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ABSTRACT

Respirasome, as a vital part of the oxidative phospho-
rylation system, undertakes the task of transferring
electrons from the electron donors to oxygen and pro-
duces a proton concentration gradient across the inner
mitochondrial membrane through the coupled translo-
cation of protons. Copious research has been carried
out on this lynchpin of respiration. From the discovery
of individual respiratory complexes to the report of the
high-resolution structure of mammalian respiratory
supercomplex I1III2IV1, scientists have gradually uncov-
ered the mysterious veil of the electron transport chain
(ETC). With the discovery of the mammalian respiratory
mega complex I2III2IV2, a new perspective emerges in
the research field of the ETC. Behind these advances
glitters the light of the revolution in both theory and
technology. Here, we give a short review about how
scientists ‘see’ the structure and the mechanism of
respirasome from the macroscopic scale to the atomic
scale during the past decades.
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INTRODUCTION

Cellular respiration refers to a process during which the
organic substrates undergoes a series of redox reactions
within cells to produce inorganic or small molecular organic
substances, releasing energy and generating adenosine
triphosphate (ATP) molecules. Aerobic respiration might be
the central function of mitochondria in mammalian cells, so
no wonder it is precisely regulated from various aspects in
response to varying cell conditions. Therefore, the disorder
of its function will lead to changes in cell physiology and

induce a variety of diseases, including many kinds of widely
concerned neurodegenerative and inflammatory diseases
such as Alzheimer’s disease, Huntington’s disease, Parkin-
son’s disease, Friedreich’s ataxia and so on (Sherer et al.,
2002; Zeviani and Di Donato, 2004; Schapira, 2006; Piec-
zenik and Neustadt, 2007; Scharfe et al., 2009; Duchen and
Szabadkai, 2010; Lim et al., 2010; Lax et al., 2011; Bates
et al., 2012).

The oxidative phosphorylation (OXPHOS) in eukaryotic
cell is the final step of aerobic cellular respiration, which
occurs on the mitochondrial inner membrane. It is the main
pathway of aerobic biosynthesis of ATP (Lenaz et al., 2016;
Letts and Sazanov, 2017; Lobo-Jarne and Ugalde, 2018).
OXPHOS in mammals is carried out by five classes of pro-
tein complexes anchored on the inner membrane of mito-
chondria. These complexes are relatively independent in
both structure and function, including complex I (NADH:
ubiquinone oxidoreductase, CI), complex II (succinate:ubi-
quinone oxidoreductase, CII), complex III (cytochrome bc1
complex, CIII), complex IV (cytochrome c oxidase, CIV), and
complex V (ATP synthase, CV) (Wharton and Tzagoloff,
1962; Green and Tzagoloff, 1966; Hatefi, 1985; Papa et al.,
2012; Zong et al., 2018a; Zong et al., 2018b; Gu et al., 2019).
Complex I–IV are also called respiratory chain complexes, or
electron transport chain (ETC) complexes, because they
only participate in the process of electron transportation and
oxygen consumption.

OXPHOS in essense is the transfer of electrons along the
ETC to the oxygen and the translocation of protons from the
mitochondrial matrix (MM) into the intermembrane space
(IMS), which forms the electrochemical gradient of proton.
The ATP molecules are synthesized by CV, as protons dif-
fuse back into the MM. During this process, CI, CIII and CIV
act as proton pumps, while CII does not.

The transfer pathway of electrons in ETC could be
described as such: CI oxidizes NADH to NAD+ and reduces
ubiquinone-10 (Q) to ubiquinol-10 (QH2). CII could also
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reduce Q to QH2 by oxidizing succinate to fumarate. QH2 is
reoxidized to Q by CIII, and cytochrome c (cyt c) is reduced
in the meantime. CIV transfers the electrons from the
reduced cytochrome c to O2 sequentially. The energy
released in this process is used to generate ATP (Milenkovic
et al., 2017; Hirst, 2018).

