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Pathologic characteristics of infectious diseases in macaque monkeys 
used in biomedical and toxicologic studies
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Abstract: Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to 
use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or 
developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, 
experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Un-
der these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpreta-
tion of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand 
the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and 
experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview 
of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially 
macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the labora-
tory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or 
influenced during safety assessment studies or under experimental conditions. (DOI: 10.1293/tox.2022-0089; J Toxicol Pathol 2023; 
36: 95–122)
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Introduction

Nonhuman primates (NHPs) have important applica-
tions in scientific research owing to their genetic similari-
ties to humans1. The safety profiles and biological or phar-
macological effects of drug candidates, including biologics, 
can be often evaluated only in NHPs. Hence, the demand 
for NHPs in drug development research1, 2 and scientific re-
search in the fields of biology, medicine, and pharmaceutics 
is increasing in the United States of America (USA), the Eu-
ropean Union, and Asia3–5.

Cynomolgus (Macaca fascicularis) and rhesus (Ma-
caca mulatta) macaques are the most commonly used NHPs 
in scientific research5. Macaques must be transferred and 
maintained in the laboratory setting for applications in bio-
medical and toxicological research. In Japan, monkeys are 
allowed to be imported only from the USA, the People’s 
Republic of China, the Republic of Indonesia, the Repub-

lic of the Philippines, the Socialist Republic of Viet Nam, 
the Republic of Suriname, the Co-operative Republic of 
Guyana, and the Kingdom of Cambodia according to the 
Regulations Concerning the Importation of Animals That 
May Convey Pathogens of Infectious Diseases under Regu-
lations Concerning the Importation of Animals That May 
Convey Pathogens of Infectious Diseases (Order of MHLW 
and MAFF No. 2 of 1999). Monkeys are subject to import 
and export regulations under the Convention on Interna-
tional Trade in Endangered Species of Wild Fauna and Flora 
(CITES, commonly known as the Washington Convention, 
Ministry of Economy, Trade, and Industry), while macaque 
monkeys are subject to import regulations under the Law 
Concerning the Prevention of Damage to Ecosystems from 
Specified Invasive Alien Species (commonly known as the 
Invasive Alien Species Act, Ministry of the Environment). 
Therefore, additional prior procedures/permissions are re-
quired for importing monkeys into Japan.

The spread of Ebola hemorrhagic fever-causing and 
Marburg fever-causing viruses must be strictly prevented 
by quarantining monkeys based on Article 55 of the Act 
on Prevention of Infectious Diseases and Medical Care for 
Infectious Patients (Act No. 114 of 1998, as amended). Ad-
ditionally, each facility strives to prevent unexpected out-
breaks of infections by performing various tests during the 
quarantine and acclimatization periods.

Although animal care and handling procedures have 
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markedly progressed, the immune system of animals can 
be spontaneously compromised due to background infection 
and experimental condition-induced stress, poor physical 
condition, or the intended or unintended mechanism of the 
test articles6, 7. For example, simian retrovirus (SRV) and 
measles affect both humoral and cellular immune systems8, 9, 
while simian immunodeficiency virus (SIV) compromises 
cellular immunity10–12 in infected macaques. Background, 
incidental, or opportunistic infections can seriously affect 
the interpretation of the experimental results. To prevent the 
effects of infectious diseases on experimental results, spe-
cific pathogen-free colonies of NHPs can be used. However, 
eliminating infectious diseases in NHP colonies is challeng-
ing when compared with that in several other laboratory 
animal species. This is because macaques need parental and 
social interactions for physiological development and addi-
tionally considerable numbers of NHP colonies are raised 
outdoors13, 14. Furthermore, the elimination of all infectious 
agents, including those that are not pathogenic in healthy 
monkeys, is not ideal because the recurrence of infectious 
diseases may provide good evidence for assessing or re-
vealing the safety profiles of therapeutic drugs, biomedical 
agents, or experimental procedures. Therefore, it is impor-
tant for pathologists to understand the spectrum of infec-
tious diseases in normal NHP colonies, as well as the clini-
cal, gross pathologic, and histopathologic characteristics of 
these diseases and their effects on physiology and experi-
mental outcomes14, 15.

This review provides an overview of the clinical and 
pathologic characteristics of known or common viral, bac-
terial, parasitic, and fungal infectious diseases in NHPs 
(Table 1) (represented by macaque monkeys in this study), 
as well as diagnostic approaches to identify these diseases. 
Additionally, potential opportunistic infections in labora-
tory settings have been discussed (Table 1). Furthermore, 
some examples of cases of infectious disease manifestation 
that were observed or influenced during safety assessment 
studies or under experimental conditions are included.

Viral Infection

Simian retrovirus (SRV): synonymous names: simian 
betaretrovirus, Type D (SRV/D) retrovirus (Serotype: 
SRV1–5, 7 and SRV-T are reported in Asian ma-
caques)16

Overview. The prevalence of seropositivity and/or vi-
rus positivity in macaques is known to be relatively high but 
varies depending on the efforts of the facility. In a facility 
in Tsukuba, Japan, the prevalence of SRV infection in cyno-
molgus macaques was 95% in 201017. SRV can be transmit-
ted via contact with saliva, urine, and/or feces of infected 
individuals as determined during the spread of SRV/D-Tsu-
kuba infection within the facility18. SRV is one of the causes 
of simian acquired immune deficiency (SAIDS), which af-
fects both humoral and cellular immune functions8, 19. The 
hematocrit, white blood cell, lymphocyte, and neutrophil 
values in seropositive or viremic animals are lower than 

those in normal animals, However, changes that fit the defi-
nition of SAIDS are not commonly found in those seroposi-
tive and viremic animals20. In one study, only one of the 24 
experimentally infected cynomolgus macaques exhibited 
clinical signs consistent with SAIDS20. A CD8+ T-cell-de-
pleted rhesus monkey transfused with whole blood from a 
monkey positive for SRV1 antibody and polymerase chain 
reaction (PCR)-positive for viremia did not exhibit clinical 
or marked hematological or pathologic changes indicative of 
SRV-related SAIDS within a few months21. SRV-4 and SRV-
5 are reported to infect Japanese macaques with different 
pathogenicity231, 232, 237, 238.

Clinical and anatomical pathologic features. Clinical 
signs in cynomolgus monkeys include nonspecific anemia, 
weight loss, and diarrhea. The hallmark of SRV-induced 
SAIDS is the reactivation of opportunistic infections. Vari-
ous bacterial infections have been reported in SRV-infected 
macaques22 in addition to cytomegalovirus (CMV) infec-
tion, oral and esophageal candidiasis, and intestinal cryp-
tosporidiosis, which are relatively common in macaques 
experimentally infected with the SIV16, 22, 24. Histological 
changes are characterized by increased nonspecific infec-
tion and increased incidence or severity of focal lymphoid 
infiltration (predominantly in the kidney, pancreas, salivary 
glands, bone marrow, and brain) with occasional germinal 
center formation, abscess, arthritis, or myositis along with 
lymphoid hyperplasia in the spleen and splenomegaly due 
to reactions in the germinal centers and paracortex of the 
lymph nodes8, 18, 20. Lymphoid depletion due to poor condi-
tions associated with the infection may be observed. Some 
macaques infected with SRV exhibit proliferative lesions of 
retroperitoneal fibromatosis, which is characterized by the 
formation of masses with infiltrative growth of fibroblastic 
cells with collagen fibers8, 23. When infected animals exhibit 
reactivation of opportunistic infections due to SAIDS, the 
pathologic features discussed in the sections on individual 
opportunistic infections, including CMV, Candida, and 
Cryptosporidium infections, should be referred. In Japanese 
macaques, SRV-4 or SRV-5 infection is reported to induce 
related severe thrombocytopenia231, 232, 237.

Diagnosis. In addition to serological examinations 
(including commercially available enzyme-linked immu-
nosorbent assay (ELISA) kits), PCR for proviruses, reverse 
transcription (RT)-PCR, immunohistochemistry (IHC), and 
in situ hybridization (ISH) methods can be used to identify 
SRV infection18, 231. Some detection methods may not ex-
hibit effective performance due to the stage of infection231. 
Hence, a combination of these procedures may be useful. 
IHC and ISH analyses reveal the viral antigen and genome 
in the ductal epithelium located between the acinar epithe-
lium of the salivary gland18.

Simian immunodeficiency virus (SIV) [No natural 
infection reported in Asian macaques]

Overview. Large proportions of African primates, 
which are natural hosts of SIV, are serologically positive 
for SIV. However, clinical disease, which is characterized 
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by the loss of CD4+ T cells and immunosuppression, is not 
observed in these monkeys. In cases of cross-species trans-
mission to Asian macaques, SIV infection can decrease the 
CD4+ T-cell count and compromise the immune system, 
which are similar to the effects of human immunodeficiency 
virus (HIV) and to associated acquired immunodeficiency 
syndrome (AIDS). SIV is not endemic to Asian macaques, 
and natural cross-species transmission of SIV from Afri-
can NHPs to Asian macaques is rare16, 24. Hence, the prob-
ability of SIV infection in Asian laboratory macaques is 
low. Rhesus monkeys experimentally infected with SIV are 
frequently used as a model of AIDS. SIV infection in cy-

nomolgus monkeys is reported to be less pathogenic when 
compared with that in Indian rhesus monkeys233.

