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Abstract: Aflatioxin B1 (AFB1) has been recognized by the International Agency of Research on Cancer
as a group 1 carcinogen in animals and humans. A fast, batch, and real-time control and no chemical
pollution method was developed for the discrimination and quantification prediction of AFB1-
infected peanuts by applying Fourier transform near-infrared (FT-NIR) coupled with chemometrics.
Initially, the near-infrared transmission (NIRT) and diffuse reflection (NIRR) modules were applied
to collect spectra of the samples. The principal component analysis (PCA) method was employed to
extract the characteristic wavelength, followed by different preprocessing methods (seven methods)
to build an effective linear discriminant analysis (LDA) classification and partial least squares (PLS)
quantification models. The results showed that, for both the NIRT or NIRR modules, the LDA
classification models satisfactorily distinguished peanuts infected with AFB1 or from those not
infected, with external validation showing a 100% correct identification rate and a 0% misjudgment
rate. In addition, combined with the concentration of AFB1 in peanuts determined by enzyme-linked
immunoassay assay, the best partial least squares (PLS) models were established, with a combination
of the first derivative and the Norris derivative filter smoothing pretreatment (Rc

2 = 0.937 and 0.984,
RMSECV = 3.92% and 2.22%, RPD = 3.98 and 7.91 for NIRR and NIRT, respectively). The correlation
coefficient between the predicted value and the reference value in the external verification was
0.998 and 0.917, respectively. This study highlights that both spectral acquisition modules meet the
requirements of online, rapid, and accurate identification of peanut AFB1 infection in the early stages.

Keywords: FT-NIR; peanut; principal component analysis (PCA); spectral acquisition module; afla-
toxin B1

1. Introduction

Peanuts, as one of the most important oil crops, are cultivated at a large scale all over
the world. The yield of peanuts ranks the first among the oil crops in China, accounting
for 40% of the world’s total peanut production [1]. Peanuts are rich in oil, proteins, fibers,
unsaturated fatty acids, vitamins, and minerals [2], thus being a natural medium for fungal
growth. Once the environment is suitable, the fungus will produce aflatioxins in the field
or under storage conditions [3]. Aflatioxin is the most concerned and commonly known
mycotoxin in the world, threatening human and animal health. It is also the most important
risk factor to be solved for the safe consumption and export of agricultural products such as
grain and oil crops [4]. Aflatioxin B1 (AFB1) is the most toxic and widely distributed mold
of aflatoxin [5]. Due to aflatoxin’s deleteriousness and frequent occurrence in agricultural
products, research on aflatioxin reduction and elimination has gained global attention.
Generally, in China [6] and the USA [7], the accepted aflatoxin level in food is 20 ppb.
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Nowadays, different conventional methods are used to obtain reference data, such
as thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC),
liquid chromatograph mass spectrometry (LC-MS), and enzyme-linked immunosorbent
assay (ELISA). All these methods are generally difficult, expensive, time-consuming, and
unsuitable for real-time control measures, despite having high accuracy, sensitivity, and
dependability [8]. Conversely, spectroscopy technology has the advantages of no sample
pretreatment, short determination time, no use of chemical reagents, and simultaneous
determination of multiple components [9,10], providing a new way for the rapid screen-
ing, qualitative discrimination, or highly sensitive detection of mycotoxins in grains. It is
complementary to the detection of large and precise physical and chemical analysis instru-
ments [11]. Its use with chemometric analyses has shown great potential and advantages
in the detection of food and feed mycotoxins, such as common toxigenic fungal species in
corn [12], maize [13], paddy rice [14], brown rice [15], peanuts [16–18], and rice [19].

In the last decade, most of the NIR models developed by previous scholars have been
based on surface reflection patterns of solid forms of grains or seeds. However, aflatoxin
typically infects the kernel germ, which likely affects the chemical and optical proper-
ties [3,8], and can leave little indication of its presence on the kernel surface [20]. Pearson
et al. [21] indicated that the distribution of mycotoxin in a grain pile is uneven, and the
contamination is random. Moreover, Li et al. [22] reported that there are differences among
non-uniform solid particles, with spectra containing both the type of information to be ex-
tracted for analysis and the individual information to be eliminated. FT-NIR spectroscopy is
a technology that, by use of an interferometer, further improves the spectral reproducibility
and the accuracy and precision of wavelength discrimination [23]. Lee et al. [13] reported
that FT-NIR spectroscopy can be an alternative method for aflatoxin detection in maize.
Huang Xingyi et al. [24] established the identification model of moldy and budding peanuts
by FT-NIR combined with the KNN identification method. FT-NIR spectroscopy has advan-
tages over dispersive NIR spectroscopy with higher instrument stability, light penetration
depth, and predictive power for some quality characteristics [25]. However, there are
very few studies on contaminated peanuts based on FT-NIR spectroscopy. Conversely,
based on previous reports describing the strengths and criticality of the application of
NIR spectroscopy in the quantification or discrimination of mycotoxins, an approach is
proposed herein to develop discrimination and quantitative models, with a special focus
on low AFB1 contamination level in peanuts, to establish discrimination and quantitative
models using two FT-NIR spectral acquisition modules (NIRT and NIRR), in combination
with different preprocessing and machine learning methods. This article may provide
technical support and a reference basis for rapidly evaluating the AFB1 contamination risk
of agricultural products.

