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Abstract
Background: Variation in host attributes that influence their contact rates and infec-
tiousness can lead some individuals to make disproportionate contributions to the 
spread of infections. Understanding the roles of such ‘superspreaders’ can be crucial 
in deciding where to direct disease surveillance and controls to greatest effect. In the 
epidemiology of bovine tuberculosis (bTB) in Great Britain, it has been suggested that 
a minority of cattle farms or herds might make disproportionate contributions to the 
spread of Mycobacterium bovis, and hence might be considered ‘superspreader farms’.
Objectives and Methods: We review the literature to identify the characteristics of 
farms that have the potential to contribute to exceptional values in the three main 
components of the farm reproductive number - Rf: contact rate, infectiousness and 
duration of infectiousness, and therefore might characterize potential superspreader 
farms for bovine tuberculosis in Great Britain.
Results: Farms exhibit marked heterogeneity in contact rates arising from between-
farm trading of cattle. A minority of farms act as trading hubs that greatly augment 
connections within cattle trading networks. Herd infectiousness might be increased 
by high within-herd transmission or the presence of supershedding individuals, or 
infectiousness might be prolonged due to undetected infections or by repeated local 
transmission, via wildlife or fomites.
Conclusions: Targeting control methods on putative superspreader farms might yield 
disproportionate benefits in controlling endemic bovine tuberculosis in Great Britain. 
However, real-time identification of any such farms, and integration of controls with 
industry practices, present analytical, operational and policy challenges.
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1  | INTRODUC TION

In disease systems, superspreading individuals are defined by 
their tendency to generate disproportionately greater numbers of 

secondary infections when compared to other hosts (Lloyd-Smith, 
Schreiber, Kopp, & Getz,  2005), thereby exerting a strong influ-
ence on disease dynamics. Epidemics in populations with super-
spreaders tend to be larger and more ‘explosive’ when outbreaks 
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occur, but exhibit greater chances of infection dying out when the 
more numerous individuals with lower transmission rates are in-
fected (Garske & Rhodes, 2008; Lloyd-Smith et al., 2005). As the 
heterogeneity of the individual reproductive number (Ri – the 
number of secondary infections created from a single infected in-
dividual in a completely susceptible population) increases, there 
is wider variation in potential epidemic size, but the utility of the 
mean reproductive number (R0) reduces (Garske & Rhodes, 2008). 
Hence, epidemics have, for some diseases, been more effectively 
modelled by incorporating variation in Ri rather than assuming 
that the host population is homogeneous with regard to R0 (Lloyd-
Smith et al., 2005; Stein, 2011).

For livestock diseases, epidemics are often modelled using the 
farm, rather than the animal, as the epidemiological unit that ac-
quires and spreads infection. The individual farm reproductive num-
ber, Rf, is thus defined as the number of secondary farms infected 
by a primary infected farm (Mardones, Perez, Valdes-Donoso, & 
Carpenter, 2011). Rf seems to show similar between-individual vari-
ation as Ri, with a minority of farms making a disproportionate con-
tribution to secondary cases (VanderWaal et al., 2015; Woolhouse 
et al., 2005), apparently largely driven by variation in their trading 
behaviour (Woolhouse et al., 2005). Rf has been calculated in epi-
demics of foot and mouth disease (FMD) (Tildesley & Keeling, 2009), 
highly pathogenic avian influenza (HPAI) (te Beest, Hagenaars, 
Stegeman, Koopmans, & van Boven,  2011) and salmon infectious 
anaemia (Mardones et al., 2011). In FMD and HPAI models, reduc-
tions in epidemic size were achieved by targeting control measures 
on farms with higher Rf, highlighting the benefits of identifying 
and targeting superspreader farms. While the impact of transmis-
sion heterogeneity has been evaluated for these highly-transmis-
sible diseases, the significance of Rf in endemic infections is less 
well-understood. In contrast with incursions of exotic diseases, the 
ongoing nature of control measures for endemic infections, usually 
means that the population cannot be considered fully susceptible. 
Therefore, Rf might better be described as effective-Rf, though 
we refer to it here as Rf for brevity. Superspreader farms might be 
important in the dynamics of endemic infections (Brooks Pollock, 
Roberts, & Keeling, 2014), and long incubation and latency periods 
may allow undetected infection to spread further between farms 
(Dubé, Ribble, Kelton, & McNab, 2011). Brooks Pollock et al. (2014) 
constructed a dynamic, stochastic, spatial model of bovine tubercu-
losis (bTB) in Britain, using farm movements from the Cattle Tracing 
System (CTS) and bTB testing results to fit the model. They suggested 
that 10% of farms might be responsible for the majority of onward 
transmission to newly infected farms, implying that a disproportion-
ate contribution from a minority of superspreader farms may play 
an important role in the maintenance and spread of this endemic 
infection. BTB is caused by infection with Mycobacterium bovis and 
is a major, ongoing problem for the British cattle industry (Allen, 
Skuce, & Byrne, 2018). Test and slaughter policies have previously 
reduced herd incidence (Department for Environment, Food & Rural 
Affairs, 2014), though since the 1980s increases in incidence have 
been accompanied by geographical spread from isolated hotspots 