Clinical and anatomical pathologic features. The 
SIV-specific pathologic features include selective down-
regulation of CD4+ lymphocyte counts, lymphoma10, 16, and 
the occurrence of opportunistic infections, including mani-
festations of CMV infection, oral and esophageal candidia-
sis, and intestinal cryptosporidiosis16, 24. For the pathologic 
features of opportunistic infections, refer to the sections be-
low for each infectious agent. Nonspecific findings that are 
potentially associated with the manifestations of immune 
deficiency include decreased body weight, diarrhea, gener-

Table 1. Viral, Bacterial, Fungal, and Parasitic Infectious Agents That Can Affect Studies in Macaques
Infectious agent Prevalence (reference)
Viral
Simian retrovirus High* (17, 18)
Simian immunodeficiency virus Low** (16, 24)
Measles Low** (27, 28)
Herpes B virus High (16)
Simian T-cell leukemia viruses Low (16, 35)
Cytomegalovirus Common opportunistic (28, 35, 47, 48)
Lymphocryptovirus High (54–56)
Simian adenovirus Medium high (66)
Simian virus 40 High (16, 74)
Simian parvovirus Low (79)
Papillomavirus High (82)
Rhesus rhadinovirus High (88, 90)
Simian varicella virus Low (100)
Hepatitis A virus Low* (102, 105)
Canine distemper virus Low*(226)

Bacterial
Campylobacter, Shigella, Yersinia High (108, 109)
Mycobacterium tuberculosis complex Medium high (119)
Helicobacter pylori, Helicobacter heilmannii High (117)
Moraxella catarrhalis Common opportunistic (117)
Rhodococcus equi Common opportunistic (136–138)
Enteropathogenic Escherichia coli High (146, 147)

Parasitic
Pulmonary acariasis High (153, 154)
Helminths (Strongyloides fuelleborni, High*** (157–161)
Trichuris trichiura, Oesophagostomum spp.)

Gastrointestinal protozoa 
Amoebae (Entamoeba spp.) High (166–168)
Coccidia (Cryptosporidium spp.) Low (155, 160, 169)
Ciliates (Balantidium spp.) Low–High (174)
Flagellates (Giardia spp.) Low (155, 160, 169)

Other protozoa
Flagellates (Trypanosoma spp.) Low**** (181)
Coccidia (Toxoplasma gondii) Low (190, 191)
Coccidia (Sarcocystis spp.) Low (196)
Coccidia (Babesia spp.) Low (199, 200)
Coccidia (Plasmodium spp.) High (203, 204)

Fungal 
Candida albicans High (208–211)
Pneumocystis spp. High (214, 215)

*depends on facility; **not natural host; ***depends on species and facility; ****limited to South America.
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alized lymphadenopathy, and splenomegaly.
Diagnosis. Antibody responses are induced within 

weeks of SIV infection. SIV genomes can be detected in pe-
ripheral blood CD4+ cells, sometimes within days of infec-
tion25, 26. A combination of serological and molecular assays 
can be used to eliminate the risk of SIV-related undesirable 
immune compromise from colonies used in scientific stud-
ies.

Measles virus
Overview. Humans are the only natural hosts that sus-

tain measles virus transmission27. Most NHP species are 
susceptible to measles infections from their infected human 
handlers28. Measles belongs to the family Paramyxoviridae.

Clinical and anatomical pathologic features. The 
clinical, gross, and histopathologic hallmark of measles in 
macaques is maculopapular skin rash, which is histologi-
cally characterized by multinucleated giant cells in the epi-
dermis and hair follicles with mild inflammation. Although 
measles is associated with lymphocytopenia, the depletion 
of peripheral lymphocytes, which as a cause of immune sup-
pression, is often undetectable because lymphocyte counts 
rapidly return to control levels after virus clearance. There-
fore, measles-induced lymphocytopenia may be missed. 
However, the suppression of humoral and cellular immune 
functions can last several weeks to months, resulting in 
mortality predominantly due to secondary infections in the 
respiratory and digestive tracts9. In the lung, the lesions 
range from mild bronchiolar pneumonia to severe intersti-
tial pneumonia; These changes are associated with the pres-
ence of multinucleated giant cells and minimal alveolar ede-
ma. Giant cells and intranuclear and cytoplasmic inclusion 
bodies can also be observed in reticular or phagocytic cells 
of the lymphoid system and in epithelial cells of the respira-
tory system, gastrointestinal tract, salivary glands, thyroid 
gland, liver, pancreas, and urinary system29, 239. Represen-
tative eosinophilic intranuclear and cytoplasmic inclusion 
bodies of measles in the infected bronchial epithelium are 
shown in Fig. 1a and 1b.

Diagnosis. In addition to commercially available de-
tection kits for measles-specific IgM and IgG30, RT-PCR 
can also be used for measles virus detection31, 32.

Herpes B virus (HBV, Cercopithecine herpesvirus 1)
Overview. Most naturally captured Asian macaques 

are seropositive for HBV. HBV infection is latent and is not 
associated with clinical signs16. In humans, HBV infection 
is rare but has been sporadically reported33. HBV infec-
tion can be fatal in humans34. To avoid fatal infection from 
handlers and potential effects on the experiments, HBV se-
ronegative animals are usually used35. However, to ensure 
handler protection, we should be aware that serological test-
ing for antibodies or PCR testing for the virus usually shows 
negative results in latently infected animals without vire-
mia. HBV infection in macaques is persistent and remains 
latent in the trigeminal and spinal ganglia. Immunosup-
pressive conditions, such as under stress can reactivate the 

infection, leading to the shedding or transmission of virus 
with increased antibody titers33, 36, 37.

Clinical and anatomical pathologic features. In ma-
caques, HBV infection is clinically and pathologically char-
acterized by small to large (sometimes erosive) vesicles on 
the oral and genital mucosa together with a multifocal nec-
rotizing hepatitis with multinucleated syncytial cells and in-
tranuclear inclusion bodies in the epithelial cells of affected 
organs and tissues16, 37, 38.

Diagnosis. Serological examination to diagnose HBV 
infection is challenging owing to the close genetic relation-
ship between herpes simplex virus and HBV and antibodies 
in the serum can cross react39, 40. PCR detection of HBV-
specific DNA or viral isolation is used for diagnosis39–42.

Simian T-cell leukemia viruses (STLVs)
Overview. STLVs can infect Asian macaques16, 43 al-

though the seroprevalence of STLVs is rare in macaques 
maintained under laboratory settings35. Clinical signs are 
usually not apparent even in cases of STLV infection is con-
firmed16.

Clinical and anatomical pathologic features. Char-
acteristic pathologic changes include lymphoproliferative 
lesions with changes in cytokine profiles, which are most 
apparent in baboons (Papio spp.)16 and the African green 
monkey (Chlorocebus sabaeus)44. The common findings 
associated with these lymphomas in NHPs are decreased 
bodyweight, weakness, lethargy, dyspnea with pneumonia, 
leukemia with or without multilobulated lymphocytes in 
the peripheral blood, generalized lymphadenopathy, hepa-
tosplenomegaly, and nodular skin lesions with diffuse in-
filtration of neoplastic lymphocytes44–46 and multilobulated 
lymphocytes43.

Diagnosis. Antibodies against STLV-1 antigens can be 
detected in the peripheral blood of animals with suspected 
infections. The lymph node section containing proliferative 
lesions can be subjected to IHC to demonstrate the neoplas-
tic increase in T-cell lineages25.

Cytomegalovirus (CMV): Betaherpesvirinae Maca-
cine herpesviruses 3 (rhesus CMV) and 8 (cynomol-
gus CMV)

Overview. CMV infects captive rhesus and cynomol-
gus macaques without clinical signs and seroprevalence of 
CMV is high (more than 90% in all populations tested and 
almost 100% in adults16, 28, 35, 47, 48). Latent CMV activation 
is one of the most commonly observed opportunistic infec-
tions in immunocompromised macaques, which can be at-
tributed to the high prevalence of CMV (similar to that in 
humans)49. CMV is a highly species-specific virus owing to 
its long evolutionary history with its host. Therefore, cross-
species infection is restricted. Additionally, cross-species 
infection is rare in primates even under experimental condi-
tions50, 51. In cases of CMV activation in monkeys immuno-
suppressed for tissue transplantation, CMV DNA has been 
detected in animals with the white blood cell (WBC) counts 
decreasing to less than 4,500/μL and the lymphocyte counts 
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decreasing to less than 1,800/μL52. However, in our expe-
rience, a clear decrease in WBC parameters has not been 
detected before the manifestation of CMV-related clinical 
signs. Thus, functional alterations in the immune system 
without marked changes in peripheral WBC counts can also 
cause CMV reactivation.

Clinical and anatomical pathologic features. In im-
munosuppressed animals, CMV infection most commonly 
affects the lungs. Inflammation of the brain, gastrointestinal 
tract, reproductive organs, and lymphoid system can also be 
observed16, 28. In our experience with opportunistic system-
ic CMV infection accompanied by clinical manifestations, a 
severely affected animal exhibits decreased food consump-
tion and decreased activity. At necropsy there was pulmo-
nary effusion with diffuse dark red discoloration of all lung 
lobes. In the lung, diffuse infiltration of inflammatory cells 
(predominantly foamy macrophages), serous or fibrinous 
exudate, and hemorrhage (Fig. 2a) were histologically ob-
served. Enlargement of alveolar epithelial cells and vascular 
endothelial cells were also observed. These cells frequently 
contained intracytoplasmic and intranuclear inclusion bod-
ies with or without clear hollows (owl’s eyes) (Fig. 2b and 2c). 
Perivascular edema and inflammatory cell infiltration with 
hemorrhagic necrosis of blood vessels along with hypertro-
phy of alveolar epithelial cells, and syncytial cells were also 
observed. Lymphoid depletion in the bronchiole-associated 
lymphoid tissue, various lymph nodes with foamy macro-
phages with intranuclear inclusions, gastric ulceration and 
inflammation, and inclusion bodies in the systemic vascular 
endothelium are also frequently observed.

Diagnosis. Electron microscopy revealed the presence 
of intracytoplasmic virus particles with envelope and core 

Fig. 1. Measles virus. (a) Eosinophilic intranuclear inclusion bod-
ies in the measles-infected cells surrounded by inflammatory 
cells, including neutrophils. (b) Eosinophilic cytoplasmic 
inclusion bodies in the infected bronchiolar epithelium. Pho-
tographs are kindly provided by Dr. Shinichiro Nakamura, 
Azabu University.

Fig. 2. Cytomegalovirus (CMV). (a) Diffuse interstitial pneumonia with hemorrhage and fibrinous exudate in the alveoli were observed in the 
lung of CMV-infected cynomolgus macaque. (b), (c) Intranuclear inclusion bodies with characteristics of CMV (so-called owl’s eyes, 
with a distinct halo around the inclusion bodies) were found mainly in the enlarged endothelial cells of small vessels and macrophages in 
the alveoli (bars=50 μm).
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characteristics of herpes virus. Immunohistochemical stain-
ing with commercially available antibodies against human 
CMV did not work well in our experience. CMV DNA can 
be quantified in peripheral blood using real-time PCR with 
the primers and probes described by Han et al.52 and Kaur 
et al53.