2. Results
2.1. Analysis of a Reference Aflatoxin B1 (AFB1) Concentration

Since there were low concentrations of early infection in the samples in production, the
AFB1 contamination levels of the peanut samples are shown in Figure 1, fluctuating within
the permissible concentration of aflatioxin in grains issued by China and the USA (20 µg/kg)
as the reference, for the purpose of early detection in production. The reference covers
the concentrations of total aflatoxin, ranging from 2.21 to 23.79 µg/kg, with an average
of 12.59 µg/kg and a variation range of 56.71%. The NIR calibration model was based on
these samples, and the external validation set was within the range of the calibration set,
which can effectively achieve predictions.
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For both the NIRT and NIRR modules, the positive samples of the NIR spectra of the 
integral absorbance value were stronger (Figure 3). Regardless of whether the samples 
were contaminated or not, the spectra collected by the transmission modules (PLP and 
PLN) showed sharp, strong absorption peaks between 5500 and 6000 cm–1. 

Figure 1. Distribution and reference AFB1 concentrations in peanuts for calibration and validation sets.

2.2. FT-NIR Spectra of Positive Samples

In Figure 2, spectra from the NIRT (Figure 2a) and NIRR (Figure 2b) modules with
different AFB1 concentrations in the range of 9000–4000 cm−1 are shown. The spectra
from NIRT (Figure 2a) showed sharp, strong absorption peaks at wavenumbers 5681 and
5819 cm−1. The spectra from NIRR (Figure 2b) had a similar shape, showing several
different peaks and a generally growing trend, related to absorbance values, that increased
with an increasing wavenumber.
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Figure 2. Average FT-NIR spectra of the positive samples.

For both the NIRT and NIRR modules, the positive samples of the NIR spectra of the
integral absorbance value were stronger (Figure 3). Regardless of whether the samples
were contaminated or not, the spectra collected by the transmission modules (PLP and
PLN) showed sharp, strong absorption peaks between 5500 and 6000 cm−1.



Molecules 2022, 27, 6294 4 of 16Molecules 2022, 27, 6294 4 of 17 
 

 

50006000700080009000

0

1

2

3

4

5

A
bs

or
ba

nc
e

wavenumber(cm−1)

PLP

PPP

PLN
PPN

PP: Diffuse reflection
PL: Transmission

 
Figure 3. Average FT-NIR spectra collected by the diffuse reflection and transmission modules. 

2.3. PCA Analysis of Principal Components 
The accumulative contribution rates of the first three PCs are shown in Figure 4, with 

99.62% and 97.63% from the spectra collected by the NIRR and NIRT modules, respec-
tively. The three-dimensional spatial clustering in Figure 4 also proves the feasibility of 
PCA for distinguishing between contaminated and non-contaminated samples. In addi-
tion, it can be seen from the comparison that the clustering effect of the transmission mod-
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information of the original spectra. 

 

Figure 3. Average FT-NIR spectra collected by the diffuse reflection and transmission modules.

2.3. PCA Analysis of Principal Components

The accumulative contribution rates of the first three PCs are shown in Figure 4, with
99.62% and 97.63% from the spectra collected by the NIRR and NIRT modules, respectively.
The three-dimensional spatial clustering in Figure 4 also proves the feasibility of PCA for
distinguishing between contaminated and non-contaminated samples. In addition, it can
be seen from the comparison that the clustering effect of the transmission module of oil
samples was better than that of the diffuse reflection module of the powder samples, with
no crossover between different samples, but the reflection module partially overlapped.
Overall, it means that the first three PCs could completely represent all the information of
the original spectra.
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PCA loading can be used to extract the characteristic wavelength, with either the local
highest or lowest peak of the loading curve being considered as a characteristic band [26].
Figure 5 shows the PCA loading curves of the first three principal components (PC1, PC2,
and PC3) in detail, among which the peaks and valleys deviating from the horizontal
line were effective in determining the degree of peanut mildew [27]. As can be seen in
Figure 5, for both the NIRR and NIRT modules, there were valleys and peaks in the region
of 4887–4389 cm−1, related to the stretching vibration of the N–H group in the amino
acid [28], while the peaks in the region of 6064–5680 cm−1 could be assigned to the second-
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order frequency-doubling stretching vibration of the -CH2- group in the fatty acid [3,14].
The peaks at 8407 and 8747 cm−1 were the second-order frequency doubling of the C-H
stretching vibration of aliphatic hydrocarbons [29,30]. The C-H bonds of the aromatic ring
influenced the diffuse reflection module in the range of 7274–6900 cm−1 [15,30]. Some of
the spectral values in the literature are close to our results.
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Tables 1 and 2 summarize the bands and vibration modes of the chemical bonds in
the samples, respectively, which were selected as the modeling wavelengths of the diffuse
reflection and transmission module.