The organization of the respiratory chain complexes has
been widely studied for decades. Many evidence show that
the individual complexes could assemble into supercom-
plexes (I1III2IV1–2, III2IV1–2), or even megacomplex (I2III2IV2)
(Schägger and Pfeiffer, 2000; Schagger and Pfeiffer, 2001;
Bultema et al., 2009; Mileykovskaya et al., 2012; Greggio
et al., 2017; Guo et al., 2017). These higher order complexes
may be beneficial for maintaining the biochemical structure
and increasing the physiological activity of the individual
complexes, while improving the efficiency of electron trans-
portation. A widely held opinion points out that the interaction
between different complexes in the supercomplexe (SC)
may be conducive to the possibility of the existence of the
substrate channelling as functionally segmented CoQ pool.
Supercomplexes could also reduce the production of the
reactive oxygen species (ROS) by sequestrating reactive
intermediates (Enriquez, 2016). These functionally active
supramolecular structures are also known as respirasomes.

From biochemical experiments, to blue native polyacry-
lamide gel electrophoresis (BN-PAGE) analysis, from X-ray
crystallography to cryo-electron microscopy (cryo-EM),
advances in technology promote the development of how we
understand the structure, the assembly, and the mechanism
of the ETC complexes. Till today, the discussion is still far
from ending. With the report of the high- resolution structures
of mammalian respiratory supercomplex-I1III2IV1 (SCI1III2IV1)
and the recognition of megacomplex-I2III2IV2 (MCI2III2IV2) by
us and several other groups, more details are presented,
leading to the proposal of some new viewpoints and even
more considerable controversy (Gu et al., 2016; Letts et al.,
2016; Sousa et al., 2016; Wu et al., 2016; Guo et al., 2017;
Guo et al., 2018). In this paper, we will give a brief review of
the history of the research on respirasome, combined with
the development of technology, and introduce some lately
reported results and heatedly debated arguments.

PRE-STRUCTURAL AGE, THEIR EXISTENCE
AND THEIR FUNCTION

The study of the OXPHOS system has gone through a long
history. After the instructive investigation of Otto Warburg
who discovered Atmungsferment, which founded the enzy-
matic basis for respiration, tantalizing advances emerged to
clarify the molecular mechanisms of the respiratory
enzymes. The term oxidative phosphorylation was first pro-
posed by Volodymyr Belitser in 1939, who measured the P/O
ratios (a division of the rate of ATP production and oxygen
consumption) of OXPHOS in minced and homogenized
heart muscle and pigeon breast muscle, indicating the

possibility that some intermediate redox reactions are cou-
pled with phosphorylation. During 1900s to 1930s, active
work on bioenergetics were done by spectral and chro-
matographic analysis and biochemical experiments (Kalckar,
1974, 1991). In 1955, Britton Chanc and G.R.Williams first
raised the idea that the redox enzymes and prosthetic
groups that are supposed to be responsible to electron
transportation could assemble into larger complexes, which
were then reconstituted as electron transfer system (Chance
and Williams, 1955). Four functional complexes were puri-
fied and reconstructed by Hatefi et al., till 1962, termed CI-
CIV (Hatefi et al., 1962). Together with the isolation of
electron donors NADH and FAD and the identification of the
roles of Q and cyt c, the ETC system gradually matured (Hill
and Keilin, 1930; Crane et al., 1957; Enríquez, 2016). Other
redox reactions providing electrons to reduce coenzyme Q
such as dihydroorotate dehydrogenase (Evans and Guy,
2004), glycerol 3 phosphate dehydrogenase (Harding et al.,
1975) and electron transport flavoprotein dehydrogenases
(Bentinger et al., 2010; Alcázar-Fabra et al., 2016) are also
found.