Lymphocryptovirus (LCV): Gammaherpesvirinae, 
Macacine herpesvirus 4 (rhesus LCV), Epstein-Barr 
virus (EBV)

Overview. LCV is a genus of viruses in the order Her-
pesvirales, in the family Herpesviridae, in the subfamily 
Gammaherpesvirinae which includes Human gammaher-
pesvirus 4 (EBV). EBV infection, which is usually asymp-
tomatic but may be symptomatic in humans infected after 
puberty, is associated with lymphoproliferative lesions in 
immunocompromised patients. The seroprevalence of LCV 
in cynomolgus and rhesus macaques is high: almost 100% 
of adult monkeys in the laboratory are positive for LCV (or 
EBV)54–56. Similar to EBV infection in humans, primary 
LCV infection in macaque monkeys is not associated with 
clinical signs. The clinical and histopathologic changes are 
reportedly limited to macaques immunocompromised by 
immunosuppressive viral infection, immunosuppression for 
tissue transplantation, or treatment with immune-modulat-
ing drugs57–60. LCV has been detected in most malignant 
lymphomas (non-Hodgkin lymphomas) in macaques in-
fected with SIV61. One case report on cynomolgus monkeys 
demonstrated LCM-related rapidly progressive B-cell lym-
phoma without marked evidence of immunosuppression in 
a 3-month toxicity study242. In this case, close evaluation us-
ing immunophenotyping revealed a low natural killer (NK) 
cell count before the initiation of the study.

Clinical and anatomical pathologic features. En-
larged lymph nodes were detected as masses in rhesus or 
cynomolgus monkeys experimentally inoculated with SIV 
and LCV. The histologic features of these monkeys involve 
the infiltration of immunoblastic cells, predominantly com-
prising CD20-positive B cells, and decreased numbers of 
CD8+ T cells58. In Japanese monkeys, lymphomas derived 
from other lymphocytes, including CD4+ T cells and NK 
cells, have also been reported240, 241. Infected animals with 
immunosuppression for tissue transplantation can exhibit 
lymphadenopathy along with lymphoid infiltration of non-
lymphoid organs, including the liver, lungs, heart, and 
kidney62. In a monkey treated with immunomodulatory 
biologics, enlargement of lymph nodes was clinically noted 
at week 28 of treatment. In a case of B-cell lymphoma ob-
served in a 3-month toxicity study, which was characterized 
by large unclassified cells with lymphocytosis, monocyto-
sis, and mild neutrophilia in hematology examination and 
a high cellularity was noted in a bone marrow smear evalu-
ation that mostly consisted of a polymorphic lymphoid cell 
population242. Enlargement of the spleen and various lymph 
nodes observed at necropsy were histologically associated 
with loss of the normal lymphoid architecture, which was 
replaced by neoplastic lymphocytes; the diagnosis was lym-

phoma59. EBV-associated (LCV-associated) focal prolifera-
tive lesions have been found on the squamous epithelium 
of the tongue, esophagus, or penis, or on the haired skin of 
the lip, hand, or thorax of experimentally SIV-infected and 
immunocompromised monkeys. The skin lesions consisted 
of hyperkeratosis, parakeratosis, and acanthosis. Balloon-
ing degeneration of keratinocytes was noted in the tongue, 
esophagus, and penis, with intranuclear inclusion bodies in 
cells in the middle and superficial layers of the stratified epi-
thelium58. The surface of epithelial lesions is frequently ac-
companied by colonies of Candida species or gram-positive 
cocci61.

Diagnosis. By transmission electron microscopy, her-
pesvirus particles with envelope and core can be found in 
inclusion-bearing cells are. The virus also can be observed 
by IHC for LMP-1 (latent membrane protein 1) or EBNA-2 
(Epstein-Barr nuclear antigen 2) and ISH for EBV-encoded 
RNA60, 61. In lymphoproliferative lesions, increased num-
bers of LCV-infected lymphocytes can be observed using 
ISH59.

Simian adenovirus
Overview. More than 50 adenovirus serotypes have 

been identified in NHPs, including macaques. and adenovi-
rus is highly species specific16, 28. Generally, simian adeno-
virus infection is not clinically apparent and can be detected 
in healthy animals. Infection may target the respiratory and 
gastrointestinal tracts and conjunctiva (conjunctivitis). The 
liver, pancreas, and kidney were less frequently affected63–65. 
Adenoviral infection in the intestine is relatively common in 
macaque monkeys66. Infected macaques can shed adenovi-
ruses in the stool67. Aerosols from sneezes or coughs and fe-
ces from animals exhibiting clinical manifestations or latent 
infections can be sources of viral transmission.

Clinical and anatomical pathologic features. Gastro-
intestinal tract infections may be associated with diarrhea 
with no visible gross lesions but with microscopic enteritis, 
erosion or ulceration, or villus atrophy of the small intestine 
with intranuclear inclusion bodies24, 68–70. In the infected 
respiratory tract, necrosis of epithelial cells of the trachea, 
bronchi, bronchioles, and alveoli with basophilic intranucle-
ar inclusion bodies, is characteristic and accompanied by 
neutrophil and macrophage infiltration16. The intranucle-
ar inclusion bodies of adenovirus are generally large and 
smudged as reported in cases of pancreatic and renal infec-
tions64, 65.

Diagnosis. Antigens of serotypes 40 and 41 in feces 
can be detected using commercially available Adenoclone 
40/41 kits (Meridian Diagnostics, Cincinnati, OH, USA)66. 
PCR can be performed with fecal or tissue samples using 
generic primate adenovirus71, 72. Meanwhile, the presence of 
viral structures in tissues with intranuclear inclusion bodies 
can be confirmed using electron microscopy63, 73.
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Simian virus 40 (SV40): Closely related to cynomol-
gus polyomavirus

Overview. SV40 and cynomolgus polyomaviruses are 
a family of small, non-enveloped DNA viruses that com-
monly cause latent infections in Asian monkeys, includ-
ing rhesus and cynomolgus macaques. They can cause 
severe disease in situations of immunocompromised condi-
tions16, 74.

Clinical and anatomical pathologic features. Poly-
omaviruses-related lesions are observed in the central ner-
vous system and kidney, and less frequently in the lung16, 28. 
The following two types of SV40-related central nervous 
system lesions have been reported: lesions similar to those 
in human progressive multifocal leukoencephalopathy 
(PML) and meningoencephalitis with renal and pulmonary 
lesions74, 75. Both the PML type and the meningoencepha-
litis type have the common etiology of latent infection in 
oligodendrocytes and astrocytes, as detected by ISH76. The 
difference of manifestation can be attributed to the age or 
duration of infection in animals infected with SV40 before 
immunosuppression induced by SIV infection. PML type 
noted in rhesus macaques is characterized by multifocal 
demyelination, predominantly in the white matter (most 
commonly near the boundary with the gray matter), with 
microgliosis, large astrocytes, and oligodendrocytes with 
swollen, atypical nuclei containing marginated chromatin 
and intranuclear inclusions76. In meningoencephalitis, le-
sions are observed in the meninges and superficial gray mat-
ter and are characterized by inflammation with infiltration 
of lymphocytes, eosinophils, and macrophages that spread 
from the perivascular area to the parenchyma. Enlargement 
of nuclei with smudgy amphophilic intranuclear inclusions 
in glial cells and/or multinucleation of large, bizarre, gemis-
tocytic astrocytes have also been observed as well as PML-
type, but without substantial demyelination75.

The histological characteristics of nephritis associated 
with polyomavirus in experimentally immunosuppressed 
cynomolgus macaques include nuclear enlargement (some-
times with nuclear inclusion bodies), cellular apoptosis and 
detachment, and destruction of the basement membrane, 
primarily in the collecting ducts, associated with patchy 
interstitial infiltration of lymphoplasmacytic inflammatory 
cells74, 77. Involvement of the vascular endothelium or glom-
eruli is not observed. Mild renal dysfunction with elevated 
serum creatinine level is sporadically noted.

Diagnosis. The virus can be identified in the affected 
brain and kidney and sometimes in the ureter using IHC 
and DNA amplification specific for the large T antigen of 
the monkey polyomavirus family. Polyomaviruses can also 
be detected using electron microscopy in the nuclei of in-
fected tubular epithelial cells or astrocytes as a characteris-
tic sheet-like arrangement of non-enveloped virions16, 75, 77.

Simian parvovirus (SPV)
Overview. SPV is a small, non-enveloped DNA virus 

with 65% sequence similarity to human parvovirus B1916, 78. 
In humans, the serological prevalence of parvovirus B19 

is high, especially in elderly people. However, viremia is 
rare, and the disease is unapparent or has mild, nonspecific 
symptoms in immunocompetent hosts78. In one facility, a 
serologic screening test was conducted to prevent SPV out-
breaks and all cynomolgus monkeys tested were SPV sero-
negative without any case of unexpected anemia from 2001 
to 200679. Therefore, the prevalence of SPV may not be high. 
SPV outbreaks are thought to be preventable by examining 
seronegativity during the initial quarantine period79. SPV 
identified in cynomolgus, rhesus, and pigtailed macaques 
is usually latent and is activated under immunosuppressive 
conditions caused by viral infection (e.g. SRV infection) or 
under experimental conditions, including treatment in prep-
aration for transplantation78, 80.

Clinical and anatomical pathologic features. Clini-
cally apparent SPV infection is characterized by severe 
normocytic, normochromic, and non-regenerative ane-
mia (decrease in red blood cells by −80%83), whereas the 
WBC count remains within the normal range. The histo-
logic characteristics involve decreased counts of erythroid 
and myeloid lineages and intranuclear parvoviral inclusions 
in erythroid precursors (predominantly in normoblasts and 
sometimes in pronormoblasts) in the bone marrow78, 79.

Diagnosis. SPV can be confirmed using electron mi-
croscopy based on the presence of a cluster of parvovirus-
like particles in erythroid precursor cells in the bone marrow 
of infected animals. Additionally, SPV can be diagnosed us-
ing PCR analysis of DNA isolated from the sera of affected 
monkeys80.

