
REVIEW
published: 17 July 2020

doi: 10.3389/fimmu.2020.01324

Frontiers in Immunology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 1324

Edited by:

Peter Brossart,

University of Bonn, Germany

Reviewed by:

Matthew S. Macauley,

University of Alberta, Canada

Lars Nitschke,

University of Erlangen

Nuremberg, Germany

*Correspondence:

Feng-Hou Gao

fenghougao@163.com

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 24 March 2020

Accepted: 26 May 2020

Published: 17 July 2020

Citation:

Yin S-S and Gao F-H (2020) Molecular

Mechanism of Tumor Cell Immune

Escape Mediated by CD24/Siglec-10.

Front. Immunol. 11:1324.

doi: 10.3389/fimmu.2020.01324

Molecular Mechanism of Tumor Cell
Immune Escape Mediated by
CD24/Siglec-10
Shan-Shan Yin and Feng-Hou Gao*

Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,

China

Tumor immune escape is an important part of tumorigenesis and development. Tumor

cells can develop a variety of immunosuppressive mechanisms to combat tumor

immunity. Exploring tumor cells that escape immune surveillance through the molecular

mechanism of related immunosuppression in-depth is helpful to develop the treatment

strategies of targeted tumor immune escape. The latest studies show that CD24 on

the surface of tumor cells interacts with Siglec-10 on the surface of immune cells to

promote the immune escape of tumor cells. It is necessary to comment on the molecular

mechanism of inhibiting the activation of immune cells through the interaction between

CD24 on tumor cells and Siglec-10 on immune cells, and a treatment strategy of tumors

through targeting CD24 on the surface of tumor cells or Siglec-10 on immune cells.
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INTRODUCTION

Normally, the existence of inhibitory receptors or immune checkpoints avoids the injuries
caused by excessive immune response, as tumor cells can up-regulate the corresponding immune
checkpoints and their ligands and inhibit the activity of immune cells or induce the apoptosis of
immune cells, so as to escape the surveillance of the immune system (1). Tumor immune escape is
one of the basic characteristics of tumor occurrence and development (2). The treatment of innate
immune checkpoints related to tumor immune escape has achieved remarkable success in recent
years. Therefore, the identification of innate immune checkpoints is very important in developing
cancer treatment. In this regard, programmed cell death ligand 1 (PD-L1), cytotoxic T lymphocyte-
associated protein 4 (CTLA-4), CD47, and some other innate immune checkpoints have been found
(3–5). And the latest research has indicated that CD24 may be the dominant immune checkpoint
in tumors. Its interaction with sialic-acid-binding Ig-like lectin 10 (Siglec-10) can promote tumor
immune escape and is expected to become a new target for tumor therapy (6).

The CD24 gene is located on chromosome 6q21 and it encodes a glycosylated protein with 16
potential O-glycosylation andN-glycosylation sites (7). In general, CD24 is expressed on the surface
of developing T and most B lymphocytes (8, 9). It can determine the ability of proliferation and
survival of early T cells (10). Glycosylphosphatidylinositol (GPI) is required to bond with CD24
because the latter does not contain a cytosolic domain. That is why CD24 is also known as a heat
stable antigen (7, 11, 12). The CD24 on immune cells adheres to the lipid raft as a cell adhesion
molecule, so that it can participate in the transduction of signals such as tyrosine kinase, G protein,
etc. (13, 14). CD24 is highly expressed in various tumor cells and is related to the occurrence
and development, invasion, and migration of tumor cells (15–25). For example, CD24 is seen as
a strong and independent molecular marker for the prognosis of ovarian cancer; it is also related to
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the growth and metastasis of breast cancer and may be related to
the occurrence and development of pancreatic cancer (17, 26, 27).
The combination of CD24-expressing tumor cells and P-selectin
on platelets can promote the excretion of tumor cells from the
bloodstream and thus promote their metastasis (28). Another
tumor-related mechanism of CD24 is the connection between
CD24 and signal factors in the lipid rafts microdomains, such as
Src kinase. The Src kinase activated by CD24 may be involved
in other mechanisms that cause tumorigenesis (25). For example,
CD24 regulates the invasion of tumor cells by suppressing tissue
factor pathway inhibitor-2 (TFPI-2) through a Src-dependent
manner (29).