to much of Wales and western England (Brunton et  al.,  2015). 
Control of bTB costs UK taxpayers more than £100 million annually 
and the financial and emotional impacts on farmers are substantial 
(Department for Environment Food & Rural Affairs, 2013). In 2018, 
33,265 cattle (Animal & Plant Health Agency,  2019) and 32,601 
European badgers (Meles meles) (Department for Environment, Food 
& Rural Affairs, 2018), which can constitute a wildlife reservoir of 
the infection (Godfray et al., 2013), were culled as part of bTB con-
trol measures in England. Cattle testing, predominantly using the 
Single Intradermal Cervical Comparative Tuberculin (SICCT) test, is 
currently mandatory on at least an annual basis in Wales and in the 
bTB High Risk Area (HRA) and Edge Area of England. Testing is re-
quired on a four-yearly basis in the Low Risk Area (LRA) of England 
and in Scotland, apart from some exempt farms in Scotland, which 
is classed as Officially Tuberculosis Free (OTF). A positive reaction 
to the SICCT test, or lesions consistent with bTB found at slaughter, 
trigger movement restrictions on the affected farm. Initially, their 
OTF status is suspended (OTF-S) and then withdrawn (OTF-W) upon 
positive culture of M. bovis. Movement restrictions are lifted on the 
restoration of OTF status, typically after two consecutive herd tests 
with no positive results.

As bTB is a chronic, notifiable disease with mandatory control 
measures designed to find and eliminate disease, it might seem less 
important to consider superspreader farms in this context. Brooks 
Pollock et al.  (2014) suggested that the majority of new bTB infec-
tions are caused firstly by cattle movements, and secondly through 
the local environment. Importantly, they also identified that a small 
number of farms are likely to create a disproportionate number of 
secondary cases, although they were not able to elaborate further 
on what might characterize these farms. Superspreader farms for 
bTB are likely to present differently to superspreaders of more highly 
transmissible diseases and could transmit infections over extended 
periods of time, in contrast with those that contribute to the steep 
epidemic curve of an outbreak. When characterizing superspreading 
farms, we should note that we are discussing not the commonalities 
of infection spread, but the circumstances that occur rarely, on a mi-
nority of important farms, and which might ‘evade’ control policies. 
Most studies of bTB epidemiology in cattle focus on herds that have 
experienced a bTB incident, i.e. where infection has been detected 
and the farm placed under restrictions. However, we focus on those 
herds that may be infected with bTB but where current infection 
has likely not been disclosed by testing and so farmers are able to 
sell cattle. The mechanisms by which farms might function as bTB 
superspreaders, may also be the very attributes that will make them 
difficult to identify.

The transmission rate of an infection is governed by three com-
ponents: contact rate, infectiousness, and duration of infectiousness 
(Figure  1) (VanderWaal & Ezenwa,  2016). We use this framework 
to discuss how a superspreader farm might act. We first consider 
variation in contact rates among farms that arises from heteroge-
neity in the scale of cattle movements, both directly and as part 
of large and complex trading networks. Second, we study how the 
characteristics of M. bovis infection and of individual farms affects 
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the ‘infectiousness’ of farms. Third, we look at factors specific to 
bTB, such as imperfect diagnostic testing (de la Rua-Domenech 
et al., 2006), the general absence of clinical symptoms in infected 
cattle in Great Britain (Neill, Bryson, & Pollock, 2001), and environ-
mental sources of infection, including wildlife, and how these might 
contribute disproportionately to the prolonged duration of bTB in-
fection on some farms. Finally, we discuss appropriate control op-
tions for putative superspreader farms, that might contribute to bTB 
control in Great Britain.

2  | HERD CONTAC T R ATE

The buying and selling of cattle and their movements among farms 
are the most obvious and comprehensively-recorded interac-
tions among herds, and constitute the major potential mechanism 
for pathogen transmission (Brooks Pollock et  al.,  2014; Frössling, 
Ohlson, Björkman, Håkansson, & Nöremark,  2012; Gates,  2014; 
Palisson, Courcoul, & Durand, 2016). Heterogeneity in trade move-
ments (VanderWaal et al., 2015) is likely to be a key source of vari-
ation in Rf (Woolhouse et  al., 2005), and quantification of contact 
rates has been effective in identifying potential superspreaders of 
infection. Multiple analyses of farm trading networks have found 
a power-law distribution (Clauset, Rohilla Shalizi, Newman, & M.E., 
2009) for in-degree (number of farms from which animals are pur-
chased), out-degree (number of farms to which they are sold), and 

overall degree (in- plus out-degree) in livestock movement networks, 
where most premises have few contacts while a few premises have 
many (Dutta, Ezanno, & Vergu, 2014; Mweu, Fournié, Halasa, Toft, & 
Nielsen, 2013; Rautureau, Dufour, & Durand, 2011). These directed 
centrality measures can be used as proxies for a farm's ability to ac-
quire (in-degree) and transmit (out-degree) infection (Dubé, Ribble, 
Kelton, & McNab, 2009). For example, the in-degree of a farm was 
found to relate to herd seroprevalence of bovine coronavirus in 
Sweden (Frössling et  al., 2012), and bTB in East Africa (Sintayehu, 
Prins, Heitkönig, & de Boer, 2017). Second-order connections (the 
contacts of contacts) can influence the role an individual might play 
in disease spread. For instance, in human sexual contact networks, 
the risk of acquiring human immunodeficiency virus was better pre-
dicted by the behaviours of partners-of-partners than by first order 
partners alone, and consequently was better for estimating onward 
transmission (Ghani & Garnett,  2000). Eigenvector centrality, a 
measure that considers both direct and second order contacts, was 
helpful in determining how influential a farm might be in the spread 
or maintenance of a theoretical, highly infectious epidemic in Italian 
cattle movement networks (Natale et al., 2009). In a study of FMD 
outbreaks, the reproduction number of second order contacts pro-
vided good predictions of epidemic size and, when combined with 
Rf, provided good estimation of heterogeneities in the dynamics of 
UK FMD outbreaks (Tildesley & Keeling,  2009). Furthermore, the 
combining of global clustering and centrality metrics of simulated 
epidemics with measures of node centrality performed well in de-
tecting superspreading nodes (Fu, Huang, & Sun, 2015).