Papillomavirus (PV)
Overview. PVs are a diverse family of small, non-en-

veloped DNA viruses. The prevalence of PV in cynomolgus 
monkeys is approximately 30% in adults aged >10 years81. 
Recently, 75.2% of wild captive clinically healthy rhesus 
macaques tested positive for PV DNA next-generation se-
quencing amplicon assays, most commonly from genital 
swabs, then less commonly from oral and perianal swabs82. 
In humans it is well known that the incidence and severity 
of PV-related proliferative lesions are increased in immuno-
compromised patients83.

Clinical and anatomical pathologic features. Oppor-
tunistic activation of PV can result in proliferative or neo-
plastic lesions. PV can cause various proliferative lesions in 
the squamous epithelium, including cutaneous papilloma or 
cancers of the uterine cervix, oral mucosa, or other epithe-
lia84–86. However, PV infection may not manifest with overt 
clinical symptoms. Cervical and vaginal neoplasms have 
been observed in only 5.2% (20 out of 385) of cynomolgus 
monkeys in a facility. The neoplasms were intraepithelial 
and were detected in routine histological specimens with 
no or less than obvious gross finding that needs additional 
sampling87. Cancer may require considerable time to devel-
op after PV infection and thus mortality resulting from PV 
infection in macaques is rare in toxicity studies of pharma-
ceutical drugs. Cervical and vaginal neoplastic lesions can 
take the form of intraepithelial dysplasia, benign papilloma, 
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or invasive cervical carcinoma, with common morphologi-
cal features, including epithelial dysplasia, epithelial pearls, 
koilocytosis (cells with vacuoles around nuclei), nuclear 
atypia, and expansion of the basal epithelium87.

In cynomolgus monkeys, beta PV-related papilloma 
has been observed on the skin of the hand and foot85, 86. The 
lesions are histologically characterized by diffuse thicken-
ing of the epidermis with foci of large and pale superficial 
cells and rarely with eosinophilic intranuclear inclusion 
bodies86.

Diagnosis. IHC analysis of AU-1, which is an antigen 
of the genus-specific PV epitope, can be performed to diag-
nose PV. Additionally, other antibodies that cross-react with 
PV in monkeys can be used to detect PV capsid proteins 
expressed in the nuclei of surface epithelial cells of lesions. 
PCR85, 87 and whole-genome sequencing can also be used86.

Rhesus rhadinovirus (RRV): Gammaherpesvirinae, 
Macacine herpesvirus 5

Overview. RRV is highly endemic in socially housed 
and captive rhesus macaques, and the seroprevalence of 
RRV is almost 100% in adults88, 89. Viral DNA is detected 
in the blood or saliva, or both, in clinically healthy rhesus 
monkeys, and the detection rates of viral DNA are high in 
young (aged <2 years) monkeys88, 90. Infection is not usually 
associated with clinical signs but is associated with lympho-
proliferative changes, resembling those of non-Hodgkin’s 
lymphoma or multicentric Castleman’s disease91, 92. Kaposi’s 
sarcoma-associated herpesvirus (KSHV) and primate ret-
roperitoneal fibromatosis-associated herpesvirus (RFHV), 
which can cause mesenchymal proliferative lesions, are 
closely associated with RRV16. RRV has been detected in 
areas of retroperitoneal fibromatosis in SIV-infected rhesus 
macaques and is considered one of the causative agents of 
mesenchymal proliferative lesions in macaques91.

Clinical and anatomical pathologic features. In ma-
caques experimentally infected with SIV and RRV, lym-
phoproliferative lesions resembling those of multicentric 
Castleman disease have been reported. In these animals, 
marked peripheral lymphadenopathy was observed with 
pronounced splenomegaly 10 weeks after RRV infection; 
and in the animals with severe hemolytic anemia was ob-
served 30 weeks after RRV infection92. The affected lymph 
nodes and spleen there are many lymph follicles with large 
reactive germinal centers, which are often irregular in shape 
and have indistinct mantle zones. In enlarged follicles of the 
spleen, hyalinized cell-poor areas with increased numbers 
of blood vessels were observed92. The presence of plasma 
cell clusters in the spleen and lymph nodes may also be a 
characteristic feature. Enlargement of the liver and spleen 
along with lymphadenopathy and increased erythropoiesis 
in the bone marrow has been observed91, 92.

Diagnosis. In addition to the characteristic histopatho-
logic features, detection of RRV can be done using PCR for 
definitive diagnosis91, 92.

Simian varicella virus (SVV): Cercopithecine herpes-
virus 9

Overview. Simian varicella epizootics occur sporadi-
cally in NHP facilities, including Japanese facilities93, 94. 
After natural infection in primates, SVV becomes latent 
and latent viral DNA can be detected in the ganglia95. SVV 
becomes latent in ganglionic neurons and can be reacti-
vated spontaneously or opportunistically in monkeys im-
munosuppressed by social or environmental stress96, 97 or 
by experimental treatment with irradiation or immunosup-
pressive agents98–101. The seroprevalence of SVV may not 
be high. The reported incidence of SVV antibodies in newly 
captured wild pigtailed and cynomolgus macaque monkeys 
in Malaysia is only 0.8%93. However, SVV can spread in 
the colonies at research facilities. The seroprevalences at fa-
cilities where clinical manifestations of SVV were observed 
were 35% and 20% in rhesus macaques101 and pigtailed 
macaques100, respectively. In one rhesus macaque facility 
in which 57 animals received total body irradiation, SVV 
activation was observed in 2 animals101.

Clinical and anatomical pathologic features. SVV 
causes skin erythematous lesions in macaques and other 
monkeys. The outbreaks of SVV infections can result in 
high morbidity and mortality93. The most characteristic 
cutaneous changes are diffuse multifocal papules/vesicles 
often associated with hemorrhage (maculopapulovesicular 
rashes). Many vesicles can appear successively and form 
crusts16, 100. Macroscopically, hemorrhage or ulcerative le-
sions may also be observed in other squamous epithelium 
including the oral cavity and mucosal and serosal surfaces of 
thoracic and abdominal organs. Skin vesicles are histologi-
cally characterized as intra-epidermal vesicles containing 
cellular debris and/or erythrocytes. In the epithelial cells, 
eosinophilic intranuclear inclusion bodies consistent with 
herpesvirus infection (Cowdry type A) can be observed. 
Visceral organs, including the lung and liver, and gastric 
mucosa, can be infected and manifest necrosis with hemor-
rhage and intranuclear inclusion bodies in infected epithe-
lial cells93, 100. In a case of cynomolgus monkey in which 
anti-SVV antibody was detected by serological evaluation, 
eruption was observed whole body surface especially on the 
neck, chest and inner thighs and were histologically vesicles 
in the skin with intranuclear inclusion bodies in the basal 
cells of epidermis (Fig. 3a and 3b). Necrotizing inflam-
mation with hemorrhage was observed in the lungs of this 
monkey (Fig. 3c). The presence of a bacterial colony was 
indicative of immunosuppression in this animal.

Diagnosis. Serological detection of anti-SVV antibod-
ies is one of the most reliable diagnostic methods93, 98. IHC 
can also be used to detect herpesviruses in vesicles100, 101.

Hepatitis A virus (HAV)
Overview. HAV, an RNA virus, infects humans and 

NHPs naturally, and there are species-specific variations in 
its sequences102–105. Rhesus and cynomolgus macaques are 
the natural hosts of HAV102. Infection is usually self-limit-
ing in immunologically normal animals, and baseline preva-
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lence may be low. As HAV infection can be transmitted via 
the fecal-oral route105, the infection may spread, especially 
under group-housing conditions.

Clinical and anatomical pathologic features. In cy-
nomolgus macaques experimentally infected with human 
HAV, no clinical manifestations of the disease are observed. 
Histopathologic changes in the liver may be characterized 
by inflammatory cell infiltration in the portal area and pa-
renchyma with microvesicular vacuolation of the hepato-
cytes. Inflammation associated with infection is character-
ized by the presence of diffuse and scattered inflammatory 
cells (predominantly macrophages, lymphocytes, and a few 
neutrophils)106, 107. In immunocompromised animals, the in-
fection may be serious. The livers of severely affected hu-
mans and chimpanzees are characterized by hepatocellular 
swelling, ballooning, and necrosis. Additionally, associated 
elevation of serum liver enzymes and the manifestation of 
jaundice have been reported107.

Diagnosis. As the histopathologic characteristics and 
clinical manifestations are usually nonspecific, a definitive 
diagnosis can be performed using a combination of deter-
mining the presence of hepatitis, serological examination, 
and RT-PCR analysis of the serum, feces, saliva, or tis-
sues106.

Canine distemper virus (CDV)
Overview. CDV belongs to the genus Morbillivirus 

and the family Paramyxoviridae. Paramyxoviridae includes 
various highly pathogenic viruses, such as measles virus, 
rinderpest, and peste-des-petits-ruminants virus. In addi-
tion to canines, CDV is known to infect several carnivorous 
and non-carnivorous species, including Japanese rhesus and 
cynomolgus monkeys, but does not infect humans223–227. 
In macaque monkeys, CDV infection outbreaks have been 
reported in China and Japan224–227. CDV infection can be 
lethal with a mortality rate of approximately 10%224, which 
is less than that in canines (approximately 50%).

Clinical and anatomical pathologic features. Clini-
cal signs of infected macaque monkeys include fever, con-
junctivitis and rhinitis with mucous discharge, cough, an-
orexia, diarrhea, generalized red rash, and periocular or 
plantar swelling224, 226, 228. Necropsy of severely affected 
monkeys revealed focal red or dark-red discolored areas on 
the lung or focal or diffuse hemorrhage on the brain sur-
face225, 227. Histopathologic changes in cynomolgus mon-
keys sacrificed moribund were predominantly observed in 
the lungs, brain, and lymphoid organs224. Lung pneumonia 
with syncytial giant cell formation in the alveoli was ob-
served (Fig. 4a and 4c). Gliosis (Fig. 4g) and/or demyelin-
ation were focally observed in the cerebrum and/or cerebel-
lum224. Severe lymphoid depletion in the lymphoid organs 
suggesting immune suppression, has also been reported224. 