Table 1. Functional bonds and vibration modes in the NIRR module.

Wavenumber (cm−1) Functional Bonds Vibration Modes

7274 and 7033 cm−1 Arene methyl C–H Telescopic vibration combination frequency [29]
6900 cm−1 Aromatic amine N–H Scale one frequency doubling [3,15,19,28,30]
5800 cm−1 Fat hydrocarbon C–H Stretching vibration [15,19]
5680 cm−1 Aliphatic hydrocarbon –CH2– Symmetry vibration [3,14]

5175 and 5214 cm−1 Water molecules O–H and HOH Combination frequency of stretching and bending
vibration [3,19,28,30]

Table 2. Functional bonds and vibration modes in the NIRT module.

Wavenumber (cm−1) Functional Bonds Vibration Modes

8747 cm−1 Aliphatic hydrocarbon C–H Stretching vibration double frequency [29,30]
5958 cm−1 Aromatic C–H Telescopic first-order vibration [14]

5819 cm−1 Aliphatic hydrocarbon C–H First-order frequency doubling of stretching
vibration [30]

5742 cm−1 Arenes attached to methylene C–H Telescopic first-order vibration [14]

4590 cm−1 Protein N–H Telescopic vibration combination frequency
doubling [28,30]

4389 cm−1 Starch C–H, CH2
Alcohol group O–H Expansion and deformation [3,15,19]

2.4. Determination and Validation of LDA Discrimination Models
2.4.1. Determination of LDA Models

Based on the single and combined pretreatment methods presented in Section 2.3
the first three PCs’ scores extracted from the PCA analysis were used to establish an LDA
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discrimination model combined with the Mahalanobis distance. The results are shown
in Figure 6, where the models pretreated by “1st D + Nd” had high differentiation and
robustness, with the highest performance indexes of 96 (NIRR module) and 99.9 (NIRT
module). Further LDA classification models were established by 1st D + Nd pretreatment,
as shown in Figure 7, and clustering of non-contaminated groups, as well as contaminated
groups, can be clearly observed in each module.
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2.4.2. External Evaluation of LDA Models

The external validation set, including 15 positive and 15 negative samples, was im-
ported into the LDA models for verification. As can be seen in Figure 8, the Mahalanobis
distance of the validation set was less than 3, with a correct identification rate of 100%. No
false negatives or positives were observed, and the misjudgment rate was 0%. The model
quickly and accurately identified the occurrence of AFB1 infection in peanuts. A slightly
smaller Mahalanobis distance and a better clustering effect of the NIRR module of the oil
samples was obtained compared to the NIRT module of the powder samples. Overall, it
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could be inferred from the results that the LDA models established by the NIRR and NIRT
modules can be used for qualitative analysis of AFB1 contamination in peanuts, with the
NIRT module being slightly superior to the NIRR module to a certain extent.
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2.5. Determination and Validation of PLS Quantification Models
2.5.1. Determination of PLS Models

The ideal number of latent variables (LVs) was determined at the minimum of the pre-
dicted root mean square error of cross-validation (RESECV) [28]. Generally, good calibration
statistics were obtained with the ideal number of LVs for peanut samples contaminated
with AFB1. As can be seen from Figure 9, the number of LVs of the diffuse reflection and
transmission modules allowed to enter the PLS models was set to 8 and 10, respectively.

PLS models (Table 3) with different preprocessing methods were built using character-
istic wavelengths and the ideal number of LVs to predict the AFB1 contamination level in
peanuts, and the models were evaluated according to the Rc

2, RMSE, and RPD. Comparing
the performance of these models, the best accuracy and prediction was achieved with a
combination of the first derivative with Nd smoothing (1st D + Nd) preprocessing, which
demonstrated good predictive ability, with Rc

2 = 0.937, RMSEC = 2.51%, and RPD = 3.98
for the NIRR model and Rc

2 = 0.984, RMSEC = 1.28%, and RPD = 7.91 for the NIRT model.
PLS was used for modeling after optimizing the number of factors and preprocessing

methods. It can be observed from Figures 10 and 11 that the PLS models of the transmis-
sion module yielded higher predictive precision and better regression quality, with the
determination coefficient and RMSECV for the calibration and validation sets being 0.984
and 2.22%, respectively, while they were 0.937 and 3.92% for the diffuse reflection module.
The two models can be used for process or quality control, because the value of RPD is
greater than 3 [31].
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Table 3. Descriptive statistics of the PLS models for the calibration and validation sets.

