an apoptosis detection kit (Merck

Millipore, Darmstadt, Germany) according to the manufacturer’s instructions. Rat spleen

sections were used as a positive control in all experiments. The presence of immune cells,

apoptosis, and gliosis were visualized by two independent blinded observers.

Statistics

Serum complement factor and activity levels, brain mRNA expression levels measured

by real-time PCR, and normalized brain protein expression levels measured by immu-

noblot experiments were compared among different treatment arms by using ANOVA

followed with Tukey adjustment for multiple pairwise comparisons. p < 0.05 was con-

sidered statistically significant.
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Results
Reduced C5a activity in IVIgG- and IgGAM-administered rats

One day after treatment, the IVIgG- and IgGAM-administered rats showed significantly

reduced CH50 levels and significantly increased serum C3 and soluble C5b-9 levels.

By contrast, on day 10, CH50, C3, and C5b-9 levels were comparable among groups

(Additional file 3: Figure S1).

Real-time PCR analysis of brain samples showed comparable C1qa, C9, complement

inhibitor CD55, and CD59 expression levels at days 1 and 10. As an exception, cerebral

C3 expression levels showed trends towards transient decline on the first day in the

IgG and IgGAM treatment groups (Fig. 1). Regardless of treatment status, C3a receptor

expression levels were significantly increased in all CLP groups on day 1 and showed a

sharp decline on day 10. C5a receptor expression levels showed a marked increase in

all CLP groups on day 1. On day 10, C5a receptor levels remained high in the CLP

group with no treatment and with IgGAM treatment as compared to those in the control

and sham groups. By contrast, C5a receptor expression levels of CLP rats with IgG treat-

ment were significantly lower than those of the other two CLP groups and comparable to

those of the control and sham groups (Fig. 1).

Fig. 1 Brain mRNA expression levels of complement factors, complement inhibitors, and complement
receptors evaluated by real-time PCR and expressed as fold changes relative to the control group. *†p < 0.05;
**p < 0.01. In the C3 panel, * denotes significant differences between the CLP + IgGAM group vs the other
groups; in the C3a receptor and C5a receptor panels, * denotes significant differences between the CLP,
CLP + IgG, and CLP + IgGAM groups vs the control and sham groups; and in the C5a receptor panel, † denotes
significant differences between CLP and CLP-IgGAM groups vs the control and sham groups, and ** denotes
significant differences between the CLP-IgG group vs the CLP and CLP-IgGAM groups. Vertical bars indicate
standard deviations
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In immunoblotting analysis performed to confirm real-time PCR results, in close re-

semblance to mRNA expression levels, no significant difference could be found among

treatment arms by means of brain C1q, C9, CD55, and CD59 expression levels on days

1 and 10. By contrast, C5a levels were significantly elevated in rats with CLP on day 1.

While the cerebral C5a levels of the CLP rats continued increasing on day 10, those of

the IgG- and IgGAM-treated rats kept remaining at low levels that were comparable to

those of the control and sham groups (Fig. 2).

Reduced apoptotic factor expression in IVIgG- and IgGAM-administered rats

mRNA expression levels of apoptotic molecules Bax and NF-κB were significantly

lower in the brain samples of IgG- and IgGAM-administered rats as compared to those

of the control, sham, and CLP groups. Anti-apoptotic Bcl-2 expression levels showed

marked elevation especially on the 10th day. However, these differences did not attain

statistical significance. There were no differences among study groups by means of ex-

pression levels of caspase 3 and caspase 9 (Fig. 3). Similarly, in western blot studies,

Bcl-2 expression levels were significantly elevated in all CLP groups with or without

Fig. 2 Brain expression levels of complement factors and complement inhibitors evaluated by immunoblotting,
quantified by measuring band intensity with ImageJ, normalized by β-actin expression, and expressed as arbitrary
units.*p < 0.05; ***p < 0.001. In the C5a panel, * and *** denote significant differences between the CLP group vs
the other groups at the 1st (white) and 10th (black) days of the experiment, respectively. Vertical bars indicate
standard deviations. Lower panel shows representative immunoblotting bands for each group and time point
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treatment as compared to the control and sham groups. There were no significant dif-

ferences between expression levels of Bcl-2 among CLP groups. Bax expression levels

and Bax/Bcl-2 ratios were significantly elevated in CLP rats without treatment as com-

pared to all other groups. Notably, in IgG- and IgGAM-administered rats, expression

levels of Bax and Bax/Bcl-2 ratios were comparable to those of the control and sham

groups (Fig. 4).