The sialic acid-binding immunoglobulin (Ig)-like lectins
(Siglecs) are an immunoglobulin-like type I transmembrane
protein with different numbers of Ig-like domains (C2 setting
domain) and IgV-like domains that recognize the N-terminal of
ligands (30). Siglecs have immune receptor tyrosine inhibitory
motifs (ITIM) or ITIM-like motifs in cells, and many of
them are related to protein tyrosines that contain an SH2
domain, like phosphatase 1 (SHP-1), and SHP-2 containing
SH2 domain (31). Siglecs can recognize the sialic acid-
containing structure and combine with the sialic acid attached
to the glycoconjugates on the cell surface (31). In this
siglecs family, ligand recognition results in an induction of
accessibility of the cytosolic ITIM tyrosine and the ITIM-like
tyrosine to Src family kinases (32). These kinases phosphorylate
ITIM tyrosine in the cytoplasm, thereby recruiting tyrosine
phosphatases such as SHP-1 or SHP-2, which can attenuate
signal transduction (33, 34). Although SHP-1 and SHP-2 both
belong to protein tyrosine phosphatases which contain the
SH2 domain, they are usually regarded as negative regulators
and positive regulators, respectively (35, 36). Siglecs can be
divided into two groups according to their structure (30).
The first group includes Siglec-1 (Sialoadhesin / CD169),
Siglec-2 (CD22), Siglec-4 (Myelin-associated glycoprotein /
MAG), and Siglec-15, which are structurally conserved in
many species, such as mouse and human (30). The second
group contains the CD33-related Siglecs, which are different
in mouse and human. CD33-related Siglecs in humans
are Siglec-3 (CD33),-5,-6,-7,-8,-9,-10,-11,-12,-14, and−16 while
in the mouse Siglec-3(CD33), Siglec-E,-F,-G, and-H belongs
to this group (30). Siglec-10 has five extracellular Ig-like
domains, a transmembrane region, and a cytoplasmic tail
containing two ITIM signaling motifs (37). The IgV structural
domain of Siglec-10 contains a key arginine residue, which
is related to the recognition of sialic acid (30). Siglec-10
is a kind of inhibitory receptor, which expresses widely
in immune cells, such as B cells, monocytes, dendritic
cells, a small number of NK cells, and a small subset
of activated T cells which inhibit the function of immune
cells (38–40).

Siglec-10 binds firmly to CD24 in a sialylation-dependent
manner, and CD24 is the main ligand of Siglec-10 (41, 42).
When CD24 on tumor cells combines with Siglec-10 on
immune cells, it causes the signal cascade of immune cell
inhibition, which is mediated by SHP-1/SHP-2 (31). These
phosphatases are associated with ITIM, which is in the

cytoplasmic tail of Siglec-10. The ITIM region is phosphorylated,
thus blocking Toll-like receptor (TLR)-mediated inflammation
and activating a series of intracellular signal pathways to
achieve effective immunosuppression and promoting tumor
immune escape (Figure 1) (31, 43, 44). Existing studies show
that the damage of danger-associated molecular pattern
(DAMP)-associated inflammatory responses, which perform
as innate immune pattern recognition receptors, can be
reduced by the interaction of CD24-Siglec-10 (42). The
interaction between CD24 and Siglecs is considered to be
the complex of placental immunosuppressive response, and
a great number of placental cells and molecular markers
have been evaluated for their role in tumor immune
escape (41).