Spectral
Detection Module

Pretreatment
Methods LVs

Calibration Validation RMSECV
(%) RPDRc

2 RMSEC
(%) Rp

2 RMSEP
(%)

Diffuse reflection

Spectrum 2 0.884 3.34 0.967 2.28 3.70 2.94
1st D 3 0.888 3.29 0.788 4.85 4.42 2.99
2nd D 1 0.566 5.90 0.962 5.00 8.50 1.52

1st D + SG 3 0.890 3.26 0.882 4.00 4.28 3.52
1st D + Nd 8 0.937 2.51 0.944 2.61 3.92 3.98
2nd D + SG 1 0.357 6.69 0.540 6.42 7.11 1.25
2nd D + Nd 4 0.877 3.64 0.926 3.62 4.18 2.85

Transmission

Spectrum 10 0.971 1.74 0.797 4.50 2.78 5.87
1st D 7 0.857 3.76 0.377 6.76 5.14 2.83
2nd D 1 0.663 5.47 0.914 3.08 6.24 1.72

1st D + SG 4 0.736 4.95 0.942 2.35 5.87 1.95
1st D + Nd 10 0.984 1.28 0.936 2.11 2.22 7.91
2nd D + SG 1 0.610 5.79 0.855 3.17 6.23 1.60
2nd D + Nd 7 0.864 3.69 0.937 3.39 4.88 2.71

Molecules 2022, 27, 6294 9 of 17 
 

 

1st D + Nd 10 0.984 1.28 0.936 2.11 2.22 7.91 
2nd D + SG 1 0.610 5.79 0.855 3.17 6.23 1.60 
2nd D + Nd 7 0.864 3.69 0.937 3.39 4.88 2.71 

PLS was used for modeling after optimizing the number of factors and preprocessing 
methods. It can be observed from Figures 10 and 11 that the PLS models of the transmis-
sion module yielded higher predictive precision and better regression quality, with the 
determination coefficient and RMSECV for the calibration and validation sets being 0.984 
and 2.22%, respectively, while they were 0.937 and 3.92% for the diffuse reflection module. 
The two models can be used for process or quality control, because the value of RPD is 
greater than 3 [31]. 

0 5 10 15 20 25
0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Calibration
Validation

Pr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg)

R2
c: 0.937     RMSEC: 2.51

R2
p: 0.944     RMSEP: 2.61

Pr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg))

R2
cv:  0.844      RMSECV: 3.92

Calibration

 
Figure 10. PLS model and cross-validation of the diffuse reflection module. 

0 5 10 15 20 25
0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Calibration
Validation

Pr
ed

ic
te

d 
va

lu
e(

μg
/k

g)

Reference value(μg/kg)

R2
c: 0.984    RMSEC: 1.28

R2
p: 0.936    RMSEP: 2.11

CalibrationPr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg)

R2
cv: 0.954     RMSECV: 2.22

 
Figure 11. PLS model and cross-validation of the transmission module. 

2.5.2. External Evaluation of the PLS Models 
To evaluate the robustness of the PLS models, 30 unknown samples were used for 

external validation. The spectra obtained from the diffuse reflection and transmission de-
tection were entered as input into the calibration equation and prediction was performed. 
The prediction set and reference values can be seen in Table 4, with the absolute values of 
the relative deviations for the diffuse reflection and transmission modules being between 

Figure 10. PLS model and cross-validation of the diffuse reflection module.



Molecules 2022, 27, 6294 9 of 16

Molecules 2022, 27, 6294 9 of 17 
 

 

1st D + Nd 10 0.984 1.28 0.936 2.11 2.22 7.91 
2nd D + SG 1 0.610 5.79 0.855 3.17 6.23 1.60 
2nd D + Nd 7 0.864 3.69 0.937 3.39 4.88 2.71 

PLS was used for modeling after optimizing the number of factors and preprocessing 
methods. It can be observed from Figures 10 and 11 that the PLS models of the transmis-
sion module yielded higher predictive precision and better regression quality, with the 
determination coefficient and RMSECV for the calibration and validation sets being 0.984 
and 2.22%, respectively, while they were 0.937 and 3.92% for the diffuse reflection module. 
The two models can be used for process or quality control, because the value of RPD is 
greater than 3 [31]. 