A question ensues, how does ETC drive ATP synthesis?
The most commonly accepted theory was the chemiosmotic
hypothesis raised by Peter D. Mitchell in 1961 (Mitchell,
1961). The work of Hatefi et al. provided support to the
chemiosmotic hypothesis (Hatefi et al., 1962) because their
purified ETC complexes showed enzymatic activities.
Chemiosmotic hypothesis advocates for a reversible proton
translocation ATPase system and oxido-reduction chain that
could make use of the diffusion-driven force known as pro-
ton-motive force (PMF) generated by the electrochemical
potential between both sides of the mitochondrial inner
membrane to produce ATP. The interaction between ETC
complexes and ATP synthase is unnecessary, while the
battery like mitochondrial inner membrane stores the energy
needed (Mitchell, 2011; Enríquez, 2016; Hirst, 2018). This is
inconsistent with the previous idea that the respiratory
components were rigidly coupled as a functional unit, which
requires complicated regulation of stoichiometries at each
step (Enríquez, 2016).

The process of how ETC complexes implement their
functions is closely linked with another question: how do
ETC complexes organize on the mitochondrial inner mem-
brane? Three models have been proposed successively: the
solid model, fluid model (also known as random diffusion
model) and plasticity model. The solid model proposed by
Keilin, Chance et al. regarded ETC catalytic complexes as
solidly associated single units that can catalyze whole
reaction pathways, with their electron carriers also enclosed
in the pathways allowing for a better electron transporting
efficiency (Keilin and Hartree, 1947; Chance and Williams,
1955; Chance et al., 1963; Blair, 1967; Lenaz and Genova,
2007; Acin-Perez et al., 2008). Whereas in the fluid model,
individual ETC complexes and redox components move in
diffusional motion constantly and independently in the
membrane, and the electrons are transferred between the
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complexes through the free diffusion of Q and cyt c (Hack-
enbrock, 1977). The fluid model gained general recognition
for decades and was consistent with the chemiosmotic
hypothesis (Hatefi et al., 1962; Kroger and Klingenberg,
1973; Hochli and Hackenbrock, 1976; Hochli et al., 1985;
Gupte and Hackenbrock, 1988). However, as time went on,
neither of these two models could withstand all of the sur-
facing experimental evidence.

ERA OF X-RAY CRYSTALLOGRAPHY,
AN UNREMITTING PURSUIT

Structural biology has been an important subject that
enables people to understand the structure of biological
molecules in great detail. Multiple methodologies derived
from different mathematical and physical principles have
been exploited to determine the spatial relationship of the
atoms within biological molecules. The most widely imple-
mented methods include nuclear magnetic resonance
(NMR) spectroscopy, X-ray crystallography, neutron diffrac-
tion, cryo-EM, and spectroscopic techniques. X-ray crystal-
lography has been the most powerful tool in resolving
structures of macromolecules at atomic resolution since its
birth over a century ago (Shi, 2014; Powell, 2017; Wang and
Wang, 2017; Standfuss, 2019). More than 138,000 molec-
ular structures, reported with this technique, have been
deposited in the Protein Data Bank (PDB) since its estab-
lishment in 1971, endowing X-ray crystallography with the
dominant role in structural biology. From the late 1960s,
research on ETC has begun to incorporate structural bio-
logical techniques.

The first successful case of structural analysis of ETC
complexes was the 2.8 Å crystal structures of CIV extracted
from bacterial and bovine heart published in 1995 and 1996
(Iwata et al., 1995; Tsukihara et al., 1995, 1996). CIV in
crystal structures existed as dimers with each monomer
consisting of 13 different subunits. In contrast, we proved
CIV is a 14-subunit monomer in native state recently (Zong
et al., 2018b). In 1998, the precise locations of its cofactors,
heme a, heme a3, CuA and CuB were identified (Brzezinski
and Adelroth, 1998). In the year 2012, Eduardo Balsa and
partners pointed out that NDUFA4 which was considered to
be a subunit of CI was actually the subunit of CIV (Balsa
et al., 2012).