These measures of centrality, however, do not consider the tem-
poral sequence of events and the analysis of dynamic networks is 
less well-developed as it is methodologically and computationally 
more complex. In some cases, such dynamics have been crucial to 
our understanding of how pathogens might be transmitted through 
a network (Enright & Kao,  2018), allowing for the possibility of 
changing temporal windows for transmission between nodes. The 
calculation of time-ordered paths or ‘infection chains’ is one such 
technique that respects temporal order and gives an indication of 
the influence of individual nodes. The ingoing infection or ‘ingoing 
contact chain’ is the network of farms connected to a farm as a re-
sult of movements onto that farm (Nöremark, Håkansson, Lewerin, 
Lindberg, & Jonsson, 2011), and represents the possible sources that 
may have contributed to acquiring infection during a specified pe-
riod. Typically these chains are positively skewed with many farms 
having small contact chains but some having very extensive chains 
(Fielding, McKinley, Silk, Delahay, & McDonald,  2019; Nöremark 
et al., 2011), similar to the pattern found for direct contacts in static 
networks. These very extensive chains of farms aggregated over a 
period of five years have been associated with an increased risk of M. 
bovis infection in French cattle herds (Palisson et al., 2016), showing 
that chain magnitude may be useful in predicting which farms might 
be more likely to spread chronic infections. British cattle herds with 
more high-risk farms in their contact chains aggregated over a three 
year period were associated with increased odds of bTB incidents 
(Fielding, McKinley, Delahay, Silk, & McDonald, 2020). In choosing 

F I G U R E  1   What makes a superspreader farm? Venn diagram 
showing factors involved in extreme components of Rf and the 
increasing risk of superspreading activity when these factors 
are combined. These factors are not mutually exclusive and 
interactions occur between these components, for example the 
product of infectiousness and contact rate are typically combined 
to describe the ‘transmission rate’ and factors affecting both 
infectiousness and the duration of infectiousness such as immunity 
and co-infection are common
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the time period over which to study the network, the independent 
timescales of the movement network and the pathogen should be 
considered (Kao, Green, Johnson, & Kiss,  2007). If bTB spreads 
slowly in comparison to a quickly evolving, dynamic network, then 
the relevant contact networks may become so saturated that they 
approximate homogenous mixing (Enright & Kao,  2018), making it 
more difficult to identify potential superspreader farms. However, 
analytical advances may improve our ability to interrogate such large 
networks. The use of individual-based modelling on dynamic net-
work models (Silk et al., 2017) and the application of whole genome 
sequencing (Trewby et al., 2016) might facilitate further characteri-
zation of these transmission pathways.

For bTB, significant data are available on cattle testing and move-
ments, however analysis is constrained by unknown pathogen char-
acteristics such as incubation, infectious and latent periods. To fit 
these models to available data therefore requires the use of statis-
tical methods that can deal with the presence of hidden states and/
or incomplete data. The Bayesian framework allows for models to 
be fitted which ‘average over’ the missing information. Techniques 
such as data-augmented/reversible-jump Markov chain Monte 
Carlo (MCMC) (Jewell, Kypraios, Neal, & Roberts,  2009) treat the 
hidden states as latent variables, which are estimated and then mar-
ginalized to generate information on parameters of interest. These 
approaches are highly computationally complex and challenging 
to code for large-scale diseases on networks. Alternative simula-
tion-based approaches, such as particle MCMC and Approximate 
Bayesian Computation (Kosmala et  al.,  2016; McKinley, Cook, & 
Deardon, 2009) may be more tractable, albeit often at the cost of 
introducing approximations. A popular frequentist approach is the 
maximum likelihood via iterated filtering method (Ionides, Bretó, & 
King, 2006), and there is much ongoing research aimed at tackling 
these modelling challenges.

3  | HERD INFEC TIOUSNESS

While the number of movements and trading partners will un-
doubtedly be a principal driver to increase the influence of certain 
premises, other factors govern whether those movements result 
in transmission, i.e. herd/farm infectiousness. For highly transmis-
sible infections with high within-herd prevalence, it is likely that any 
movement would transmit infection, regardless of the farm charac-
teristics. However, where the disease spreads slowly within a herd, 
as is typically the case with bTB, the risk of selling an infected animal 
is more variable and farm factors are likely to be more influential. We 
discuss such factors, including disease prevalence, herd immunity, 
presence of multiple infections and the type of animals being sold, 
all of which might influence the likelihood of selling infected animals.