0 5 10 15 20 25
0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Calibration
Validation

Pr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg)

R2
c: 0.937     RMSEC: 2.51

R2
p: 0.944     RMSEP: 2.61

Pr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg))

R2
cv:  0.844      RMSECV: 3.92

Calibration

 
Figure 10. PLS model and cross-validation of the diffuse reflection module. 

0 5 10 15 20 25
0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Calibration
Validation

Pr
ed

ic
te

d 
va

lu
e(

μg
/k

g)

Reference value(μg/kg)

R2
c: 0.984    RMSEC: 1.28

R2
p: 0.936    RMSEP: 2.11

CalibrationPr
ed

ic
te

d 
va

lu
e (

μg
/k

g)

Reference value (μg/kg)

R2
cv: 0.954     RMSECV: 2.22

 
Figure 11. PLS model and cross-validation of the transmission module. 

2.5.2. External Evaluation of the PLS Models 
To evaluate the robustness of the PLS models, 30 unknown samples were used for 

external validation. The spectra obtained from the diffuse reflection and transmission de-
tection were entered as input into the calibration equation and prediction was performed. 
The prediction set and reference values can be seen in Table 4, with the absolute values of 
the relative deviations for the diffuse reflection and transmission modules being between 

Figure 11. PLS model and cross-validation of the transmission module.

2.5.2. External Evaluation of the PLS Models

To evaluate the robustness of the PLS models, 30 unknown samples were used for
external validation. The spectra obtained from the diffuse reflection and transmission
detection were entered as input into the calibration equation and prediction was performed.
The prediction set and reference values can be seen in Table 4, with the absolute values of the
relative deviations for the diffuse reflection and transmission modules being between 1.35%
and 37.72% and 0.06% and 11.60%, respectively. The relatively high relative deviation values
are related to the small values of the AFB1 concentration. Figure 12 shows the prediction
results of the PLS models for all of the external validation set samples. The samples were
distributed on both sides of the center line, showing a high degree of correlation. The
determination coefficients (R2) of the predicted and reference values of the PLS models of
diffuse reflection and transmission were 0.919 and 0.986, respectively.

The values obtained from the prediction were also compared using Student’s t-test,
which provides a statistical test of whether or not the means of two groups are equal. Both
levels of significance (p-values) resulted less than t0.05, p > 0.05, indicating a satisfactory
predictive ability and confirming the potential of FT-NIR analysis for AFB1 prediction
in peanuts.
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Table 4. Prediction results of the PLS models.

Spectral
Detection Module

Reference Value
(µg/kg)

Predicted Value
(µg/kg)

Absolute Deviation
(µg/kg)

Relative
Deviation (%)

Diffuse reflection

11.11 13.7 −2.59 −23.31%
14.13 8.80 5.33 37.72%
17.12 17.67 −0.55 −3.21%
19.20 18.94 0.26 1.35%
8.34 6.10 2.24 26.86%
9.45 10.2 −0.75 −7.94%
2.31 2.05 0.26 11.26%
3.56 3.82 −0.26 −7.30%
21.32 20.21 1.11 5.21%
23.79 22.33 1.46 6.14%
5.09 6.21 −1.12 −22.0%
8.07 7.21 0.86 10.6%
10.25 12.21 −1.96 −19.1%
17.94 18.21 −0.27 −1.51%
21.74 23.21 −1.47 −6.77%

Transmission

11.11 11.56 −0.45 −4.05%
14.13 14.78 −0.65 −4.60%
17.12 17.13 −0.01 −0.06%
19.2 19.11 0.09 0.47%
8.34 8.47 −0.13 −1.56%
9.45 9.21 0.24 2.54%
2.31 2.21 0.10 4.33%
3.56 3.51 0.05 1.40%
21.32 20.91 0.41 1.92%
23.79 23.82 −0.03 −0.13%
5.09 5.24 −0.15 −2.94%
8.07 8.49 −0.42 −5.20%
10.25 10.15 0.1 0.98%
17.94 19.55 −1.61 −8.97%
21.74 19.21 2.53 11.60%

3. Discussion

The NIR spectra of the integral absorbance value of contaminated peanuts is stronger,
probably because the infection causes mildew of the starch of peanuts, as well as sugar,
lipid, and protein changes, in addition to mold, which starts producing metabolites, causing
different degrees of change in the spectra [7,29]. Thus, it indirectly indicates the content
of toxins in peanuts [31,32]. The spectra collected by the diffuse and transmission detec-
tion modules were different. The spectra showed sharp, strong absorption peaks in the
transmission module, which might be because transmitted light can penetrate through
the sample to be measured and can reach deep inside the sample, and it contains deeper
information about said sample. While in the diffuse reflection module, the NIR light source
cannot completely penetrate solid particles, and the spectrum only carries the information
of one side or epidermis of the solid sample due to the influence of the placement position.
This behavior was also observed by Li Hao Guang [22]. These spectral peaks may relate to
the chemical and physical properties of the samples.