Fig. 3. Simian varicella virus (SVV). (a) A vesicle in the skin with cell debris. (b) An image of higher magnification of the area denoted using 
a square in Fig. 3a. Intercellular edema and intranuclear inclusion bodies are identified based on hematoxylin and eosin staining. Photo-
graphs were kindly provided by Dr. Junko Sato and Dr. Takuya Doi, LSIM Safety Institute Corporation.
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Fig. 4. Canine distemper virus (CDV). (a) The lung of a cynomolgus macaque with CDV infection sacrificed moribund. Cellular infiltration 
in the alveoli and thickening of the alveolar wall are noted. (b) Same area of “a” immunohistochemically stained for CDV. Cells in the 
alveoli and bronchial epithelium are positive for CDV. (c) Higher magnification of “a.” Inflammatory cell infiltration and syncytial giant 
cell formation in the alveoli. (d) Syncytial giant cells and some cells in the alveolar wall are immunohistochemically positive for CDV. 
(e) Syncytial cells in the bronchiolar epithelium. (f) Syncytial cells in the bronchiolar epithelium are also immunohistochemically posi-
tive for CDV. (g) The brain of the same animal. Slight focal gliosis is noted. (h) The focus of gliosis is immunohistochemically positive 
for CDV. (a, c, e, and g) Hematoxylin and eosin staining. (b, d, f, and h) Immunohistochemical staining of CDV antigen. Photographs of 
sections obtained from animals sacrificed moribund are kindly provided by Dr. Noriyo Nagata, National Institute of Infectious Diseases 
and Dr. Shigeru Morikawa, Okayama University of Science224.



Ohta 105

In such cases, characteristic perivascular cuffing by lym-
phocytes may not be observed. Giant cells may be observed 
in other organs, including the skin, intestines, kidneys, sali-
vary glands, and testes224, 229. Eosinophilic inclusion bodies 
are observed in epithelial cells of these affected organs in 
other animal species229, 230. The causes of death could be se-
vere pneumonia or neurological clinical signs224, 227.

Diagnosis. CDV can be diagnosed using IHC analysis 
of viral antigens in mononuclear cells in lymphoid organs, 
glial cells in the brain, and giant cells in the lung. Addition-
ally, CDV can be diagnosed based on characteristic histo-
pathologic changes (Fig. 4a–4h). Furthermore, CDV antigen 
detection kits can also be used to diagnose animals with 
clinical signs.

Bacterial Infection

Campylobacter, Shigella, and Yersinia (causes of 
bacterial diarrhea): Campylobacter spp., S. flexneri, 
Y. enterocolitica, or Y. pseudotuberculosis

Overview. Campylobacter spp. (Campylobacter coli 
and Campylobacter jejuni), Shigella flexneri, and Yersinia 
enterocolitica have been identified as causative infectious 
agents as well as adenovirus and the parasite Strongyloi-
des fuelleborni in samples collected from macaque mon-
keys with chronic diarrhea108, 109. Among the bacteria that 
can cause diarrhea in macaque monkeys, Campylobacter 
spp. (especially C. jejuni and C. coli) and S. flexneri are the 
most commonly isolated bacteria, while Y. enterocolitica, Y 
pseudotuberculosis, and Salmonella spp. are less commonly 
isolated24, 110. Routine quarantine procedures in which only 
clinical signs are evaluated do not guarantee freedom from 
either shigella or salmonella110. Campylobacter jejuni and 
C. coli, which are the main organisms responsible for infec-
tious enteritis, are difficult to eradicate because simple isola-
tion or treatment with antibiotics does not prevent recurrent 
infections with diarrheal bacteria in a colony110. Diligent 
serial testing and treatment are needed to control infection 
with these bacteria.

Clinical and anatomical pathologic features. Diar-
rhea caused by Shigella flexneri can be observed during 
quarantine within the first month after import from the 
country of origin. Shigella flexneri-induced diarrhea often 
exhibits antibiotic resistance and causes lethality110. The 
clinical signs of shigellosis include mucus and bloody di-
arrhea, abdominal pain, vomiting, and fever111. Shigellosis-
related lesions, which are primarily observed in the cecum 
and colon, may be focal or diffuse and are characterized 
by edema, hemorrhage, erosions, and ulceration often ac-
companied by crypt abscesses but less commonly accompa-
nied by pseudomembrane formation. Shigella occasionally 
causes periodontitis in monkeys111, 112.

Campylobacter spp.-related diarrhea can be observed 
later in the quarantine period. In contrast to S. flexneri-relat-
ed diarrhea, Campylobacter spp.-related diarrhea is chronic. 
Clinical signs associated with experimental C. jejuni infec-
tion include fever and stool changes (soft feces or diarrhea). 

Campylobacter spp.-related lesions and evidence of direct 
damage in the intestine are not evident although lymphore-
ticular cells can infiltrate the lamina propria of the ileum, 
cecum, and colon113. The clinical syndrome of bacterial di-
arrhea can be complicated at all stages by the presence of 
helminths or viral infections110. Histologically, gram-nega-
tive S-shaped or spiral shaped bacteria may be observed but 
identification of Campylobacter spp. is difficult because of 
the presence of many other organisms in the intestinal flora.

Limited number of studies have reported Y. enteroco-
litica infections in macaque monkeys. In one case of yer-
siniosis in cynomolgus monkeys, both Y. pseudotubercu-
losis and Y. enterocolitica were detected. At necropsy, that 
enterocolitis was occasionally accompanied by enlargement 
of the mesenteric lymph nodes and presence of necrotic foci 
in the liver and spleen114. Gastrointestinal lesions comprise 
superficial erosions or ulcerations with masses of gram-neg-
ative coccobacilli and acute inflammatory exudate115.

Diagnosis. Diagnosis of shigellosis is based on clinical 
signs and isolation of the organism from deep rectal swabs 
and fresh stool specimens. Bacterial strains can be identi-
fied by isolation culture on selective media or based on bio-
chemical characterization and PCR analysis234, 235.

Campylobacter spp.-related diarrhea can be defini-
tively diagnosed based on the recovery of the organism in 
samples obtained from animals with clinical signs113, 116.

Yersinia spp. infection can be definitively identified by 
recovering organisms from samples collected from animals 
with clinical signs and analyzing the histopathologic char-
acteristics, including necrotic foci in the liver and spleen.

Mycobacterium tuberculosis: aerobic gram-positive 
rods, Mycobacterium avium complex

Overview. Tuberculosis (TB) caused by M. tuberculo-
sis and its complex (Mycobacterium tuberculosis complex: 
M. tuberculosis, M. africanum, M. bovis, M. canettii, M. mi-
croti, and others, together known as MTBC) is an insidious 
disease117 that can be latent in some animals and exacerbated 
by immunosuppressive condition118. In macaque monkeys 
from Asian countries and Gibraltar, PCR testing revealed a 
32% positivity rate for MTBC. Generally, the prevalence of 
MTBC is high among NHPs in countries where the World 
Health Organization has reported an increased prevalence 
of human MTBC infection119. Facilities conducting trans-
plant experiments perform repeated tests to detect MTBC 
owing to its high prevalence118.

Clinical and anatomical pathologic features. In cy-
nomolgus monkeys experimentally infected with M. tuber-
culosis, clinical signs include anorexia, weight loss, cachex-
ia, tachypnea, and dyspnea. X-ray examination can reveal 
the signs of bronchopneumonia. At necropsy, disseminated 
miliary nodules (0.5–3 mm in diameter) with a caseous cut 
surface are observed throughout the lung lobes. Lymphade-
nopathy with caseation and necrosis along with the involve-
ment of the liver, spleen, and mesenteric tissues have been 
observed120. Animals with the active progression of disease 
exhibit macroscopic pulmonary changes comprising nod-
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ules of various sizes with caseous cut surfaces (Fig. 5a–5b). 
The histopathologic characteristics include multifocal case-
ous and non-necrotizing granulomas consisting of epitheli-
oid macrophages with a surrounding peripheral infiltration 
of lymphocytes and neutrophils (Fig. 5c). Granulomas were 
observed in histologic sections of various organs, including 
the liver and lymph nodes (Fig. 5d and 5e). In granulomas 
with active necrosis or inflammation, acid-fast bacilli can 
be observed, which can be confirmed using Ziehl-Neelsen 
staining118, 121. In latently infected monkeys, TB-related le-
sions may be limited to mineralization of the hilar lymph 
nodes or small sclerotic granulomas in the lung.

Diagnosis. Macaques with TB are diagnosed based on 
the characteristic macroscopic and microscopic features, 
including caseous nodules indicative of granulomatous in-
flammation with the presence of acid-fast positive bacilli, 
which can be confirmed using Ziehl-Neelsen staining118, 121 
A positive tuberculin skin test (TST or Mantoux test) can 
be evidence of a history of TB infection118. The detection of 
TB based on clinical signs is challenging, especially during 
the early phase of infection or in the case of latent infection. 
TST yields positive results in NHPs from week 4 to week 8 
post-infection120, 122. Serological assays based on the detec-

tion of MTBC-specific antibodies and the measurement of 
cytokine (TB-specific IFNγ) levels using ELISA are avail-
able for diagnosis. However, these methods are not effec-
tive owing to false-positive and false-negative results236. 
PCR methods have been suggested to detect the presence 
of MTBC DNA in bronchoalveolar lavage, gastric aspirate, 
and, for humans, sputum samples119.

Helicobacter pylori and Helicobacter heilmannii
Overview. Helicobacter pylori is a curved, spiral-

shaped, flagellated gram-negative bacterium commonly de-
tected in rhesus and cynomolgus monkeys117. Natural H. py-
lori infections do not cause clinical disease, but microscopic 
gastric lesions are sometimes obvious and may obscure, 
or cover, the mild effects of test articles on the stomach of 
monkeys in preclinical safety or pharmacological studies. 
Rhesus monkeys are used as a model for human H. pylori 
infection owing to the similarity in pathologic changes123. 
In rhesus monkeys, H. pylori infection occurs in about 40% 
of socially housed NHPs by 12 weeks of age and increased 
up to 90% by 1 year of age124. A high prevalence has also 
been reported in cynomolgus monkeys; the prevalence like-
ly depends on the source country of origin (up to 93% in 

Fig. 5. Mycobacterium tuberculosis. (a) Lung of a cynomolgus macaque exhibiting active tuberculosis. Multifocal yellowish-white nodules 
are apparent. (b) Caseous cut surface of the nodules. Granulomas in the (c) lung, (d) lymph node, and (e) liver. (bars=200 μm). (c, d, e) 
Hematoxylin and eosin staining. Photographs are kindly provided by Dr. Takuya Doi, LSIM Safety Institute Corporation.
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adolescent cynomolgus monkeys from the Philippines, 20% 
in monkeys bred in Japan, and 0% in those from Indone-
sia125–127).