Supershedders, highly infectious individuals releasing more in-
fectious agents than others in their group (Chase-Topping, Gally, 
Low, Matthews, & Woolhouse, 2008), can increase herd prevalence. 
Their presence in the herd reduces the efficacy of whole-herd con-
trol measures, due to heterogeneity generated in transmission rates 

(Lanzas et al., 2008). Supershedding can be driven by host genotype, 
behaviour, signalment (age, sex and breed) (Craft, 2015), co-infection 
(Lass et al., 2013), immunosuppression (Stein, 2011), enhanced sus-
ceptibility, or strain pathogenicity of the infecting agent (Matthews 
et al., 2009). Whilst host genotype has a well-established link to re-
sistance against particular pathogens (Tsairidou et al., 2014), direct 
links have now been identified between host genotype and infec-
tiousness (Anacleto et al., 2019). This may be crucially important in 
less genetically-diverse livestock populations, where the impact of 
more-infectious host genotypes could be amplified in herds domi-
nated by a particular sire or pedigree line. Heterogeneity in bacte-
rial shedding has been observed in cattle infected with Escherichia 
coli O157 (Chase-Topping et al., 2008), Salmonella enterica (Lanzas 
et  al.,  2008) and Mycobacterium avium subspecies paratuberculosis 
(MAP), the causative agent of Johne's disease in cattle (Pradhan 
et al., 2011). Supershedders of MAP have been suggested to cause 
herd-mates to passively shed the bacteria, while remaining tissue 
culture negative (Pradhan et al., 2011). Stress from movements and 
from weaning have been implicated as risk factors for supershed-
ding of E. coli O157 (Chase-Topping et al., 2007). Supershedders of 
M. bovis have been identified in red deer (Cervus elaphus) and bad-
gers (Santos, Almeida, Gortázar, & Correia-Neves, 2015; Wilkinson 
et al., 2000). In cattle, the most likely route to being a supershed-
der of M. bovis, i.e. an animal excreting more pathogen than oth-
ers, would be one with undetected, late-stage infection (Houlihan, 
Dixon, & Page, 2008), although it is not known whether this state is 
linked to host genotype.

The risk of movements transmitting infection depends on 
the the type of animal being traded (Gates, Humphry, Gunn, & 
Woolhouse,  2014). Trading male or female breeding cattle might 
present a relatively greater risk of transmission for various infections, 
including M. bovis (Chase-Topping et  al.,  2007; Gates et  al.,  2014; 
Griffin et al., 1993), which is likely to be associated with the more 
advanced age of breeding animals compared to fattening stock, and 
the increased risk of infection with age (Brooks Pollock et al., 2013; 
Humblet, Boschiroli, & Saegerman, 2009). Dairy cattle may be more 
likely to react to PPD-tuberculin tests such as the SICCT, and there-
fore present a lower risk if they have been recently tested (Downs, 
Broughan, Goodchild, Upton, & Durr, 2016).

At times, herd composition and farm practices may interact to 
drive variation in herd infectiousness. Beef herds rearing animals 
to sell directly to slaughter (finishing herds) do not pose an on-
ward disease transmission risk, though it is commonplace in Great 
Britain for animals to be sold as ‘stores’ (animals reared for beef 
but not ready for slaughter) and traded among multiple fattening 
herds (Robinson & Christley,  2007). This type of herd tends to 
house cattle from different sources, usually purchased via markets 
(Robinson & Christley, 2007). Mixing of cattle from many source 
farms can have physiological effects that may increase suscepti-
bility to infections (Proudfoot, Weary, & von Keyserlingk, 2012). 
Combined with potential exposure to pathogens from several 
farms, this can facilitate within-herd transmission of multi-
ple infections (Griffin, Chengappa, Kuszak, & McVey,  2010). As 
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co-infection can alter host immune responses and increase patho-
gen shedding (Lanzas et al., 2008), it may therefore increase herd 
infectiousness. Vaccination, diagnostic testing, good management 
and sourcing of animals from fewer, disease-free farms may all re-
duce this risk, but for diseases such as bTB where vaccination is 
not available for cattle and where tests have low sensitivity, these 
risks are more difficult to manage.

A final farm-level characteristic that will influence both herd 
infectiousness and its duration is husbandry, as poor hygiene can 
increase exposure to infection and hence increase herd infectious-
ness. The physical environment (poor hygiene, exposure to multiple 
pathogens, injury) has been shown to have a direct impact on the indi-
vidual, which can increase the risk of disease (Proudfoot et al., 2012). 
They also note the indirect impact of social stressors (overcrowding, 
mixing of groups, isolation) on host physiology (immunomodulation, 
low resilience, chronic inflammation), which can then increase risks 
of infection and disease progression. Winter housing of cattle can 
cause social stress due to mixing of groups and crowding and, where 
there is poor ventilation, transmission of airborne pathogens can 
increase (Gorden & Plummer, 2010). Hence, increased seroconver-
sion of dairy cattle to bovine herpesvirus type-1 has been associated 
with winter housing (Woodbine et al., 2009) and there is some evi-
dence for housing as a risk factor for bTB transmission (Vial, Miguel, 
Johnston, Mitchell, & Donnelly, 2015). Although most bTB incidents 
now have very few reactors (Animal & Plant Health Agency, 2017), 
suggesting low within-herd transmission, the sharing of a confined, 
poorly ventilated environment by supershedders or many high-risk 
cattle and susceptibles may be sufficient to cause a superspreading 
event within a farm (Lloyd-Smith et al., 2005), and thus increase herd 
infectiousness.