Recognition of CD24 by Siglec-10
Sialic acid is a family of nine-carbon sugars, which usually forms
the terminal sugar structures of the glycoproteins and glycolipids
on the cell surface (45). They connect carboxy on C-1, and
connect the glycan via N- and O- on C-2 (46). Sialic acids can
be linked to glycans by α 2-3-, α 2-6-, α 2-8-, and α 2- 9-linkage
(46). Different sialic acid derivatives are formed according to
the differences among modifications at C-5, which can be
divided into four types: N-acetylneuraminic acid (Neu5Ac), N-
glycolylneuraminic acid (Neu5Gc), deaminylneuraminic acid,
and neuraminic acid (Neu) (47). The diversity within the sialic
acid family itself and the linked- glycan, and the variable
linkability of sialic acids, enables cells to synthesize and express
a great variety of sialoglycans at the cell membrane (48, 49).
The differences in the structure of each sialoglycan distinguish
them from other sialoglycans. CD24 is a severely sialylated
glycoprotein that can interact with Siglec-10 to escape immune
recognition (45). It is always heavily decorated with N- and
O-linked glycans (50, 51). Sialic acid is connected to glycans
through α 2-3- and α 2-6-linkage (Figure 1). In the mouse
brain, the glycans of CD24 are mainly complex type N-glycans
and highly diverse patterns of O-glycans, including mucin-
type and carrying O-mannosyl glycans (52, 53). It was noticed
that structural features of sialic acids are important for Siglec
binding (54). The sialic acid backbone can be chemicallymodified
at various positions (54). Its chemical modifications of the
sialic acid backbone can dramatically increase the binding
affinity to a Siglec (55, 56). The carboxylic acid is crucial
for Siglec binding and hence is left unmodified, but all other
positions, ranging from the aglycone (C-2) to the rest of
the backbone (C-3 to C-9), can potentially be modified to
improve Siglec binding (54). The sialic acid in mouse brain
CD24 is mainly NeuAc, and small amounts of NeuGc can
be detected at the non-reducing end of mucin CD24 much-
type O-glycans (Figure 1) (57). The type of linkage and type
of underlying sugar also affects the recognition of sialic acids
(54). Although all Siglecs can recognize sialoglycans, the binding
preferences of these receptors vary considerably (54). Siglec-
10 recognizes the sialic acid ligands carrying α 2-3- or 2-6-
linkage (Figure 1). Siglec-10 can be attracted by the unique
structure of the entire molecule of CD24 when it is binding
to receptors.
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FIGURE 1 | The interaction between CD24 on tumor cells and Siglec-10 on immune cells. The interaction between CD24 on tumor cells and Siglec-10 on immune

cells results in inhibitory signal cascades. The IgV domain of Siglec-10 binds to the sialic acid located on the terminal region of CD24, which leads to the induction of

Src family kinases by intracellular ITIM or ITIM-like motifs (31). These kinases phosphorylate ITIM tyrosine in the cytoplasm, and then recruit the tyrosine phosphatases

such as SHP-1 and SHP-2 to reduce the signal transduction (31).

MOLECULAR MECHANISM OF CD24
EXPRESSION IN TUMOR CELLS

CD24 Expression in Tumor Cells Induced
by HIF1 α
The tumor cells undergo an exuberant process of metabolism

and their oxygen consumption is high. Meanwhile, due to the
shortage of oxygen supply, the oxygen content of the tumor

microenvironment is low. In this condition, the tumor cells are

in a state of relative hypoxia. Hypoxia-inducible factors (HIFs)
are the most important proteins for cell-induced expression in
hypoxic environments (58). Tumor cells use it to induce the
expression of target genes to make tumor cells adapt to the
hypoxic environment (59). The main reason for this is that
under the action of normal oxygen, the proline hydroxylase
hydroxylates those proline residues in the conserved region of
HIF subunits, and VHL E3 ubiquitination ligase identifies and
ubiquitinates the hydroxylated HIF so that the ubiquitinated
HIFs can be degraded rapidly by the proteasome; however,
under the condition of hypoxia, the prolinyl hydroxylase of
HIF protein is inhibited, which stabilizes the protein level of
HIF α (59, 60).

Hypoxia-induced CD24 expression mainly occurs at the
transcriptional level, especially when HIF acts as a transcription
factor to induce CD24 expression (Figure 2). CD24 is the key
transcriptional target of HIF-1α (61). HIF-1α promotes the
transcription of CD24 through a functional hypoxia-responsive
element in the CD24 promoter (61). In a previous study based
on broad transcriptomic analysis of human umbilical cord vein
endothelial cells exposed in vitro to hypoxia, Scheurer et al.
reported that CD24 is one of the 65 genes that mRNA increases
with hypoxia (65). In bladder cancer, prostate cancer, and gastric
cancer, hypoxia significantly up-regulated the expression of
CD24 mRNA and protein in cancer cells (61, 66).

Non-coding RNA Induces CD24 Expression
in Tumor Cells
Signals from non-coding RNAs (ncRNAs) can transfer between
tumor cells and tumor microenvironments through extracellular
vesicle (EVs), exosomes, and gap junctions (67, 68). NcRNAs
have been demonstrated to play an important role in tumor
growth, metabolism, and migration, as well as in regulating the
expression of CD24. It has been found for the first time that
the increased expression of long non-coding RNA (lncRNA)
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FIGURE 2 | The molecular mechanism of CD24 expression in tumor cells. Under the condition of hypoxia, HIF-1α promotes the transcription of CD24 through a

functional hypoxia-responsive element on the promoter of CD24 (61). MiRNA participates in tumorigenesis by participating in the upstream and downstream

regulatory networks of CD24, and mainly inhibits the translation of mRNA. MiR-34a targets CD24 and Src at the post-transcriptional level, and inhibits the expression

of CD24 and Src (62). When miR-34a is epigenetically silenced, the expression of CD24 up-regulates (62). The upregulation of CD24 expression can increase the

expression of miR21 by activating Src, thus inhibiting the expression of Pdcd4 and PTEN, and participating in the occurrence and development of tumors (62–64).