Clinical and anatomical pathologic features. In the 
stomachs of cynomolgus monkeys infected with H. pylori, 
inflammatory cell infiltration of the lamina propria of the 
fundus or pylorus128 was the most characteristic finding. 
This is consistent with chronic inflammation characterized 
by lymphoplasmacytic infiltration with frequent loss of pa-
rietal cells and reactive proliferation of the mucosal epithe-
lium, resulting in mucosal thickening in severe cases125, 127 
(Fig. 6a). Clusters of bacteria may be observed in the muco-
sal pits and upper glands with hematoxylin and eosin (H&E) 
staining alone although they are difficult to detect in regen-
erative proliferative lesions. Warthin-Starry staining can 
reveal the presence of curved or spiral-shaped bacteria, i.e. 
H. pylori and H. heilmannii-like organisms, on the surfaces 
and in the lumens of the gastric glands, as well as in the 
parietal cells126, 129, 130 (Fig. 6b–6e).

Diagnosis. The presence of curved or spiral-shaped 
bacteria detected by Warthin-Starry staining and electron 
microscopy can be evidence. Small comma-shaped bacteria 
are considered H. pylori, while large bacteria with 6 to 8 spi-

rals were considered H. heilmannii-like organisms127. H. py-
lori can also be diagnosed using IHC (Fig. 6f). Coinfection 
with several species of Helicobacter bacteria (the so-called 
H. heilmannii-like organisms) may yield positive results for 
H. pylori in IHC analysis129–132. For the precise identifica-
tion of Helicobacter species, PCR and other molecular tech-
niques can be used.

Moraxella catarrhalis (M. macacae in macaques)
Overview. Moraxella catarrhalis is a gram-negative 

aerobic diplococcus formerly known as Branhamella ca-
tarrhalis28, 117. M. catarrhalis is a common inhabitant of the 
nasopharynx in humans and NHPs, and is an opportunistic 
pathogen associated with otitis media in infants and chil-
dren. In macaques, a similar Moraxella sp., possibly M. ma-
cacae, causes epistaxis (nasal hemorrhage, known as bloody 
nose syndrome)133–135. Moraxella macacae can be transmit-
ted in closed facilities. Epistaxis caused by M. macacae can 
be treated with antibiotics134.

Clinical and anatomical pathologic features. M. ma-
cacae infection in monkeys is associated with clinical signs 
including sneezing, epistaxis (clear to serosanguineous, mu-
cohemorrhagic, or bloody nasal discharge), and periocular 
swelling133, 135. Examination of nasal swab smears revealed 

Fig. 6. Helicobacter pylori. (a) Chronic inflammation of the pyloric mucosa of a cynomolgus macaque infected with H. pylori (hematoxylin and 
eosin (H&E) staining). (b) Bacilli in the glandular lumen (H&E and Giemsa staining). (c) Higher magnification of bacilli in the lumen. 
Spiral shapes can be seen. Bacilli in the glandular lumen stained with (d) Giemsa and (e) Warthin-Starry stains, and (f) subjected to im-
munohistochemistry for H. pylori.
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WBCs and red blood cells and large diplococcal organ-
isms135.

Diagnosis. In addition to nasal swab cultures, real-
time PCR can be used to identify the infecting species134.

Rhodococcus equi
Overview. Rhodococcus equi is a gram-positive coc-

coid or bacillary facultative anaerobe that is found in large 
numbers on dry soil surfaces. R. equi is an important patho-
gen in foals and is also pathogenic in immunocompromised 
animals and humans136–138.

Clinical and anatomical pathologic features. Infec-
tion usually manifests as pneumonia but can also as wound 
infection136, 137, 139. In the lungs of infected foals, gross le-
sions are characterized by multifocal to coalescing nodules 
ranging from a few millimeters to 10 cm in diameter. The 
Histopathologic features include multifocal pyogranuloma-
tous inflammation characterized by the infiltration of neu-
trophils and macrophages, occupying the alveolar spaces 
and bronchioles. Macrophages occasionally contain myriad 
coccobacillary basophilic gram-positive bacteria. Lung le-
sions may also include multinucleated giant cells, multifo-
cal thrombosis, interstitial and alveolar edema, and tissue 
necrosis140. In humans treated with immunosuppressants for 
organ transplantation, R. equi-related lung lesions include 
inflammation of the lung parenchyma, with foamy histio-
cytic infiltration. In these foamy macrophages, intracellular 
bacteria that are positive for periodic acid Schiff or Gram 
staining can be observed141. Pyogranulomatous inflamma-
tion can also be observed in the liver, kidney, spleen, and 
nervous tissue139. Previously, one case of R. equi isolation 
from monkeys has been reported142.

Diagnosis. In addition to the characteristic histopatho-
logic findings of pyogranulomatous pneumonia with intra-
cytoplasmic bacteria in the macrophages infiltrating the 
lesions, positive staining for R. equi in intralesional mac-
rophages is a potential tool for definitive diagnosis140. How-
ever, obtaining an appropriate antibody for IHC analysis is 
sometimes difficult. Various PCR assays have been devel-
oped143–145 and can be used to detect R. equi in lesions.

Enteropathogenic Escherichia coli (EPEC)
Overview. Diarrheagenic E. coli strains are the most 

common etiological agents for diarrhea in mammals. E. coli 
strains are categorized as follows based on their specific 
virulence factors and phenotypic traits: enteropathogenic 
E. coli (EPEC), causes diarrhea in children and animals; 
enterotoxigenic E. coli (ETEC), causes traveler’s diar-
rhea and porcine and bovine diarrhea; enterohemorrhagic 
E. coli (EHEC), causes hemorrhagic colitis and hemolytic 
uremic syndrome and includes verotoxin-producing/Shiga 
toxin-producing E. coli (VTEC/STEC); enteroinvasive E. 
coli (EIEC), causes watery diarrhea and dysentery; entero-
aggregative E. coli (EAEC), causes persistent diarrhea in 
humans; diffusely adherent E. coli (DAEC), a subclass of 
EAEC that causes diarrhea in children146, 147. EPEC strains 
are important agents that can cause chronic diarrhea and are 

closely related to morbidity in infants and children less than 
2 years in the developing world147, 148. E. coli is also one of 
the most common bacterial pathogens causing diarrhea in 
HIV-infected immunocompromised humans in whom both 
ETEC and EPEC are important opportunistic diarrheagenic 
pathogens149. EPEC strains have also been identified in SIV-
infected rhesus150 and cynomolgus monkeys used in pre-
clinical safety studies151.

Clinical and anatomical pathologic features. EPEC-
induced diarrhea associated histologic changes are observed 
in the large or small intestine or both. To identify the char-
acteristic histologic lesions, several sections must be evalu-
ated148, 150, 151. In the small intestine of infected cynomolgus 
monkeys, the villi exhibit clubbing and shortening with 
vacuolation in the subepithelial lamina propria150, 151. In the 
colons of infected marmosets and rhesus monkeys, bacteria 
can be detected on the surface of the affected epithelium 
along with decreased crypt size or onset of reactive crypt 
hyperplasia, epithelial vacuolation, and neutrophilic inflam-
matory infiltration148, 150. EPEC may be observed in lesions 
on the surfaces of villi in toluidine blue-stained semithin 
sections subjected to electron microscopy examination. The 
tight attachment of bacteria to the cell surface causes epithe-
lial cell injury, which is characterized by degeneration and 
loss of cilia in the brush border151.

Diagnosis. As several E. coli can cause diarrhea, fecal 
culture and serotype identification are the traditional meth-
ods to obtain a definitive diagnosis. Commercial PCR diag-
nostic kits are also available.

Parasitic Infections

Pulmonary acariasis (Pneumonyssus simicola)
Overview. Pulmonary acariasis (Pneumonyssus simi-

cola) is parasitic infections observed in NHPs, including cy-
nomolgus monkeys152. The prevalence of pulmonary acaria-
sis in a colony increases with the age of the monkeys153, 154. 
Recently, mite bodies were not so commonly observed in 
the lung sections in toxicological studies. In combination 
with other evidence of acariasis, including granulomatous 
inflammation with or without bronchiolar dilatation, dark 
pigments phagocytosed by macrophages around the lesions 
are indicators of acariasis even if the mite is not observed in 
the lung section128, 152.

Clinical and anatomical pathologic features. When 
infested with a small number of pulmonary achalasia, ani-
mals do not show clinical signs. In heavily infested mon-
keys, scattered small (1–5 mm) yellow or pale green nodules 
can be observed grossly in the lung155, 156. The definitive 
histopathologic finding is the presence of mite bodies in a 
section. Mites are surrounded by a thin wall of connective 
tissue, forming cysts or bullae. Around the cysts, granulo-
matous tissue with inflammatory cells, including pigmented 
or unpigmented macrophages, lymphocytes, neutrophils, 
and eosinophils, is observed. Bronchitis or peribronchiol-
itis, which is sometimes accompanied by bronchiolar dila-
tation, is evident128, 154–156. Ivermectin treatment effectively 
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eliminates mites but cyst-like structures with granuloma-
tous inflammation may persist153, 154.

Diagnosis: Infested monkeys usually do not exhibit 
clinical signs154, 155. Pneumothorax due to cyst or bulla rup-
ture can occur in severely infested macaques. Clinical diag-
nosis of acariasis using X-ray is difficult in monkeys153, 155. 
Tracheobronchial lavage examination and computed tomog-
raphy are potential tools for detecting the presence of Pneu-
monyssus spp. or multiple bullae in the lung153.