4  | DUR ATION OF INFEC TIOUSNESS

Prolonged infectiousness of a herd, through misdiagnosis (of novel 
or rare infections), undetected infections (if asymptomatic) (Drosten, 
Lau, Preiser, So, & Yam, 2003) or poor test sensitivity, can facilitate 
the spread of disease. The duration of the infectious period can 
be altered by treatment, vaccination or culling (Thurmond,  2003). 
Decisions on whether and how to apply these control methods are 
generally based on results of diagnostic testing. In the case of bTB 
infection in Great Britain, most infected cattle do not present with 
clinical signs and the principal statutory SICCT test for M. bovis has 
low sensitivity, that can be markedly lower in certain circumstances, 
allowing some herds to have an extended infectious period, enabling 
them to act as superspreaders over time.

Co-infection may alter the host response to infection and host in-
fectiousness (Lass et al., 2013), which can thereby alter the non-spe-
cific immune responses measured by diagnostic tests. In cattle 
co-infected with liver fluke (Fasciola hepatica) and M. bovis, shifts in 
immunity from T-helper cell 1 to T-helper cell 2 responses have been 
implicated in reducing the immune response to the tuberculins used 
in SICCT testing in England and Wales (Claridge et al., 2012), though 

studies using data from Northern Ireland found no such relationship 
at individual or herd-level (Byrne, Graham, et al., 2017).

Mycobacterium avium subsp. paratuberculosis (MAP) is the caus-
ative agent of Johne's disease, a chronic enteric infection that is es-
timated to affect about a third of UK cattle herds (Animal & Plant 
Health Agency,  2015; Barratt et  al.,  2018). Co-infection with bac-
teria in the M. avium complex has been reported to reduce the sen-
sitivity of SICCT and gamma interferon (IFN-γ) testing for M. bovis 
in small-scale studies, through cross-reaction of antigens and an in-
crease in response to the avian tuberculin of the SICCT test (Álvarez 
et al., 2009; Hope et al., 2005). Large-scale epidemiological studies 
in Northern Ireland have found visible M. bovis lesions that were 
more likely to be observed in cattle positive to both M. bovis and M. 
avium tuberculins compared to those with only an M. bovis reaction. 
If a positive response to M. avium tuberculin can be used as a proxy 
for potential MAP infection, this could indicate that MAP infection 
delays the detection of M. bovis infections (Byrne, Graham, et al., 
2017). Furthermore, Northern Irish herds experiencing a bTB inci-
dent were more likely to be sero-positive for MAP (Byrne, Graham, 
Milne, Guelbenzu-Gonzalo, & Strain, 2019) and questionnaire data 
suggested that dairy farms in England and Wales that had experi-
enced MAP infection in the preceding 12  months were 4.7 times 
more likely to have a bTB incident (Broughan et al., 2016). Given the 
likely high prevalence of MAP in UK herds, further investigation into 
this relationship is warranted.

Bovine viral diarrhoea virus (BVDV) is widespread in England 
and Wales (Charleston, Hope, Carr, & Howard,  2001) and immu-
nosuppression in acute viral infection leaves animals susceptible 
to concurrent infections. Animals infected with M. bovis and acute 
BVDV infection showed suppression of IFN-γ production when 
stimulated with tuberculin (Charleston et al., 2001), which was asso-
ciated with a particularly severe outbreak of bTB in a group of calves 
(Monies, 2000). However, recent studies in Northern Ireland have 
found no positive association between BVDV and bTB infection at 
animal or herd levels (Byrne, Graham, et al., 2017; Byrne, Guelbenzu-
Gonzalo, et al., 2017). In summary, co-infection with certain patho-
gens can lead to changes in the performance of diagnostic tests, 
reduce the detection or confirmation of infection and may leave 
hidden infection in the herd. Herds with high prevalences of these 
diseases have a greater chance of prolonged infectiousness, increas-
ing their risk of becoming superspreader farms.

Immune responses change during disease progression and 
during the host's lifetime, and diagnostic tests therefore vary 
in their performance, depending on when the host is tested 
(Schukken et al., 2015). For some infections, longitudinal testing 
is required to increase test performance where single test results 
are not sufficiently robust (Schukken et  al.,  2015). As M. bovis 
infection in cattle progresses, the initial cell-mediated immune 
response wanes and some infected animals can become unrespon-
sive or ‘anergic’ to SICCT testing (Neill et al., 2001). Undetected 
by routine tests, these animals remain in the herd, and over time 
may develop lesions and the capacity to disseminate infection, po-
tentially acting as supershedders (Houlihan et  al.,  2008). Annual 
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SICCT testing in areas of higher bTB risk means that cattle should 
be detected before the natural cell-mediated response wanes, 
so that the number of naturallyanergic cattle is likely to be low. 
However, their potential to persist undetected in an infectious 
state may be epidemiologically significant. In addition to the nat-
ural progression of infection, the sensitivity of the test may de-
crease over time, due to repeated exposure to tuberculin (Coad 
et al., 2010), for instance, in prolonged bTB incidents where herds 
are SICCT tested at 60  day intervals. Temporary anergy to the 
SICCT test can also develop in periods of stress, around parturi-
tion (Li, 2016), and when corticosteroids are administered (Phillips, 
Foster, Morris, & Teverson, 2002), allowing evasion of diagnosis if 
testing is performed at this time. Some animals that are not fully 
anergic may exhibit a partial cell-mediated response to the SICCT 
test, and present as inconclusive reactors (IRs). These animals are 
tested 60 days later and if they test negative (as one would expect 
of temporarily anergic animals) can remain in the herd. However, 
IRs that retest negative after 60 days and remain in the herd have 
12 times greater risk of testing positive at the next routine SICCT 
test or at slaughter (Clegg et al., 2011), suggesting that they are 
false negatives at retesting, perhaps due to co-infection, anergy 
or test sensitivity, presenting a prolonged source of transmission 
within the herd. Since 2017 in England, IRs have not been allowed 
to leave the farm, in an attempt to reduce risks of onward trans-
mission between-herds (Department for Environment, Food & 
Rural Affairs, 2017), although the risk of within-herd transmission 
remains. Prior to 2018, the SICCT test and the IFN-γ test were the 
only ante-mortem tests approved to diagnose bTB in British cat-
tle, both detecting cell-mediated immunity, however, policy now 
allows the exceptional use of a non-validated test, which detects 
antibodies, if they are present in these anergic animals (Animal & 
Plant Health Agency, 2018).