H19 leads to a reduction of cell-surface CD24, and that down-
regulation of H19 helps to maintain the expression of CD24 on
the cell surface, so H19 is thought to make a contribution to
cell invasion by regulating CD24 expression, thereby regulating
tumor immune escape (Figure 2) (69). MiRNA is also a kind
of ncRNA. The protein-coding genes, such as the CD24 gene,
are currently known to be regulated by miRNAs (62). Mature
miRNAs regulate genes in two ways: one way is to bind to
the target gene mRNA and promote its degradation, and the
other is to inhibit the translation of mRNA (70). MiRNA
participates in tumorigenesis by participating in the upstream
and downstream regulatory networks of CD24, and mainly
inhibits the translation of mRNA. MiR-34a targets CD24 and Src
at the post-transcriptional level, and inhibits the expression of
CD24 and Src (Figure 2) (62). When miR-34a is epigenetically
silenced, the expression of CD24 up-regulates (62). CD24 is
the direct target of miR-146a (71). MiR-146a binds to the 3’-
untranslated region (UTR) of CD24 and suppresses its expression
after transcription (Figure 2) (71).

WNT/ β-catenin Induces CD24 Expression
in Tumor Cells
The Wnt/ β-catenin signaling pathway is an evolutionarily-
conserved regulatory pathway that governs numerous
normal cellular and developmental processes such as cell
fate determination, cell proliferation, and migration (72).
However, aberrant Wnt signaling has also been identified as
a key mechanism in cancer biology. It has been proven that
Wnt/ β-catenin plays an important role in tumor growth and
regulating the expression of CD24. Immunoprecipitation studies

show that CD24 may activate β-catenin to interact with the Wnt
pathway and induce β-catenin translocation into the nucleus
(72). It has been shown in breast cancer that β-catenin can
inhibit tumor immune escape by down-regulating the expression
of CD24 (Figure 2) (73). And it has also been identified
that CD24 is the transcriptional target of Wnt signaling in a
non-transformed human mammary epithelial cell line MCF
10A (73).

THE INTERACTION BETWEEN SIGLEC-10
ON IMMUNE CELLS AND CD24 INDUCES
IMMUNE ESCAPE OF TUMOR CELLS

T Cells
Malignant cell-secreted Evs in the tumor microenvironment
stimulate lymphocytes to suppress anti-tumor immunity and
promote tumor progression. Importantly, malignant EVs impair
T cells’ function by upregulating the expression of Siglec-10 on
T cells (74). Siglec-10 is an inhibitory receptor expressed on the
surface of T cells (38, 39). It triggers immunosuppression by
blocking the activation of TCR, which is realized by inhibiting
the formation of T cell major histocompatibility complex class
I (MHC-I) peptide complex and the phosphorylation of T
cell receptor-associated kinases Lck and ZAP-70 (Figure 3) (40,
75, 76). Studies by Bandala-Sanchez et al. have also shown
that Siglec-10 expressed on the T cells’ surface inhibits the
phosphorylation of T cell receptor-associated kinase ZAP-70 and
the activation of T cells (39, 75). Siglec-10 can also inhibit T cells’
activation by binding to corresponding ligands. For example,
related studies by Sammar et al. have shown that CD52 (and
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FIGURE 3 | The interaction between CD24 and Siglec-10 on immune cells promotes tumor immune escape. CD24 expressed on the surface of tumor cells interacts

with Siglec-10 expressed on immune cells, and then promotes tumor immune escape through corresponding molecular mechanisms. (A) Siglec-10 expressed on T

cell surfaces inhibits the activation of T cells through inhibiting the formation of T cell major histocompatibility complex class I (MHC-I) peptide complex and the

phosphorylation of T cell receptor-associated kinase, Lck, and ZAP-70 (39, 40, 75, 76). (B) Siglec-10 expressed on the surface of B cells inhibits BCR-mediated

signal transduction. (C) When CD24 interacts with Siglec-10 on the surface of macrophages, it triggers the inhibitory signals cascade mediated by SHP-1 to inhibit

the phagocytosis of macrophages and promote tumor immune escape (6, 31). (D) Siglec-10 expressed on the surface of NK cells inhibits NK cell receptor-mediated

signal transduction.

possibly CD24, if properly glycosylated) can bind to Siglec-10 and
block the activation of TCR by inhibiting T cell receptor (TCR)-
related kinases (Figure 3) (41). CD24/Siglec-10 can inhibit the
activation of T cells mediated by TCR and promote tumor
immune escape.