Helminths, including nematodes, cestodes, and trema-
todes

Overview. Helminths include nematodes and platy-
helminths (cestodes and trematodes). Wild-caught macaque 
monkeys can be infested with a large number of a wide va-
riety of helminths155. Of these, Strongyloides fuelleborni, 
Trichuris trichiura, and Oesophagostomum spp. are intesti-
nal nematodes that have been detected with high incidence 
in macaque monkeys36, 152, 157–161 and are recommended to 
be monitored36, 160. Although cestodes and trematodes have 
also been reported to infest macaque monkeys155, nema-
todes are frequently reported and are the focus of this sec-
tion. In NHPs maintained in internal housing, the incidence 
of nematode infestations is low. Anthelmintics, including 
ivermectin and moxidectin, effectively decrease the egg 
counts per gram of feces in the laboratory160–162. However, 
the complete elimination of nematodes from the intestine 
is difficult, requiring sequential or combined anthelmin-
tics138, 160, 161.

Clinical and anatomical pathologic features. Severe 
infestations of nematodes that cause clinical signs in ma-
caque monkeys are rare36. Pathologists may encounter hel-
minths in specimens during histopathologic examination in 
studies and investigations (Fig. 7a and 7b).

Oesophagostomum spp. form small (approximately 
8 mm in diameter) dark nodules in the large intestine that 
are can be observed via gross examination152. Lesions can 
be distributed from the submucosa to the serosal surface 
and are sometimes detected in the mesentery or intestinal 
wall152, 155. The histopathologic characteristics of the nod-
ules included multiple cross-sections of the nematode. The 
inflammatory cells are predominantly neutrophils and mac-
rophages with occasional sometimes foreign-body giant 
cells. The nodules may be encapsulated by fibrous tissue, 
and forming granulomatous lesions152, 155. Granulomatous 
lesions with mineralization in the center can be observed. 
These are old lesions that suggest evidence of previous in-
festation of helminths155.

Strongyloides spp. are usually observed in the mucosa 
of the small intestine and occasionally in the large intestine 
with inflammation in the lamina propria152, 155. In the case 
of severe autoinfection, the lymphatics of the intestine and 
lung may be obstructed by the larvae155.

Trichuris trichiura on the mucosal surface of the large 
intestine does not cause clinical signs. Histologically, cross- 
(or longitudinal) sections of T. trichiura can be observed on 
the surface of the mucosa or embedded in the mucosal folds 

without any reaction or inflammation.
Diagnosis. To determine whether animals were infest-

ed with intestinal helminths, microscopic examination of fe-
cal samples is performed to detect parasite eggs36, 157, 160, 162. 
Pooled fecal samples can also be used for the diagnosis36. 
The number of eggs per gram (EPG) of feces indicates the 
severity of infestation160, 162, 163. Molecular techniques have 
also been used to identify infectious species164, 165.

Protozoa: general overview
In macaque monkeys, protozoa are more common than 

nematodes. Infections with some species can be opportu-
nistically activated in immunosuppressed macaques138, 160. 
Protozoal parasites that may be encountered during the 
histopathologic examination of laboratory macaque mon-
keys include flagellates (Giardia spp., Trypanosoma spp., 
and Trichomonas spp.), amoebae (Entamoeba spp.), coc-
cidia (Cryptosporidium spp., Plasmodium spp., Hepatocys-
tis spp., Toxoplasma gondii, Sarcocystis spp., and Babesia 
spp.), and ciliates (Balantidium spp.)155. In macaques housed 
in laboratory settings, infections may have occurred and 
carried in from outdoor breeding colonies.

Gastrointestinal protozoa
Overview. Protozoa infecting the gastrointestinal 

tract of macaque monkeys include Entamoeba spp., Giar-
dia spp., Balantidium spp., and Cryptosporidium spp. Of 
these, Balantidium spp. are frequently observed in the lu-
men and on the surface of mucosa of the large intestine dur-
ing routine histopathologic examinations. The prevalence of 
Entamoeba spp. in macaques in East Asia is high although 
their virulence is low. Meanwhile, the prevalence of the 
virulent Entamoeba histolytica is low166–168. Cryptospo-
ridium and Giardia spp. are uncommon in normal healthy 
macaques155, 160, 169. However, gastrointestinal infection with 
Cryptosporidium sp. has been reported in juvenile and im-
munocompromised macaques169, 170.

Clinical and anatomical pathologic features.
Entamoeba: The pathogenicity of Entamoeba depends 

on the strain and the host species, nutritional status, envi-
ronmental factors, and bacterial flora171. Entamoeba spp. 
infection becomes pathogenic when protozoa invade the 
mucosa, leading to amebic dysentery172, 173. In clinically ap-
parent cases, anorexia, vomiting, severe diarrhea, and ul-
cerative hemorrhagic colitis with trophozoites in ulcerated 
lesions, as well as liver abscesses, are reported under immu-
nosuppressive conditions155, 166, 171. Trophozoites may not be 
visible in H&E-stained sections but are stained bright red in 
periodic acid Schiff (PAS)-stained sections155.

Cryptosporidium: Cryptosporidium spp. are detect-
ed on the epithelial surfaces of gastric pits or intestinal 
crypts169, 170 and can be activated under immunosuppressive 
conditions. In the stomachs of monkeys with the prolifera-
tion of Cryptosporidium spp., small (1–4 μm) and round 
protozoa (stained blue with Giemsa staining170) have been 
detected on the surface of the affected mucosa. Additionally, 
associated reactive mucosal hyperplasia with increased mu-
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cus secretion has also been reported (Fig. 8). Cryptosporidi-
um spp. infection in the small intestine of juvenile macaques 
(rhesus and cynomolgus) can result in life-threatening diar-
rhea with histological lesions, including epithelial vacuola-
tion, necrosis, and villus atrophy.

Balantidium coli: In most cases, B. coli infection in 

macaques is asymptomatic174. B. coli, which can be iden-
tified in the intestinal lumen and mucosal folds (Fig. 9), 
can become pathogenic in severely immunocompromised 
animals, causing severe diarrhea with the multiplication of 
protozoa and their invasion into the mucosa, and mucosal 
erosions or ulcerations175.

Giardia spp.: Although the prevalence of intestinal 

Fig. 8. Cryptosporidium sp. Numerous cocci were found in the fun-
dic pits of the stomach of cynomolgus monkeys with hyper-
trophy/hyperplasia of superficial mucus cells. Hematoxylin 
and eosin (H&E) staining.

Fig. 9. Balantidium coli. Balantidium coli on the mucosa of 
the cecum. Hematoxylin and eosin (H&E) staining.

Fig. 7. Helminths (Nematode). (a) A cross and longitudinal section of nematode in the esophageal mucosa. (b) A cross-
section of nematode in the cecal mucosa. Hematoxylin and eosin (H&E) staining.
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Giardia spp. in rhesus macaques is high176, limited infor-
mation is available on its pathologic features. This may be 
because similar to humans, infection by a small number of 
parasites does not induce clinical signs in monkeys. How-
ever, in humans, symptomatic diarrhea with gas formation 
has been reported177.

Diagnosis. In addition to the identification of charac-
teristic protozoa in intestinal sections and fecal examina-
tion, which is one of the most common tools to screen for 
intestinal protozoal infestation166, other laboratory methods, 
including biochemical analysis of isoenzymes of Entamoe-
ba spp., ELISA, or PCR evaluation should be employed to 
identify the species and virulence of infectious protozoa to 
detect virulent E. histolytica168, 178–180.

Other protozoa: Trypanosoma spp. (flagellates)
Overview. The prevalence of Trypanosoma cruzi in 

Central and South America is higher than that in other parts 
of the world because of the dissemination of the insect vec-
tor kissing-bug181, 182. The prevalence of T. cruzi in NHPs 
ranges from 2% to 10% in facilities in the southern USA181.

Clinical and anatomical pathologic features. Infect-
ed animals may be asymptomatic. Trypanosoma spp. induce 
histopathologic lesions, including lymphocytic myocardi-
tis and gastritis, with increased levels of proinflammatory 
cytokines in the blood. These characteristics are similar 
to those of Chagas disease in humans. The myocardium, 
muscle fibers, or esophagus may also be affected and may 
accompanied by arrythmia or esophageal dilatation181–186.

Diagnosis. In addition to clinical and histopathologic 
characteristics, examination of Giemsa-stained thin or thick 
blood smears can be used to detect the active phase of Try-
panosoma spp. PCR can also be used to detect parasite-spe-
cific DNA in the blood or tissues187.

Other protozoa: Toxoplasma gondii (coccidia)
Overview. Although Toxoplasma gondii is widely 

distributed in wild and domestic animals188, 189, its serop-
revalence in breeding colonies of rhesus and cynomolgus 
monkeys is low190, 191.

Clinical and anatomical pathologic features. Toxo-
plasmosis in macaques is less prevalent and there is little in-
formation on its clinical manifestations, perhaps because it 
is asymptomatic as in humans. Some studies have reported 
pathologic lesions associated with natural T. gondii infec-
tion in macaques. In humans and other animals, Toxoplas-
ma-induced lesions include cellular necrosis and inflamma-
tion associated with invasion by tachyzoites, as well as the 
formation of bradyzoite cysts in various organs and tissues, 
including the blood vessels, lung, liver, and brain188, 189.

Diagnosis. Serological examination can be used to 
identify characteristic cysts and tachyzoites in the affected 
tissues191, 192. PCR can be performed to detect Toxoplasma 
DNA in the blood, tissues, and cerebrospinal fluid193–195.

Other protozoa: Sarcocystis spp. (coccidia)
Overview. The prevalence of Sarcocystis infection is 

high in monkeys caught from the wild and low in captive-
born monkeys196.

Clinical and anatomical pathologic features. In one 
reported case of a rhesus monkey with clinically apparent 
sarcocystosis, the animal became moribund with anorexia 
and systemic edema. In this animal, coalescing myocardial 
edema and necrosis of the myocardium with infiltration of 
macrophages and lymphocytes, as well as Sarcocystis spp. 
infestation in endothelial cells, were observed197. Cysts of 
Sarcocystis are incidentally observed in skeletal muscle in 
the absence of any associated degenerative or inflammatory 
lesions (Fig. 10).