Local contacts between neighbouring cattle or wildlife is con-
sidered an important factor in bTB epidemiology (Brooks Pollock 
et  al.,  2014). Spatial clustering analysis of bTB data from England 
in 2005 showed only weak evidence for clustering of disease on a 
county level (Green & Cornell, 2005). However, herd-level risk fac-
tor studies have found that risks of bTB are greater for farms whose 
neighbours have a history of infection (Fielding et al., 2020; Skuce, 
Allen, & McDowell, 2012). A study of M. bovis transmission in France, 
where infection is rare, combined the cattle movement network with 
a ‘spatial neighbourhood’ based on geographic proximity of farms 
(Palisson et al., 2016). They estimated that 73% of infection (the pop-
ulation attributable fraction) could be removed if local transmission 
was eliminated. Brennan, Kemp, and Christley (2008) studied the 
contacts of cattle farms in North-West England in respect to contrac-
tors and companies, shared equipment and employees. They found 
that frequency of such contacts exhibited the same heterogeneity 
as in animal movement networks. M. bovis can survive in infected 
cattle faeces in slurry for up to 6 months (Scanlon & Quinn, 2000) 
and on pasture for 1–6  months (Williams & Hoy,  1930), thus the 
application of slurry from infected farms or shared contractors and 
equipment may present a risk of bTB persistence on infected farms 

or a source of infection for uninfected farms. Badgers infected with 
M. bovis present a potential source of infection for cattle, most likely 
via indirect contact at latrines and contamination of pasture and 
feed (Drewe et al., 2013; Silk et al., 2018; Woodroffe et al., 2016). 
The persistence of infection in local badgers may therefore facilitate 
persistence in cattle, particularly where transmission occurs in both 
directions, creating a cycle of reinfection.

Undoubtedly, contiguous spread of M. bovis contributes to per-
sistence and repeat infections within cattle herds. However, to be 
defined as a superspreader a host or herd must be responsible for 
seeding a disproportionately high number of secondary infections. 
When considering individual farms as superspreaders of infection, 
local spread is likely to be largely constrained by farm boundaries, 
and limited by the number of neighbouring farms. Therefore, we 
consider the role of contiguous transmission in superspreader farms 
primarily as a factor that might increase the risk of a farm becoming 
infected, but then would need to additionally combine with a high 
contact rate, high infectiousness or long duration of infection, to re-
sult in a disproportionate number of secondary infections.

5  | IDENTIFIC ATION OF SUPERSPRE ADER 
FARMS -  WHERE SHOULD WE TARGET 
EFFORT FOR EFFICIENT AND EFFEC TIVE 
CONTROL S?

In addition to exhibiting extreme values for at least one compo-
nent of Rf, a superspreader must clearly be infected and have some 
contact with other hosts. For example, if infection is removed from 
a farm with a high contact rate, or if a highly infectious farm no 
longer contacts other farms (e.g. movement restrictions are effec-
tively applied), then they can no longer function as superspreaders. 
Nevertheless, they might still be considered to retain superspread-
ing potential and so it might be prudent to target such farms for ad-
ditional surveillance. The three components of Rf can combine to 
increase the risk of superspreading occuring (Figure 1), and there-
fore increase the impact of an individual farm on disease dynam-
ics. The identification of superspreaders provides an opportunity to 
focus or intensify control measures such as treatments, vaccination, 
isolation, restrictions, to gain disproportionate benefits. Lloyd-Smith 
et al. (2005) calculated that where half of all control effort is focused 
on the 20% of population responsible for the majority of disease 
transmission, it is up to three times more effective than random 
control. Therefore, in this section, we look at which existing control 
measures and which novel approaches might be used to target su-
perspreader farms.