B Cells
Siglecs play an important immunomodulatory role in B cell
activation and immunoglobulin production (77). For example,
Siglec-2 strongly affects the signal transduction of the B cell
receptor (BCR) and has become the prototype of the working
principle of Siglec signal transduction (30, 78). B1 cells, the
subtype of B cells, express the inhibitory receptor Siglec-10 in
humans. However, it is still unclear how Siglec-10 regulates the
activity of B cells (38). Siglec-10 not only expresses in human B
cells, but also in mouse B cells, in which case it is referred to as
Siglec-G. Siglec-G is an ortholog of human Siglec-10 (79). They
have a high sequence identity, similar chromosomal location of
their genes, and conserved structure of the proteins (79). Lineal
homologs often have similar or even the same functions, which
are regulated by a similar pathway, and play similar or even
the same roles in different species (80–82). For example, both
Siglec-10 in human cells and Siglec-G inmouse cells can combine
with CD24 to inhibit host inflammation and immune response

triggered by damage-related molecular models, and Siglec-10/G
plays an important role in self-nonself discrimination of the
immune system andmay be involved in evasion of host immunity
by RNA viruses (42, 45).

Existing studies have found that Siglec-G is an inhibitory
receptor of B cells, which controls the proliferation and calcium
signal transduction of B1 cells (83). Siglec-G is expressed in a
B cell-restricted way, with large amounts present in B1 cells
(83). When overexpressed, Siglec-G can inhibit B cell receptor-
mediated calcium signaling (83). Siglec-G dampens the calcium
signal transduction of B1 cells by recruiting the ITIM-binding
protein SHP-1, growth factor receptor binding protein 2 (Grb2),
and inhibits the activity of transcription factors NFATc1 and
NF-kB (Figure 3) (45).

CD24 can also affect the function of B cells by affecting the
signal transduction of BCR (Figure 3). CD24 induces human
B cell apoptosis through glycolipid-enriched membrane (GEM)
domains / raft-mediated signal transduction systems (12). The
recruitment of a variety of signal transduction molecules in the
GEM domain, including Src family PTKs, trimer G protein,
Ras, and linker for activation of T cells, indicates their role
as a signal transduction platform (84, 85). The association of
CD24 and lyn protein tyrosine kinase in GEM enhances, and
the activity of lyn also enhances, after CD24 cross-linking (12).
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In addition, after CD24 cross-linking, mitogen-activated protein
kinases (MAPK) is activated, and CD24 mediates intracellular
signal transduction that leads to B cell apoptosis (Figure 3)
(12). The stromal-cell-derived factor-1 (SDF-1, also known as
CXCL12) has a strong chemotactic effect on lymphocytes, and
chemokine receptor CXCR4 is a specific receptor of CXCL12
(86). Using CD19-positive bone marrow B cells and CD24-
/-Pre-B lymphocyte lines isolated from CD24 knockout mice
proves that the expression of CD24 decreases CXCL12-mediated
cell migration and signal transduction through CXCR4 (86).
The study results suggest that CD24 mediates the apoptosis of
human precursor B cells with the activation of multiple caspases
in the pro-B and pre-B stages (87). The cross-linking of BCR
precursors causes rapid and strong activation of extracellular
signal-regulated kinase 1 (ERK1), while the cross-linking of
CD24 induces continuous activation of p38MAPK after the
activation of ERK1 (Figure 3) (87). Therefore, it can start the
inhibitory signal, play its regulatory role, and promote tumor
immune escape.