It is now recognized that mammalian CIV is composed of
three core subunits encoded by mitochondrial genes (COXI,
COXII and COXIII) and eleven subunits encoded by nuclear
genes. Cofactors heme a (containing Fea), heme a3 (con-
taining Fea3) and CuB are located in subunit COXI, with
heme a3 (Fea3) and CuB forming a binuclear center. CuA is in
subunit COXII. These four redox-active metal centers con-
stitute an electron transport pathway. In each catalytic cycle,
CuA accepts electrons donated from four reduced cyt c
consecutively and transfer them to the active site through
Fea. Two protons are taken from MM with one electron

transported to the Fea3/CuB binuclear center. In total, eight
protons are uptaken from MM, with four of them used to
produce H2O and four pumped into IMS to form the proton
gradient (Konstantinov et al., 1997; Brzezinski and Adelroth,
1998; Sousa et al., 2018). Three channels for proton trans-
portation named D-, K-, and H-channel have been described
(Wikstrom et al., 2015). The K- channel is responsible for the
transportation of two protons consumed in the reduction of
O2 to H2O from MM to the binuclear center for water for-
mation. The D- channel conducts the other two protons
consumed for the reduction of O2, and provide the pathway
for the four protons pumped into the IMS (Konstantinov et al.,
1997; Brzezinski and Adelroth, 1998). The H- channel con-
sist of water cavities and polar residues, and is supposed to
be functionally associated with a hydrogen- bond network
linked to oxido-reduction of heme a (Yoshikawa et al., 1998;
Yoshikawa and Shimada, 2015; Papa et al., 2018).

CIII was the second member to get its crystal structure in
ETC complexes. The first complete structure of CIII was
obtained in 1998 (Iwata et al., 1998). Iwata et al. purified CIV
from bovine heart and reported its atomic structure as a
symmetrical homodimer consisting of 22 subunits in total.
However, we found CIII is actually an asymmetric 21-subunit
dimer in 2018 (Zong et al., 2018a). The mammalian CIII
monomer is composed of three highly conserved core sub-
units and eight supernumerary subunits. The core subunits
include a mitochondrial encoded cytochrome b (cyt b) with
heme bL, heme bH and two distinct quinone-binding sites, a
nuclear-encoded cytochrome c1 (cyt c1) with heme c1, and a
Rieske iron-sulfur protein (ISP) with a [2Fe-2S] cluster (Yang
and Trumpower, 1986). Two quinone-binding sites named
Qo and Qi in cyt b locate on opposite sides of mitochondrial
inner membrane (Xia et al., 1997; Pietras et al., 2016). A
feature of CIII dimer is that each ISP subunit of a monomer
spans two monomers with the transmembrane domain
associating with one monomer while the soluble domain
remains in the other monomer. It is still controversial whether
the two monomers of CIII2 function cooperatively or
independently.

Crystal structures of CII were first studied in prokaryote.
Iverson and partners reported the 3.3 Å structure of
Escherichia coli fumarate reductase (QFR) (Iverson et al.,
1999). In 2003, Yankovskaya et al. reported the structure of
CII (SQR) (Yankovskaya et al., 2003). The first mammalian
CII crystal structure at a resolution of 2.4 Å was determined
in 2005 with porcine heart (Sun et al., 2005). CII is composed
of an FAD binding protein (flavoprotein,Fp), an iron-sulfur
protein (Ip) and two membrane-anchor proteins (CybL and
CybS). Fp and Ip form the hydrophilic head, while CybL and
CybS form the hydrophobic arm. Three kinds of prosthetic
groups, FAD, heme and iron-sulfur clusters, were recognized
in CII, coupled with two Q-binding sites (QP and QD). Herein,
Fp contained the FAD cofactor, Ip contained three iron-sulfur
clusters ([2Fe-2S], [4Fe-4S] and [3Fe-4S]), yet CybL and
CybS each had a heme b (Cecchini, 2003; Bezawork-Geleta
et al., 2017). The Q-binding sites were investigated by
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means of mutagenesis and kinetic analysis with inhibitors.
QP site is proximal to the matrix side of inner mitochondrial
membrane (IMM), and QD site is distal from the matrix.
During the succinate oxidation reaction, two electrons are
transferred from the falvin to reduce Q bound at QP via the
iron-sulfur clusters [2Fe-2S], [4Fe-4S] and [3Fe-4S]. There is
little categorical data explicating the role of the heme and QD

site (Bezawork-Geleta et al., 2017; Sousa et al., 2018).
CI is the largest and most complicated protein complex in