Fig. 3 Brain mRNA expression levels of various apoptosis-related factors evaluated by real-time PCR and
expressed as fold changes relative to the control group. *p < 0.05; **p < 0.01; the asterisks denote significant
differences between the CLP-IgG and CLP-IgGAM groups vs the other groups. Vertical bars indicate
standard deviations

Fig. 4 Brain expression levels of Bax, Bcl-2, and Bax/Bcl-2 ratios evaluated by immunoblotting, quantified by
measuring band intensity with ImageJ, normalized by β-actin expression, and expressed as arbitrary units.
*p < 0.05; **p < 0.01; ***p < 0.001. In the Bcl-2 panel, the asterisks denote significant differences between CLP,
CLP-IgG, and CLP-IgGAM groups vs the control and sham groups; in the Bax and Bax/Bcl-2 panels, the asterisks
denote significant differences between the CLP group vs the other groups. Vertical bars indicate standard
deviations. Lower panel shows representative immunoblotting bands for each group and time point

Esen et al. Intensive Care Medicine Experimental  (2017) 5:1 Page 7 of 12



IgG and IgGAM administration reduces apoptosis and glial proliferation

Serial sections were obtained from one hemisphere of each rat, and the entire hemisphere

was screened for apoptotic cells, infiltrating immune cells, and reactive gliosis. The CLP

rats with no IVIg treatment showed markedly increased apoptotic cell numbers and

intense reactive gliosis in all regions of the central nervous system. By contrast, no or

very few apoptotic cells and reactive glial cells were observed in the brain samples of

the control, sham, and CLP rats treated with IgG or IgGAM (Fig. 5a, b). H&E staining

did not show any infiltrating cells in the brain samples. No immune reactivity was ob-

served in immunohistochemistry studies performed to show potential infiltrating

CD3, CD4 or CD8+ T cells, CD19+ B cells, and CD11b/c+ neutrophils/macrophages

(Additional file 2: Table S2), while the control rat spleen tissue sections showed abundant

reactivity with these markers (not shown).

Discussion
The main finding of this study is that IVIg treatment reduces apoptotic cell death and

glial cell proliferation and suppresses C5a activity in the central nervous system. Our

results suggest that both IgG and IgGAM exert this protective effect by reducing C5a

activity and proapoptotic NF-κB and Bax expressions thereby inhibiting major inflam-

mation and apoptosis cascades.

Numerous clinical trials have examined the efficacy of IVIg in various autoimmune

and degenerative diseases such as chronic inflammatory demyelinating polyneuropathy,

multifocal motor neuropathy, Guillain–Barré syndrome, and Alzheimer’s disease [9, 10].

Effects of IVIg treatment on sepsis-induced polyneuropathy were previously reported in a

retrospective trial [11]. We recently demonstrated that IVIg treatment protects the

Fig. 5 Representative immunofluorescence (a) and immunohistochemistry (b) images demonstrating the
apoptosis (evaluated by TUNEL staining, a) and gliosis (evaluated by glial fibrillary acidic protein antibody
staining, b) status of different treatment arms at day 1 (D1) and day 10 (D10) of the experiment. Each
section roughly corresponds to the same cerebral cortex region (original magnification ×100)
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BBB integrity, inhibits CLP-induced sickness behavior, and improves survival in septic

animals [6, 12].

There is increasing evidence that innate immunity disturbance in sepsis-induced

organ dysfunction might be linked to the uncontrolled activation of the complement

system [13, 14]. Also, C5a and C5a receptor expression levels were reported to be ele-

vated in the lung, liver, kidney, pituitary gland, and heart during sepsis [5, 15]. In our

study, significantly elevated levels of C5a were also found in the brain samples of the

rats with sepsis. Likewise, C5a receptor expression levels showed a marked increase in

all CLP groups on day 1 and remained high in the CLP group with no treatment. Al-

though systemic complement activity was reduced in the IVIg-treated rats, cerebral

complement and complement inhibitor factor levels were mostly comparable among

treated and non-treated groups. As an exception, the IVIg-treated rats showed a strik-

ing downregulation of C5a and C5a receptor on day 10. Our results suggest that similar

to other sepsis-afflicted tissues, C5a plays a major role in sepsis-induced destruction

of the nervous system and apparently IVIg treatment reduces complement-based ana-

phylatoxin activity and ameliorates septic encephalopathy presumably through this

mechanism of action.

BBB breakdown, abnormal neurotransmitter, amino acid derangements, and apop-

tosis have been documented to occur during sepsis and affect brain function [16–20].