Livestock markets and some farm premises have a high through-
put of animals, termed ‘hubs’ in networks analysis (Robinson & 
Christley,  2007), and are especially important in governing the 
size of epidemics of highly transmissible infections. Emergency 
disease control measures targeted at these hubs have been effec-
tive in limiting epidemic size in FMD and HPAI outbreaks (Green, 
Kiss, & Kao, 2006; Molia et al., 2016). Büttner, Krieter, Traulsen, 
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& Traulsen (2013) found that to achieve a 75% reduction in esti-
mated epidemic size in pig movement networks, removing farms 
based on high out-degree or large outgoing contact chains allowed 
the fewest farms to be removed from the network (1.4% and 1.5%, 
respectively). Models based on disease transmission through cat-
tle movement networks have shown that removal of the 20% of 
farms contributing most to R0 resulted in a 97%–99% reduction 
of R0 (Volkova, Howey, Savill, & Woolhouse, 2010). These studies 
demonstrate that focusing efforts on these small but highly influ-
ential groups can be more effective than population-wide control 
in reducing estimates of final epidemic size. However, it is useful to 
note that the effectiveness of targeted control measures is likely 
to be proportional to the extent of heterogeneity in that popu-
lation, such that the more influential the ‘top’ nodes, the more 
benefit that can be gained from their removal. Where populations 
exhibit less heterogeneity, more nodes or farms must be tar-
geted to achieve similar levels of risk reduction (Brown, Marshall, 
Mitchell, & Byrne, 2019), thus the merits of this approach should 
be assessed for each population.

Ideally livestock movement restrictions should facilitate a reduc-
tion in high-risk trading for an appropriate time period, whilst main-
taining the ability to move low-risk stock on and off the farm where 
necessary. More bespoke restrictions between trading partners are 
discussed by Gates and Woolhouse (2015), where farms with high 
in-degree (mixing of animals from multiple sources) are prevented 
from selling to farms with high out-degree, thereby reducing the 
risks associated with this behaviour. These trading restrictions de-
crease the likelihood of high-risk trade paths reconfiguring and allow 
the farm other outlets for trade to sustain their business. If farms 
are completely removed from a network (Enright & Meeks, 2015), 
the remaining farms that were connected to them tend to find new 
partners with which to trade (Brouwer, Bartels, Stegeman, & van 
Schaik,  2012). However, these may have a similar risk of disease 
transmission as the original partners, creating a new structure as 
risky as the previous one (Brouwer et  al.,  2012). For bTB control, 
movement restrictions are placed on the individual farm when a re-
actor is found, and are later lifted following two consecutive clear 
SICCT tests. However, undetected infection on the farm (Conlan 
et al., 2012) may mean that these restrictions are lifted prematurely. 
Extended movement restrictions on those farms with recurrent bTB 
incidents, high out-degree or an exceptionally large outgoing contact 
chain, might provide an effective, risk-based addition to current mea-
sures. Limiting sales from high-risk farms to only approved finishing 
units or direct to slaughterhouses (as is currently allowed for some 
farms under bTB restrictions) (Animal & Plant Health Agency, 2014) 
may be effective in limiting the spread of infection.

To discourage trading from higher to lower-risk farms, herds can 
be allocated a risk score. Farms in New Zealand have a designated 
bTB status score from 1 to 10, denoted by the number of years since 
the last bTB incident, defaulting to 10 if they have never had a bTB 
incident. Their score is, however, superceded by the lowest score of 
a farm with which they trade (Enticott, 2014), thereby encouraging 
farmers to trade with ‘less risky’ farms. In Britain, Adkin et al. (2015) 

developed a scoring system based on the previous bTB history of 
farms, movements from higher risk areas, local bTB prevalence 
and herd size, to inform risk-based purchasing and enable farmers 
to make informed decisions. Although this risk-score has not yet 
been used in practice to any significant extent, the Cattle Health 
Certification Standards (CHeCS) scheme have launched a voluntary 
bTB accreditation-scheme based similarly on years free of bTB inci-
dents, but not influenced by trading history. These schemes attempt 
to lower the risks associated with purchasing cattle, while allowing 
farm business to continue. In 2012, a survey of cattle farmers in 
low and high risk areas of England found that 53% of respondents 
said they would find such a scheme valuable (Little, Wheeler, & 
Edge, 2017). Inevitably, the success of such voluntary initaitives is 
dependent on uptake, which to date has been very low in Britain.

Network analysis of between-farm movements allows us to de-
tect herds with the potential to act as superspreaders. An exciting 
area of future work is combining these findings with whole genome 
sequencing of the pathogen, which can provide uniquely fine-scale 
insights into transmission pathways. This might allow researchers to 
more easily identify superspreading events and to disentangle the 
relative contributions of cattle to cattle transmission of M. bovis 
and the role of wildlife in maintaining infection on certain farms 
(Crispell et al., 2019; Kao, Price-Carter, & Robbe-Austerman, 2016). 
This type of forensic-level analysis can only be applied in farms 
where infections have been detected, but might be effectively com-
bined with increased testing on farms with high potential to act as 
superspreaders.

The identification of genetic resistance to bTB has led to the 
development of genetic indices that can be used to help breed for 
reduced susceptibility (Tsairidou et  al.,  2014), and modelling sug-
gests that additionally selecting for genotypes associated with lower 
infectiousness would further accelerate the effectiveness of this 
approach (Tsairidou, Anacleto, Woolliams, & Doeschl-Wilson, 2019). 
However, even if a genetic marker for infectiousness can be found 
(Tsairidou et al., 2018), these approaches may still take several gen-
erations to achieve substantial results (Tsairidou et al., 2019). In the 
short-term, if farms with high proportions of more-infective geno-
types can be identified, we might proactively apply more-sensitive 
or more frequent testing regimes to reduce the potential for with-
in-herd or onward spread of infection.