ETC and is vital to cellular metabolism. In many eubacteria,
this type of enzyme is termed as NADH dehydrogenase-1 or
NDH-1. The sodium-pumping NADH-quinone reductase
(Na+-NQR) and the type II NAD(P)H dehydrogenase (NDH-
II) are also members of this protein family (Melo et al., 2004;
Barquera, 2014). In plants, many fungi and many bacteria,
four so-called alternative NADH dehydrogenases are found,
which do not couple the redox reaction to proton or sodium
translocation (Kerscher, 2000; Brandt, 2006; Kerscher et al.,
2008; Sousa et al., 2018). After its purification from bovine
heart in 1962, the molecular structure of CI remained elusive
for a long time. The architectures of CI were determined with
electron microscopy at the early stage (Leonard et al., 1987;
Hofhaus et al., 1991; Grigorieff, 1998; Peng et al., 2003;
Radermacher et al., 2006). It was not until 2010 that scien-
tists resolved the first crystal structure of the entire CI from
Y. lipolytica at a resolution of 6.3 Å (Hunte et al., 2010).
However, a complete atomic resolution structure obtained
with X-ray crystallography is still lacking.

Structural analysis of CI in this era indicates that with a
molecular mass of about 970 kDa, integral mammalian CI is
composed of 45 subunits assembled into an L-shaped
architecture. The minimal functional unit of mammalian CI
comprises 14 subunits known as core subunits. Subunits
ND1-ND6 and ND4L are encoded by mitochondrial genome
and form the hydrophobic domain contained in the mito-
chondrial inner membrane. The other seven core subunits
form the hydrophilic arm comprising a flavin mononucleotide
(FMN) and eight iron–sulfur clusters as redox active pros-
thetic groups and extends into the MM. Up to 31 supernu-
merary subunits (include two NDUFAB1 subunits) are
identified in the intact mammalian CI. These subunits play an
important role in the assembly, stabilization and regulation of
CI and fulfill the independent function of mitochondrial
metabolism. In CI, two electrons are transferred from NADH
to FMN and then to quinone via seven iron-sulfur clusters
(N3, N1b, N4, N5, N6a, N6b, and N2). Cluster N2 is the
direct reductant for quinone. Cluster N1a may play a role in
preventing the excessive production of ROS (Sazanov et al.,
2013; Friedrich, 2014; Sazanov, 2015). Four protons are
translocated into the IMS during this process. Many hypo-
thetical mechanisms have been proposed to clarify the
coupling between electron and proton transfers. Evidence
suggest that long-range conformational change may be
related to this process. One or two-stroke mechanisms have
been discussed. One-stroke mechanism offers a model in
which four protons are translocated all at once, driven by the

redox of one quinone molecule. The two-stroke model, on
the other hand, proposes that two sequential one-electron Q
reduction steps induce two conformational changes, each
translocating two protons (Brandt, 2011; Efremov and
Sazanov, 2012; Hirst, 2013).

Aside from CI, in various fungi, plants, and primitive cells,
an alternative enzyme was found able to reduce Q, but
lacking the proton pumping capacity. This alternative
enzyme, NDH2 (NADH dehydrogenase type-II), was first
identified in domestic yeast as a 50 kDa single-subunit
membrane protein (Ohnishi et al., 1966), and was shown to
be essential for the long-term survival of some pathogenic
microorganisms (Biagini et al., 2012; Verner et al., 2013;
Yano et al., 2014), like P. falciparum, Toxoplasma gondi, and
Mycobacterium tuberculosis. In 2012, our group solved the
X-ray structures of Ndi1 (NDH2 from yeast) in apo, NADH-,
Q-, and NADH-Q-bound states and demonstrated that
electron transfer in NDH2 requires two Q molecules and
CTD of NDH2 mediates the homodimerization and mem-
brane attachment (Feng et al., 2012). Later on, our group
reported the X-ray structures of PfNDH2 (NDH2 from P. fal-
ciparum) in its apo, NADH-, and RYL-552 (a new inhibitor)-
bound states, unveiling the inhibiting mechanism of PfNDH2
and providing accurate information for designing new anti-
malarial drugs (Yang et al., 2017).