Apoptosis is particularly a prominent feature in patients and animals with sepsis. Sep-

sis-associated apoptosis has been linked to C5a–C5a receptor interaction, which leads to

organ dysfunction, immunosuppression, and lethality [16–19]. Apoptosis-related proteins

have been shown in the cerebellum, hippocampus, astrocytes, and ependymal cells [21,

22]. In line with previous studies, the brain samples of the septic rats showed con-

comitantly increased C5a, C5a receptor expression, and apoptosis. While our results

demonstrated no change in the caspase-dependent apoptosis pathway factors, Bax/

Bcl-2 ratio, a widely used index of apoptosis, was significantly elevated in septic rats

with no treatment, suggesting that sepsis-induced activation of neuronal apoptosis

might occur through non-caspase-dependent pathways.

Experimental studies of the sepsis model with LPS challenge the demonstrated re-

lease of proinflammatory mediators produced by microglial activation [23, 24]. It was

also reported that microglial activation is triggered by the activation of TLRs or by sig-

nals from apoptotic cells [25]. It has been suggested that glial activation not only might

be the potential cause of acute, reversible alterations in the mental status, such as delir-

ium, but also may lead to long-term cognitive dysfunction [26]. In our CLP model, the

brain samples of the septic rats showed markedly increased gliosis. By contrast, cerebral

apoptosis and gliosis were significantly diminished in parallel in the septic rats treated

with IgG and IgGAM. The link between C5a receptor activation and development of

apoptosis and gliosis is well known. C5a−C5a receptor interaction is known to trigger

NF-κB activation [27, 28], and increased expression levels of C5a and NF-κB have been

associated with enhanced apoptosis and gliosis [29–33]. Moreover, toxic products re-

leased by active glial cells might cause neuronal apoptosis [34]. Parallel and simultan-

eous elevation of apoptosis, gliosis, C5a, C5a receptor, and NF-κB expression levels in

the brain tissues of septic rats and exactly similar trend of decrease in the levels of the

same factors following IVIg treatment suggest that septic encephalopathy is caused

by anaphylatoxin-mediated activation of inflammation pathways and glial cells, which
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ultimately induce neuronal apoptosis. IVIg treatment appears to ameliorate septic en-

cephalopathy by interrupting this chain of action.

As in our previous experimental trials, we used two different types of immunoglobu-

lin preparations (IgG and IgGAM) that are available in clinical practice. Both in vivo

and in vitro trials in sepsis immunology demonstrated a trend towards a better activity

of IgM in comparison to IgG [6]. Among immunoglobulin types, pure IgM was also

shown to be most effective in preventing complement disposition, followed by IgG

[35]. IgGAM preparation showed a better effect on the BBB integrity than a standard

IgG preparation in CLP-induced septic model rats [6]. However, both immunoglobulin

preparations were equally effective in reversing behavioral deficits induced by sepsis

[12]. Similarly, in the current study, there were no remarkable differences between the

clinical and molecular effects of two preparations with the exception that IVIgG treatment

exerted a more pronounced and prolonged suppression effect on cerebral C5a receptor

expression than IVIgGAM treatment. Thus, the influence of excess IgM in the IgGAM

preparation on C5a receptor expression needs to be further investigated.

As usual, animal models might not strictly mimic the human disorder and thus the

validity of our results need to be confirmed using postmortem brain tissue and cerebro-

spinal fluid samples of septic encephalopathy patients. Another limitation of our study

is the absence of mechanistic studies that would more firmly demonstrate the crucial

involvement of C5aR-activated intracellular pathways in septic encephalopathy. Future

animal model experiments performed with specific C5aR and NF-κB agonists/antago-

nists or C5aR-deficient mice might more robustly disclose the significance of these

pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in septic

encephalopathy pathogenesis, might also be utilized as potential targets for future treat-

ment trials of septic encephalopathy. Numerous C5aR antagonists are currently avail-

able and have been tested for treatment of inflammatory disorders [36]. The efficacy of

these molecules needs to be scrutinized using the septic encephalopathy animal model

in future studies.

Conclusions
The results of the present study indicate that IVIg treatment exerts its beneficial effects

on sepsis-induced neuronal dysfunction primarily through reduction of C5a-mediated

gliosis and apoptosis. Thus, our results also suggest that novel treatment methods

based on interruption of C5a−C5a receptor interaction might ameliorate septic enceph-

alopathy and presumably chronic cognitive dysfunction observed in sepsis survivors.

The exact apoptosis, survival, and inflammation pathways involved in sepsis-induced

neuronal dysfunction still remain to be elucidated.
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