The Interaction Between CD24 on the
Surface of Tumor Cells and Siglec-10 on
Macrophages Induces Tumor Immune
Escape
The phagocytosis of macrophages to tumors is regulated by a
host of signals, including pro-phagocytosis signals (“Eat me”)
and anti-phagocytosis signals (“Don’t eat me”) (88). Many
phagocytic signals are expressed on the tumor surface, including
tumor-associated antigen, endoplasmic reticulum chaperone,
calreticulin, and glycoprotein signal lymphocyte activation
molecule family member 7 (SLAMF-7; also known as CD319)
(89–91). However, some anti-phagocytic signals also exist on
the surface of tumor cells, including CD47, PD-L1, β 2-
microglobulin (B2M), an unidentified ligand that binds to
leukocyte immunoglobulin-like receptor-2 (LILRB2), and the
recently discovered CD24 (6, 92–95). These “don’t eat me” signals
interact with the corresponding receptors on phagocytes surface,
including signal regulatory protein α (SIRP α), programmed
cell death 1 (PD-1), leukocyte immunoglobulin-like receptor 1
(LILRB1), Siglec-10, etc. The interaction between these receptors
and ligands promotes the tumor to escape the phagocytosis
of phagocytes. These anti-phagocytosis signals are all involved
in macrophage signaling based on immunoreceptor-tyrosine-
based inhibition motifs and essentially avoid the surveillance
and clearance of macrophages (6). The researchers used gene
knockout against CD24, Siglec-10, and monoclonal antibodies to
block CD24 and Siglec-10, and then they found that macrophages
increased their ability to engulf tumors and slow down the
growth of macrophage-dependent tumors in vivo (6). And all the
macrophages expressing Siglec-10 responded to the blocking of
CD24, and the degree of these responses were related to Siglec-
10. The loss of siglec-10 would decrease the blocking of CD24.
It indicates that the specific blocking of CD24 occurs between
CD24 and Siglec-10 (6). CD24 binds specifically to Siglec-10 but
not to Siglec-3 and Siglec-5 (41). The interaction between CD24
and Siglec-10 triggers the inhibitory signal cascade (Figure 3)

(45). After SRC family tyrosine kinases phosphorylate the
cytoplasmic tyrosine-based signal transduction group, Siglec-10
recruits and activates the proteins containing the SH2 domain,
especially SHP-1, SHP-2, or suppressor of cytokine signaling
3(SOCS3) (Figure 3) (31). As an important member of the
tyrosine phosphatase family, SHP-1 can specifically bind to
tyrosine phosphorylated in the intracellular ITIM domain and
catalyze its dephosphorylation. It can also negatively regulate
the intracellular signal transduction in which the growth factors,
cytokines, hormones, extracellular matrix, and cell adhesion
molecules are involved (96). Therefore, the interaction between
CD24 and Siglec-10 inhibits the phagocytosis of macrophages,
so that the tumor cannot be cleared by phagocytosis, which
promotes the immune escape of tumors.

Healthy normal tissues and cells have the inherent ability
to avoid the self-elimination of macrophages by expressing
anti-phagocytosis molecules, but cancer cells rely even more
on similar mechanisms to escape the eradication of immune-
mediated (97–100). Therefore, the targeted therapy toward the
macrophage phagocytosis checkpoints in tumors may provide a
new avenue for the development of cancer immunotherapies to
eliminate tumor immune escape (101).

NK Cells
In liver tumormicroenvironments, Siglec-10mainly expresses on
NK cells, while it expresses less on T cells and B cells (102). The
percentage of Siglec-10+NK cells in tumor tissues is higher than
that in surrounding non-tumor tissues (40). The high expression
of Siglec-10 onNK cells canmediate the functional damage of NK
cells in human hepatocellular carcinoma (HCC) (40). According
to the results of survival analysis, the increased expression of
Siglec-10 in HCC is negatively correlated with the prognosis
of patients with HCC (40). The interaction between CD24
and Siglec-10 can repress the tissue damage-induced immune
responses (42). And the interaction between CD24 expressed
by hepatoma cells and Siglec-10 expressed by NK cells may be
beneficial for tumors to escape the killing effect of NK cells and
promote tumor immune escape (Figure 3) (40).