Effective feature wavelengths extraction for spectral differences is very crucial for
classification and quantification of aflatoxin levels in peanut samples using chemometric
methods. PCA was applied for spectral data dimensionality reduction to identify the
characteristic wavelength. According to the PCA scoring loading analysis, the spectral
information was affected by spectrum acquisition methods. Diffuse reflected light is the
light processed by the light source that enters the interior of the sample and returns to
the surface of the sample after multiple reflections, refractions, diffractions, and absorp-
tions [23]. Consequently, there were more peaks and valleys. Compared to previous
research by Gaspardo et al. [23], Daniel Kimuli et al. [7], and Fei Shen et al. [28], except for
those common wavelengths, there were some differences for the characteristic wavelengths
selected as the modeling wavelengths in our research. Near-infrared spectrum technology
relies on the statistical analysis of a given set of data, and it is normal for different spectral
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acquisition methods to have some differences in the selected wavelengths [3]. Thus, the
existence of spectrum differences may be caused by the different spectrum acquisition
methods, which provided the basis for establishing classification and quantification models
of FT-NIR spectroscopy.

Spectral pretreatments were applied to eliminate the influence of high-frequency
random noise, baseline shift, and sample heterogeneity. The LDA classification models,
involving pretreatment with the first derivative combined with Norris derivative filter
smoothing (1st D + Nd), showed the best differentiation and robustness. It is possible
that it reduces additional effects such as the baseline offset and slope of the spectrum, and
improves the resolution and sensitivity of the spectral data [33]. The clustering of different
groups suggests that samples of the same cluster may have similar physical or chemical
characteristics [7]. In both spectrum acquisition methods, high efficiency values were
obtained in the discrimination and classification of the samples in Figure 7. It is noteworthy
that the classification accuracy of the transmission model was better than that of the
diffuse reflection model, for which the feature space variance of the aflatioxin- positive
and -negative groups was lower and better separated. Pearson et al. [20] also obtained
better results in the detection of aflatioxin in corn kernels by visible region transmission
spectroscopy, with a classification accuracy of 95%. This may be because overcoming
stray light is difficult for the diffuse reflection module [34]. Liu Yande et al. [35] reported
that the diffuse reflection module only carries the information of one side or epidermis
of a solid sample, which may be the reason for the slightly lower accuracy. Based on the
transmission module of NIR, a discriminant model of peanuts infected by a variety of
mushy mold was established by Liu Peng et al. [30], and the discriminant accuracy was
99.17%, which may be affected by external factors such as non-uniform placement of grain
samples. However, the prediction accuracy of our models was improved, probably because
the instrument’s integrating sphere already reduced scattering and enhanced the effect of
molecular absorption [23]. The classification accuracy was 100% for the external validation
set for the two LDA models. The accuracy of the classification needs to be verified in a
broader sample database in future studies to make the model more stable.

The best PLS models (with Rc
2 = 0.937 and 0.984 for NIRR and NIRT, respectively)

were established for predicting the AFB1 content in peanuts, with the appropriate number
of latent variables (LVs) and the pretreatment method. The appropriate number of LVs of
the diffuse reflection and transmission modules allowed to enter the PLS models was set to
8 and 10, respectively, presenting as much useful information as possible, with less noise
and over-fitting avoidance [36]. The models were stable and achieved satisfactory accuracy.
The combination of 1st D + Nd smoothing pretreatment was found to be more effective
compared to any other chemometric method, for both the NIRR and NIRT spectrum
acquisition methods. This may be because the derivative eliminates baseline drift and
improves the spectral resolution. However, we found that the models pretreated with
second derivative processing were poor, as they might increase the noise level and reduce
the spectral signal-to-noise ratio in some case [28]. The PLS model of the transmission
module yielded higher predictive precision and better regression quality. Similar results
were also obtained by Pearson et al. [20] when studying aflatioxin contamination in single-
corn kernels by employing transmittance and reflectance spectroscopy. They stated that
light passes through the kernel, ensuring that the constituents inside the kernel have
an opportunity to interact with the NIR radiation during transmittance spectroscopy.
Meanwhile, in the diffuse reflectance module, some energy cannot penetrate the kernel and
is reflected back to the sensor.