The X-ray crystallography studies of ETC complexes
provide important structural information for the study of res-
piration. However, the biostructural research of ETC com-
plexes is far from perfect. In the age of cryo-EM today, new
exciting discoveries are emerging, helping build the edifice of
respiratory system.

IDENTIFICATION OF RESPIRASOME
AND THE PLASTICITY MODEL

The crystal structures of individual ETC complexes are
gradually reported with the efforts of researchers. However,
the investigation on the functional mechanism of ETC is still
filled with dark clouds. The existence of higher-order orga-
nization of ETC complexes has been considered for a long
time. The invention of BN-PAGE technology created a new
climate to the debates. BN-PAGE can be used to isolate
protein complexes and determine their native protein mas-
ses and oligomeric states. The first BN-PAGE analysis was
carried out by Schägger and Pfeiffer in 2000 with digitonin-
solubilized mitochondrial extracts from yeast and bovine,
revealing the co-migration of respiratory complexes in
sucrose gradient centrifugation and in gel (Schägger and
Pfeiffer, 2000). This finding led to the revival of the solid
model. The concept of respirasome was then proposed.
Respirasome was originally considered to have a fixed
composition as two copies of SCI1III2IV4 and one copy of
SCIII2IV4 to consist with the overall 1:3:6 stoichiometric ratio
of complexes I:III:IV (Schägger and Pfeiffer, 2000; Wittig
et al., 2006a). However, these kinds of entities were not
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detected. Contrarily, superassemblies as I1III2, III2IV1 and
free complexes were observed. Henceforth, although
accompanied with significant skepticism, SCs from different
sources such as yeast and other fungi, plants, vertebrates,
and invertebrates were found by BN-PAGE with a variety of
detergents (Eubel et al., 2004; Krause et al., 2004a; Krause
et al., 2004b; Stroh et al., 2004; Krause, 2006; Reifschneider
et al., 2006; Marques et al., 2007; Bultema et al., 2009). The
co-migration on sucrose gradients also indicates the exis-
tence of SCs. Another convincing proof is the detection of
SCs in the tomograms of cristae isolated from Podospora
anserine (Davies et al., 2011). Recent subtomogram aver-
aging results give a further confirmation of the ubiquitous
existence of respirasomes (Davies et al., 2018). In vitro
experiments suggest that the isolated respirasomes still
possess the ability to transfer electrons from NADH to oxy-
gen (Acin-Perez et al., 2008; Milenkovic et al., 2017). The
stability of CI is dependent on CIII2 and CIV (Schagger et al.,
2004; Stroh et al., 2004).

The majority of CI is found to assemble into SCs with CIII
and CIV, while CII tends to exist in a non-associated form in
plant and mammalian mitochondria (Schagger and Pfeiffer,
2001). The most common forms of SCs include SCI1IIIn,
SCI1III2mIVn and SCIII2mIVn (Maranzana et al., 2013). The
most interesting one among which is SCI1III2IV1 (Fig. 1A),
because this supercomplex contains all components
required to accomplish the electron transportation, from
NADH to oxygen together with cyt c and quinone, and is
conserved in mammalian mitochondria (Schägger and
Pfeiffer, 2000; Lenaz and Genova, 2012). Only a few cases
hypothesize the association of CII.