THE STRATEGY OF TARGETING
CD24/SIGLEC-10 TO INHIBIT TUMOR
IMMUNE ESCAPE

Antibodies of Targeting CD24
SWA11 monoclonal antibody has high affinity and specificity
toward CD24-expressing cells (21). CD24 is internalized in cells
after the binding of SWA11mAb, and the role of the SWA11
monoclonal antibody is mainly to reduce the proliferation of
tumor cells (21, 103). SWA11mAb targeting CD24 effectively
retarded the growth of lung and ovarian carcinoma xenografts
(103). Dual treatment of pancreatic adenocarcinoma cells with
anti-CD24 mAb and cetuximab enhanced phagocytosis relative
to either treatment alone, demonstrating a potential synergy
between anti-CD24 mAb and anti-solid-tumor mAbs. Besides,
the addition of anti-CD24 antibody to the chemotherapy regimen
may be beneficial to target chemotherapy-resistant tumor stem
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FIGURE 4 | Inhibition of tumor immune escape by interfering with CD24/Siglec-10 signal transduction. The uses of CD24 monoclonal antibodies or sialidase is

designed to interfere with the interaction between CD24 and Siglec-10, block the transduction of inhibitory signals, and inhibit the immune escape of the tumor. And

the decrease of HIF-1α or CD24 expression is also a potential method for the treatment of inhibiting the immune escape of tumors.

cells (103). However, potential off-target effects of anti-CD24
mAb treatment in humans include the depletion of B cells, owing
to high CD24 expression by B cells (6). Meanwhile, the potential
toxicity of targeted CD24 to cancer patients cannot be ruled out
at this stage (6).

Targeting CD24 and Siglec-10 Genes
Through gene ablation of CD24 and Siglec-10, the targeting of
these cells has been proven to be an effective method to enhance
the phagocytosis of macrophages (Figure 4) (6). Knockdown
of CD24 expression by CD24-shRNA can significantly inhibit
cell viability and induce the apoptosis of SKOV3 cells (104).
Administration with CD24-shRNA in vivo suppressed tumor
volume increase by microvessel density (MVD) decrease, cell
proliferation inhibition, and apoptosis induction, suggesting
that knockdown of CD24 may be a potential method for
the treatment of human ovarian cancer (104). When CD24
targeted siRNA molecules are added to the growth medium
of several epithelial cancer cell lines, such as breast cancer
and prostate cancer, the transient low expression of CD24
leads to the decrease of cell growth, and the changes of
actin cytoskeleton can be observed, which results in exercise
damage (18).

The Binding of Targeting CD24-Siglec-10
Siglec-10 is thought to have the ability to recognize sialic
acid structures, and it binds firmly to CD24 in a sialic acid-
dependent manner (43, 44). The latest research shows that

loss of tumor sialic acid can block the effect of immune
modulatory Siglecs on immune cells (105). It has been reported
that the antibody-sialidase conjugates are used to edit the
glycocalyx accurately, and the antibody guides sialidase to
selectively remove sialic acid from tumor cells, which enhances
the sensitivity of tumor cells to antibody-dependent cell-
mediated cytotoxic (ADCC) and enables immune cells to
kill desialylated cancer cells (106). For example, treating
CD24 with sialidase abrogates the interaction with Siglec-10
and CD24 (Figure 4) (107). Barkal et al. also observed that
the binding of Siglec-10 Fc (Fc, crystallizable fragments) to
MCF-7 cells decreased significantly after desialylation on
the cell surface (6). Blocking the interaction between CD24
and Siglec-10 with a monoclonal antibody can robustly
augment the phagocytosis of human tumors expressing
CD24 (6).

Other
CD24 on the surface of tumor cells can also be regulated by
other factors to promote tumor immune escape. HIF-1a induces
the expression of CD24 at the transcriptional level to promote
tumor immune escape, and the non-coding RNA, Wnt/ β-
catenin, promotes or inhibits the expression of CD24 to promote
or inhibit tumor immune escape (61). Although the effects of
hypoxia on tumor growth and metastasis have been known for
a long time, recent studies show that hypoxia can also promote
tumor immune escape. Current studies suggest that HIF-1α
can induce the expression of CD24 at the transcriptional level,

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 1324

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yin and Gao CD24/Siglec-10 Induces Immune Escape

which further points out the importance of hypoxia and the
expression of CD24 for tumor immune escape (61). The decrease
of HIF-1α or CD24 expression mediated by shRNA reduces the
survival rate of cancer cells in vivo and in vitro at the growth
level of primary and metastatic tumors (Figure 4) (61). Down-
regulating HIF-1 can improve the sensitivity of chemotherapy
and inhibit tumor formation. Therefore, inhibiting these CD24-
related upstream molecules of regulatory signaling pathways can
effectively prevent tumor invasion and immune escape, improve
the tumor microenvironment, and may have a positive effect on
tumor treatment.
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