Diagnosis. In addition to histopathologic analysis, 
PCR can be used197.

Other protozoa: Babesia spp., including Entopolypoi-
des macaci (coccidia)

Overview. Babesia, which is an intra-erythrocytic par-
asite transmitted by ticks in rhesus and cynomolgus mon-
keys, can cause opportunistic infections in immunocom-
promised monkeys198. Although the tick, vector of Babesia 
spp., is not observed in the laboratory setting, latent infec-
tion can be caused by exposure to ticks outside breeding 
colonies. Babesiosis is recognized worldwide as a zoonotic 
disease and has been sporadically reported in mammals, in-
cluding humans and NHPs199, 200.

Clinical and anatomical pathologic features. Babe-
sia infections are generally latent and not clinically appar-
ent. Recurrence can occur when animals are immunocom-
promised or have undergone splenectomy198, 201, 202. Anemia, 
parasites in red blood cells, and splenomegaly are observed 
in animals with clinically apparent babesiosis198, 202. In con-
trast to the malaria-causing Plasmodium, this organism 
does not produce pigments (hemozoin) in the affected red 
blood cells202.

Diagnosis. The presence of parasites without hemozoin 
pigments is confirmed in red blood cells in Giemsa-stained 
thin blood smears. PCR detection of Babesia-specific DNA 
is used to differentiate Babesia from Plasmodium infection.

Other protozoa: Plasmodium spp. (coccidia)
Overview. Plasmodium spp. cause malaria in various 

animals. Plasmodium cynomolgi, P. semiovale, and P. fieldi 
have been identified in macaques. Infections are usually 
latent and take the form of hepatocellular hypnozoites that 
can lead to relapse. Although infection rates are high in ma-
caque monkeys203, 204, clinical manifestations of malaria are 
rare in healthy macaques. Relapse can be induced in labora-
tory macaques under immune suppressive conditions due to 
viral infection, treatment with immunosuppressive chemi-
cals or biologics, splenectomy, or increased turnover of red 
blood cells59, 203–205.

Clinical and anatomical pathologic features. In the 
case of clinically evident malaria that we experienced in a 13-
week toxicity study, severe anemia with a marked decrease 
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in bodyweight (by −15% compared with controls), spontane-
ous activity, erythrocyte count (by 0.89 × 106/µL), and he-
matocrit values (by 9.0%) was observed. In this animal, cy-
clic decreases in erythroid parameters were observed. The 
presence of hemoparasites morphologically consistent with 
Plasmodium spp. in red blood cells was confirmed by the 
examination of thin blood smears (Fig. 11a–11c). At necrop-
sy, massive enlargement and dark discoloration of the spleen 
(Fig. 11d) and liver were observed. Histopathologic evalua-

tion revealed depositions of black-brown hemozoin pigment 
in macrophages in the spleen and Kupffer cells in the liver 
(Fig. 11e and 11f) along with Berlin-blue-positive hemo-
siderin. Hemozoin pigments are birefringent under polar-
ized light and are negative for iron staining (Berlin blue)207. 
These changes are accompanied by lymphoid depletion in 
the spleen204.

Diagnosis. To detect low-level parasitemia, Giemsa-
stained thick blood smears have been reported to be better 
than tin blood smear examinations in NHPs. Other diagnostic 
methods, including PCR, can be used although their efficacy 
has not been thoroughly established in NHPs203, 204, 206, 207.

Fungi

Many fungal infections are regarded as opportunistic 
and may not have clinical or histopathologic manifestations 
unless the immune function of the host is compromised by 
the disease or experimental treatment. In addition to Can-
dida albicans and Pneumocystis spp. described in this sec-
tion, Histoplasma capsulatum, Cryptococcus neoformans, 
and Aspergillus fumigatus have been identified as rare op-
portunistic agents in monkeys22, 208.

Candida albicans
Overview. Candidiasis is the most common opportu-

nistic yeast infection worldwide. Infection can be super-
ficial or deep/systemic and can affect the skin, mucosa of 
the mouth and alimentary tract, genital or urinary tract, or 
respiratory system208–211. In immunocompromised humans, 
endocarditis, meningitis, and Candida sepsis have been re-
ported as forms of deep systemic candidiasis211.

Fig. 10. Sarcocystis spp. Sarcocystis in the skeletal muscle 
without any associated degenerative or inflamma-
tory changes.

Fig. 11. Plasmodium spp. In thin blood smears, various stages of parasites in red blood cells were observed: (a) schizont, (b) trophozoite, and (c) 
ring form. The spleen was enlarged (d) with the expansion of the red pulp and lymphoid depletion (bar=3 mm) and (e) several brown-
black pigments in the macrophages in the red pulp. (f) Pigments were observed in the livers of the Kupffer cells. (a, b, and c) Wright’s 
staining and (d, e, and f) hematoxylin and eosin (H&E) staining. Photographs are from a previous study from the author of this manu-
script (E. Ohta).
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Clinical and anatomical pathologic features. In the 
upper alimentary tracts of macaques affected with symp-
tomatic candidiasis, clinical signs related to ulceration of 
mucosa thought to be observed. The ulcers can be observed 
as macroscopic whitish streaks or plaques on the mucosa of 
the tongue, oral cavity, and esophagus. A yellowish pseudo-
membrane is also observed in the intestine. Histologically, 
clusters of fungus (3–5-μm pseudohyphae and blastospores 
that are PAS-positive and Gomori methenamine silver 
[GMS]-positive) can be observed on the mucosal epitheli-
um. If the fungus invades the tissue, ulceration with inflam-
matory cell infiltration can occur208.

Diagnosis. In addition to the characteristic gross and 
histological findings in the presence of PAS-positive or 
GMS-positive yeasts in the affected organs, fungal culture, 
PCR, and serum antibodies against Candida or its glycopro-
teins can be used to diagnose candidiasis208, 212, 213.

Pneumocystis spp.
Overview. Pneumocystis is a yeast-like fungus that is 

predominantly observed in the lung tissues. Strains of Pneu-
mocystis spp. have a high host specificity214, 215. Only the 
genomes of human P. jirovecii, rat P. carinii, and mouse P. 
murina have been identified215, 216. Additionally, the genome 
of P. macacae in macaque monkeys215, 217 has been pro-
posed. Similar to their pathologic effects in humans, Pneu-
mocystis spp. are opportunistic fungal organisms that cause 
Pneumocystis pneumonia in macaque monkeys. Clinical 
manifestations can be observed in immunologically com-
promised animals22, 218.

Clinical and anatomical pathologic features. In 
lungs with symptomatic pneumonia, the alveolar septa are 
thickened with infiltration of lymphocytes and neutrophils. 
In alveolar spaces filled with eosinophilic foamy material, 
the presence of Pneumocystis spp. can be confirmed using 
GMS staining and IHC for Pneumocystis antigen219–221. A 
nodular type of Pneumocystis pneumonia has been reported 
in monkeys with AIDS. This pneumonia is characterized 
by numerous grossly apparent large nodules. Histological 
analysis revealed foamy material, central necrosis, and nec-
rotizing vasculitis in the nodules220.

Diagnosis. Infection can be diagnosed based on the 
typical histopathologic features, as well as based on IHC 
detection of Pneumocystis-specific antigens and PCR detec-
tion of DNA220, 221.

Discussion and Conclusion

This review presents a summary of the clinical and an-
atomical manifestations, pathologic features, and diagnosis 
of representative infectious diseases, including opportunis-
tic infections, in NHPs, especially macaque monkeys. The 
macaque monkeys that were the focus of this review were 
predominantly the cynomolgus macaques (Macaca fascicu-
laris) and rhesus macaques (Macaca mulatta), which are the 
most common NHP models in biomedical research, includ-
ing preclinical toxicity studies222. Several efforts have been 

undertaken to screen out representative infectious agents 
via periodic examination during breeding and quarantine at 
export or import. However, latent or incidental background 
infections can be observed. In particular, the potential re-
currence of latent infection should be considered under ex-
perimental conditions in which the immune system can be 
compromised. Recurrence of latent infection can be severe 
in immunocompromised animals with systemic or local 
manifestations and can mask or complicate the real patho-
logic features induced by the test agent. In such case the 
interpretation of the study results is complicated and chal-
lenging. For example, changes in erythroid parameters in a 
toxicity study described in the Plasmodium spp. section can 
be misunderstood as being directly caused by the test article 
because the article was not an intended immune modulator. 
In this case, a thin blood smear examination was decided 
to conduct because careful monitoring of hematological 
parameters revealed cyclic changes in red blood cells. The 
smear examination revealed parasites in the red blood cells 
and thus the changes in the animal were diagnosed to be 
related to the relapse of latent malaria in the animal and not 
directly related to the test article. In particular, when the 
intended pharmacological effects of test articles are not re-
lated to the immune system, the changes related to inciden-
tal infection or relapse of latent spontaneous infection are 
misinterpreted as direct effects of test articles.

In addition to the effects of test article on the immune 
system, background or incidental infection with immuno-
suppressive viruses (e.g. measles transmitted from humans 
to monkeys), malnutrition, and stress due to experimental 
procedures, changes in animal husbandry conditions (in-
cluding changes in the animal room), or shipping can cause 
recurrence. To accurately interpret changes associated with 
the test article or experiment, toxicologic pathologists must 
understand the prevalence of these infections, their basic 
pathologic features, and the current diagnostic methods. 
When unexpected findings are observed and infectious dis-
eases are suspected in studies, pathologists should not only 
collect information on the origin of the monkeys, the quar-
antine methods, and the results of routine testing for infec-
tious agents but also on the time-course changes in clinical 
findings, the health status of the handlers, and any hints of 
accidents or procedures that could have stressed the mon-
keys. If an intervention has been performed on an animal 
diagnosed with an infection, pathologists should also be 
aware of the type of intervention (e.g. allowing dosing holi-
days for animals or drugs that were used). This information 
will help pathologists to distinguish both infectious disease-
related and test-item-related lesions and precisely interpret 
the results of experiments or studies. If the pathogen is iden-
tified, the pathologist and onsite veterinarian should check 
whether the laws of each country require notification of the 
infectious disease and take appropriate action.
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