The fact that both free and diversely superassembled
respiratory complexes are able to partake in cellular respi-
ration has spawned a proposal called plasticity model. This
view suggests a dynamic situation where the respiratory
complexes can exist and function in both free and diversely
superassembled modes. The stoichiometries and stabilities
of free and superassembled complexes may vary with cell
types and physiological stimuli (Acin-Perez et al., 2008;
Lenaz and Genova, 2012; Enríquez, 2016). This dynamic
equilibrium state is supported by some indirect evidence
(Gomez et al., 2009; Frenzel et al., 2010; Hofmann et al.,
2012). Starvation may reduce the amount of SCI1III2IV1 in
mice liver mitochondria (Lapuente-Brun et al., 2013).
Hypoxia induces the dissociation of the SCI1III2IV1 into free
CI and the SCIII2IV in potato, while the expression of alter-
native oxidase (AOX, a Q oxidase found in plants and fungi,
but not found in most animals) can stable free CI without the
presence of CIII and IV (Ramirez-Aguilar et al., 2011). The
validity of the reversible dynamic association/dissociation
between ETC complexes and supercomplexes remains
unproven.

CRYO-EM, OLD TREES AND NEW BUDS

The ability to purify SCs from mitochondria allows for their
visualization and structural determination at low resolutions.
As a promising technology gaining great attention in recent
years, cryo-EM has come to exhibit its latent capacity in the
field of structural biology. The advantages of cryo-EM are as
follows: less sample requirement, no need for crystallization,
less limitation on sample purity, and suitable for the structural
analysis of biological molecules or complexes with larger
molecular weight. However, 3D reconstruction using cryo-
EM is by no means a newborn methodology.

In 1926, German physicist Hans Busch put forward the
idea of using magnetic field generated in the short coil of a
cathode ray tube to condense electron beam and use it for
imaging. Based on this theory, Ruska, together with partners,
developed the first EM in 1930s and was awarded the Nobel
Prize in Physics in 1986 (Robinson, 1986).

The history of analyzing the structure of biological
macromolecules by transmission electron microscopy can
be traced back to 1960s. DeRosier and Klug published the
first 3D EM structure of the tail of bacteriophage T4 and
formulated the general principles of 3D reconstruction tack
using helical Fourier inversion method simultaneously (De
Rosier and Klug, 1968). To avoid the radiation damage
caused by the beam induced breakage of chemical bonds,
Dubochet and colleagues developed the method of freezing
the samples into a thin layer of amorphous ice (also referred
to as vitreous ice) (Dubochet et al., 1981; Adrian et al., 1984;
Lepault et al., 1987; Dubochet et al., 1988) based on the
early study of Henderson and Unwin as well as that of Taylor
and Glaeser (Taylor and Glaeser, 1974; Henderson and
Unwin, 1975; Hayward and Glaeser, 1979; Bai et al., 2015).
The samples are stored and imaged at the temperature of
liquid nitrogen; hence, the naming “cryo-EM”. The vitrified
samples anchor the molecules in a close-to-native environ-
ment, preserving the structural details of particles without
introducing artifacts. Meanwhile, flash-frozen amorphous ice
helps prevent the dehydration of biological samples in the
vacuum during imaging.

Three main branches have been derived from the cryo-
EM technology: 2/3D electron crystallography, single particle
3D reconstruction, and cryo-electron tomography (cryo-ET).
Electron crystallography is the first branch to reach near-
atomic and atomic resolutions. However, because of the
relatively harsher conditions for sample preparation and
screening, the application of this method has been restricted
to some extent. The more traditional way of cryo-EM struc-
ture determination is using 2D projections of molecules in
various directions to achieve 3D reconstruction, based on
the rationales DeRosier and Klug built with negative stained
samples (De Rosier and Klug, 1968) (Fig. 2).
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The basis of cryo-EM 3D reconstruction is the theorem
named projection-slice theorem, or central/Fourier slice
theorem. The theorem states that the Fourier transform of a
2D projection of a 3D object in real space is equivalent to a
central 2D slice of the 3D Fourier transform of that object.
The real-space projection direction is orthogonal to the slice.
TEM images represent the 2D projections of molecules in