Vaccination can be effective in limiting spread within a homog-
enous population. However, as heterogeneity of Ri increases, vac-
cine efficacy must be higher to achieve the same level of control 
(Lanzas et  al.,  2008). Therefore, preferential targeting of potential 
superspreader farms for vaccination might be better directed to-
wards those farms which ‘superspread’ via higher contact rates 
rather than higher infectiousness. In models where 80% of indi-
viduals with high contact rates were vaccinated against influenza, 
there was a 91% disease reduction predicted for the whole popu-
lation (Weycker et al., 2005). The use of Bacillus Calmette-Guerin 
(BCG) vaccination for control of bTB in cattle is currently prohib-
ited under EU law (European Economic Community, 1977). Variable 
efficacies have been reported for the use of BCG vaccine in cattle 
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(Waters, Palmer, Buddle, & Vordermeier, 2012) and its use in com-
bination with the existing test and slaughter policy requires a test 
that differentiates infected from vaccinated animals (DIVA) (Conlan 
et  al.,  2015). Although DIVA testing is being developed (Swift, 
Convery, & Rees, 2016), there are concerns regarding low specificity 
(Conlan et  al., 2015), economic viability, and the practicalities and 
regulation of field trials to prove reduction in transmission (Conlan, 
Vordermeier, de Jong, & Wood, 2018). The use of vaccination against 
M. bovis in UK cattle remains speculative, but if it became available 
then targeting potential superspreader farms might represent an ef-
fective first step in reducing disease spread.

6  | CONCLUSION

There are mechanisms within current farm practices and bTB controls 
that could facilitate the existence of superspreader farms for bTB. 
Farms with influential roles in cattle movement networks are able 
to sell animals to many different premises. The risk of these animals 
being infected might be increased by high within-herd spread. The 
opportunity to sell infected animals increases with the duration of 
infection on the farm and this can be increased by factors that impair 
the sensitivity of routine testing and ongoing reinfection from within 
the herd, or local sources. In a minority of cases, we expect that a high 
contact rate might be combined with high infectiousness to create a 
superspreader farm. The challenge is then to identify these dispro-
portionately important farms in ‘real time’. Where the three aspects 
of superspreading (contact rate, infectiousness and duration of in-
fectiousness) vary over time, superspreading may be a transient phe-
nomenon. It is important that any restrictions placed on these farms 
occur only while they are at a high risk of transmitting disease and, 
ideally, in a way that minimizes impacts on farm businesses.

It is probable that the operators of farms that might exhibit super-
spreader characteristics are unaware of their potential impact on bTB 
disease dynamics. Further research may reveal whether identification 
of these farms can encourage such farmers to adapt their practices 
and mitigate potential risks for the wider benefit of the industry. The 
categorization of some farms into this higher-risk bracket is intended 
to create an opportunity for greater resources to be directed at these 
farms, rather than remove them from the network completely, as pre-
vious studies have shown this is likely to be ineffective in the long 
term (Brouwer, Bartels, Stegeman, & van Schaik, 2012).

Surveillance is crucial to controlling infection within and be-
tween-herds. Targeting existing surveillance efforts at farms with 
the potential to become superspreaders, by means of their high con-
nectivity, could therefore potentially reduce their impact. Frӧssling, 
Nusinovici, Nöremark, Widgren, and Lindberg (2014) found that using 
in-degree and ingoing infection chains to target surveillance detected 
more positives than random approaches. For bTB, it is crucial to improve 
the detection of infected animals on potential superspreader farms. 
Increasing the frequency of routine testing on high-risk superspreader 
herds, reduces the time to detection and removal of animals, and so can 
reduce the duration and intensity of infectiousness at the farm scale. 

The sensitivity of routine testing can also be increased by using the 
severe interpretation of the SICCT test (decreasing the cut-off criteria 
which define reactors), a non-comparative Single Intradermal Cervical 
Test (de la Rua-Domenech et al., 2006), or the IFN-γ test. However, 
increased sensitivity is typically associated with a loss of specificity, 
which if applied across a very large population would lead to unac-
ceptably high numbers of false positive reactors being culled and the 
unnecessary imposition of restrictions on farm businesses. The IFN-γ 
test is used in addition to the SICCT test when specific criteria are met 
and can be particularly useful in detecting bTB-positive animals that 
have become desensitised to the SICCT test as a result of repeated 
testing (Coad et al., 2010), those co-infected with other Mycobacterium 
spp., and animals in early stages of infection (de la Rua-Domenech 
et al., 2006). Use of more specific antigens such as ESAT-6/CFP10 in 
the IFN-γ test may offer additional diagnostic power in herds with 
animals vaccinated with BCG (van Pinxteren, Ravn, Agger, Pollock, & 
Andersen, 2000) and/or known co-infection with other mycobacteria 
(Aagaard et al., 2010). The aim of identifying potential superspreader 
farms for bTB control is to better understand the mechanisms by which 
they might operate and to adapt disease management approaches to 
exploit their influential role in disease transmission, thereby enhancing 
control of this costly endemic infection. Targeted use of more sensitive 
and less specific measures or combined testing protocols, on potential 
superspreader farms, would minimize impacts on the wider industry 
whilst maximizing disease control benefits.
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