External evaluation of the PLS models presented that the prediction accuracy of the
diffuse reflection model was slightly poor, consistent with the conclusion that the ability
of the diffuse reflection spectrum to reflect sample information was worse than that of
transmission. The model needs to be further optimized and can only be used for rough
detection. The results obtained were similar to those of Berardo et al. [37]. They developed
a PLS model of maize with R2 = 0.80 and concluded that it could only be used for the rough
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screening of Fusarium verticillioides-infected maize. Shen et al. [19] obtained slightly higher
determination coefficient values (0.8823) for rice contaminated with harmful mold infection.
In our study, the predicted value of the transmission model had a good correlation with the
chemical reference value, and the accuracy was good and robust, which was suitable for
the early identification of moldy peanuts. Subsequent explorations will take into account
sample preparation, scan area, feature extraction, and analysis efficiency to improve the
predictive power of models built from diffuse reflectance spectroscopy.

4. Materials and Methods
4.1. Aspergillus Flavus Spore Suspension Preparation

According to the method described by Jing Dan et al. [38], strains were isolated from
moldy peanuts and identified as Aspergillus flavus by the Microbial Analysis and Testing
Center in Guangdong Province, China. Cultures of the strains were incubated at 28 ◦C and
85% relative humidity (RH) for six days on potato dextrose agar (PDA) medium to produce
large numbers of spores. After incubation, the spores were harvested and slowly rubbed
with a sterile stainless steel inoculation loop. Subsequently, the suspension obtained was
filtered through sterile gauze for further use. The concentration of spores was determined
using the standard pour plate method [15], suspended in sterile distilled water at a dilution
of 1.6 × 106 CFU/mL.

4.2. Peanut Sample Inoculation

The peanuts (No. 1 of Zhongkaihua) were refrigerated for later use after irradiation
sterilization. The sterilized peanuts were soaked in the solution of spores and stirred for
5 s. Next, they were placed an incubator at 30 ◦C and 85% RH for 11 days for aflatioxin
production. On the third day after artificial inoculation of AFB1, 12 samples (80 g of peanut
per sample) were collected every other day for analysis. A total of 60 samples were collected
five times, representing the positive samples, while the sterilized peanut samples represent
the negative samples.

4.3. ELISA Analysis of Aflatoxins

The reference AFB1 concentrations of the positive samples were detected by Enzyme
Linked Immunosorbent Assay (Multiskan SkyHigh, ELISA kit, Thermo, Waltham, MA,
USA) according to the national standard of China (GB/T 5009.22-2016) [39]. ELISA is a
semi-quantitative assay capable of detecting AFB1 levels from 1 to 50 ppb. These reference
AFB1 concentrations were used for model establishment and validation.

4.4. Sample Preparation for NIR Analysis

All samples were crushed into homogenized powder using a No. 60 mesh sieve and
stored at 4 ◦C. In this case, 60 positive samples of peanut powder (PPP) were obtained.
After collecting the NIRR spectroscopy, the samples were pressed into liquid oil by a hot
press and clarified peanut oil from the upper layer was obtained as positive peanut oil
samples (i.e., positive sample of peanut liquid, PLP). Here, 60 sterilized peanut powder
(i.e., negative sample of peanut powder, PPN) and 60 sterilized peanut oil (i.e., negative
sample of peanut liquid, PLN) samples represent the negative samples. According to
the Kennard-Stone (K-S) algorithm, the samples were divided into a calibration set and a
prediction set, as shown in Table 5. To remove the effect of moisture on the spectrum, all
contaminated and negative samples were dried at 40 ◦C for 6 h to ensure that the moisture
content in the samples was below 15% [15].
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Table 5. Sample statistical results.

Sample Number of
Samples

Spectra Qualitative Quantitative
Calibration Validation Calibration Validation

PPP 60 900 45 15 45 15
PPN 60 900 45 15
PLP 60 900 45 15 45 15
PLN 60 900 45 15

4.5. Spectra Acquisition

Fourier transform spectra of the 240 samples were acquired using an Antaris II FT-NIR
spectrometer (Thermo Nicolet, Waltham, MA, USA) equipped with an interferometer, a
long-life light source, and an InGaAs detector. In the NIRR module, around 12 g of the
peanut powder sample was uniformly packed into a integration sphere with an adapter
spinner for sample rotation and directly placed on the sample holder for measurement.
At the same ambient temperature and humidity, in the NIRT module, around 1 mL of
peanut oil was loaded into a square quartz liquid tank with an optical path of 2 mm. In the
region of 10,000–4000 cm−1, measurements were conducted with a resolution of 8 cm−1

for 64 scans to ensure an adequate signal-to-noise ratio. The air background was taken
each hour. All of the samples were run in parallel five times and were scanned in triplicate
for each parallel sample. A total of 15 NIR spectra were obtained for each sample. The
average spectrum of each sample was considered as the final spectral data for participating
in modeling.

4.6. Multivariate Calibration

All the statistical analyses were conducted using TQ Analyst and Omnic (Version 9.0,
Thermo Electron Corp., Waltham, MA, USA) in this study. The purposes of statistical anal-
yses were: (1) To select a characteristic wavelength range, (2) to extract feature information
from the NIRR and NIRT spectra, (3) to establish a classification model to classify AFB1-
contaminated peanuts, and (4) to predict the AFB1 concentration of contaminated peanuts.

Principal component analysis (PCA), linear discriminant analysis (LDA), and partial
least squares (PLS) regression have been proven to be effective in many applications [15,40].

At present, numerous feature extraction methods have been proposed and applied to
dimensionality reduction of spectral data in literature reports, such as Genetic algorithm
(GA), Successive projections algorithm (SPA), Principal component analysis (PCA), Com-
petitive adaptive reweighted sampling (CARS), etc. These methods have a solid theoretical
foundation and are easy to implement and analyze, which have been used successfully in
many applications. PCA is commonly applied, as a tool for data dimensionality reduction,
to spectral data to investigate the presence of spectral variation among samples [3,7,13,28].
The spectra were mean-centered, and selection of variables was carried out for identification
of the most relevant wavelengths, thereby reducing correlated variables [41]. The data were
summarized by altering the original variables into a new set of linearly irrelated variables
called principal components (PCs). The cumulative contribution rate represents the ability
of the corresponding PC to interpret the original variable. Additional information about
the characteristic wavelengths can also be provided by the load at each wavelength in the
corresponding PC [42].

LDA, widely recognized as valuable for classification problems [43], is a supervised
pattern recognition method based on the class model combining PCA and the Maha-
lanobis distance (MD). Through multivariate analysis technology, a full spectrum is not
provided as a predictor because the number of predictors must be less than the number
of responses. Therefore, the loading obtained by stepwise regression and PCA is used to
select the most relevant wavelengths and eliminate the relevant variables to compare the
obtained results [41].

PLS is a classical linear modeling method that compresses spectral data into an orthog-
onal structure of a small number of orthogonal factors called latent variables (LVs) [41]. LVs
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describe the maximum covariance between spectral information and the reference content
value. The established quantitative prediction model has the advantages of comprehen-
sive screening of spectral data, full extraction of effective spectral information of samples,
consideration of internal connections, etc.

4.7. Spectral Preprocessing

Many data-processing methods can be applied to eliminate the influence of high-
frequency random noise, baseline shift, and sample heterogeneity. These methods include
the derivative smoothing filter (Norris derivative filter, Nd), the convolution smoothing
filter (Savitzky-Golay, SG), the first derivative (1st D), and the second derivative (2nd D).
More useful information could be obtained after pretreatment. In our current research,
a total of seven methods independently or in combination were selected for composite
spectral preprocessing, and the best spectral preprocessing method was finally selected.

4.8. Model Establishment and Evaluation

The classification model was implemented by linear discriminant analysis combined
with principal component analysis (PCA–LDA), comparing the effect of different pre-
processing methods based on the performance index and classification accuracy of the
calibration and validation sets. In the PCA–LDA method, PCA was first used to reduce
the dimensionality of the spectral data and determine the characteristic wavelength; next,
LDA was performed on the first few PCs with a larger contribution rate to establish the
classification model. PLS models were used to predict the AFB1 concentrations in the
peanut samples. The ideal model was evaluated by the determination coefficient (Rc

2), root
mean square error (RMSE), and relative percent deviation (RPD) [44]. The performance
of the estimation models was further analyzed using an independent test set called the
validation set, with samples not included in the original models.

4.9. Data Processing

The data measured by ELISA were imported into SPSS 25.0 data-processing software,
and the mean value, amplitude, and coefficient of variation of the data were calculated.
An independent samples t-test was used to analyze the prediction deviation of the NIR
prediction model under the two detection methods. The analysis results are expressed
as p-values, with p < 0.05 indicating a significant difference and p < 0.01 highlighting an
extremely significant difference [39].

5. Conclusions

Fourier transform near-infrared transmission and diffuse reflection spectroscopy were
employed to detect AFB1 contamination in naturally infected peanuts. The influence of
the characteristic wavelength and various pretreatment methods on the detection accuracy
was investigated, respectively. The results showed that the LDA models established by
the two modules could quickly and accurately identify AFB1 infection in peanuts. The
PLS quantitative model established by the NIRT module was litter superior to that of the
NIRR module. The proposed methodologies may provide a reference for the detection of
peanut mycotoxin contamination by FT-NIR in industrial production, which have practical
applications for screening peanut samples and for preventing moldy peanuts from entering
the food chain. If the number of samples could be expanded and a more reasonable
chemometric algorithm could be involved in subsequent studies, the models will have
greater utility and robustness.
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