the sample. Multiple copies of same molecules in the vitrified
sample are preserved in various directions. Considering
these facts synthetically, if the directions of the 2D projec-
tions are known, 2D Fourier slices of these projections can
be positioned back into the 3D Fourier space; thus, the
reconstruction of the origin molecular structure can be done
by computing the inverse Fourier transform. The resolution
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Figure 1. Structures of Mammalian SCI1III2IV1 and MC I2III2IV2. (A) Cartoon representation of the cryo-EM structure of human
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respectively. (B) Substrate translocation in SCI1III2IV1. The black dotted lines represent mitochondrial inner membrane. The grey

arrow indicates the translocation of protons. The black arrows indicate changes of substrates before and after the redox reactions.

(C) Cofactors in SCI1III2IV1. Different cofactors are shown in different colors. Hemes are shown as stick and ball model, FeS clusters

and ions are shown as spheres, and phospholipid molecules and FMN are shown as lines. The colors of the label texts are the same

with colors of the represented structures. (D) Cartoon representation of the structure of human MCI2III2IV2 (PDB ID: 5XTI).
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Figure 2. Evolution of EM in Structural Biology. (A) Schematic diagram of a transmission electron microscope (TEM) equipped

with a phase plate, energy filter and direct electron detector. (B) The first map of bacteriorhodopsin determined by electron

crystallography at a resolution of 7 Å (Henderson and Unwin, 1975). The image of the map is derived from the original paper. (C) The

first map of the tail of Bacteriophage T4 obtained on the basis of Fourier inversion method. The image of the map is derived from the

original paper. (D) First near-atomic-resolution biological macromolecular structure of bacteriorhodopsin obtained by electron

crystallography (PDB ID: 1brd) (Henderson et al., 1990). (E) 2.9 Å structure of lysozyme (PDB ID: 3J4G), laying the first stone for the

MicroED technique. (F) 0.7 Å structure of RNA-binding protein FUS (37–42) SYSGYS segment determined by MicroED (PDB ID:

5XSG) (Luo et al., 2018). (G) 3.3 Å structure of TRPV1 ion channel determined by single particle analysis method, representative

near-atomic-resolution structure obtained with DDD and motion correction method (PDB ID: 3J5P) (Liao et al., 2013). (H) 1.8 Å

structure of glutamate dehydrogenase (PDB ID: 5K12) (Merk et al., 2016). Published structure of highest resolution obtained with

single particle analysis method. (I) 3.2 Å structure of 52 kDa biotin-bound streptavidin (PDB ID: 6J6J) (Fan et al., 2019). Smallest

integral biological macromolecular structure determined at near-atomic resolution. (J) Tomographic volumes of respiratory CV dimer

ribbons (Strauss et al., 2008). The image of the map is derived from the original paper. (K) 3.4 Å density map of HIV-1 dMACANC

VLPs (EMDB ID: emd_3782) (Turonova et al., 2017), indicating a successful trial of subtomogram averaging and 3D-CTF algorithm.
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of reconstructed results can be improved through performing
multiple iterations. With sufficient number of images con-
taining high resolution information that are accurately clas-
sified and aligned, 3D structure at atomic resolution can be
obtained by single particle reconstruction.

The problem of low signal-to-noise ratio (SNR) caused by
low electron dose imaging has accompanied cryo-EM tech-
nology since its birth. The loss of particle spatial orientation
and position information including three Euler angles, two in-
plane positional parameters as well as the defocus value
also hinders the reconstruction. Even though theoretical
assessment suggests that single particle analysis may reach
atomic resolution for molecules with a molecular weight of
around 100 kDa, the reality has been far from satisfactory for
a long period (Bai et al., 2015).

Tremendous efforts have been made in aspects of both
hardware and algorithm. Commonly used optimization
methods for commercialized EM include applying constant-
power electromagnetic lenses, using field emission gun
(FEG) as electron source for a better parallel illumination,
adopting high vacuum, and employing better computer
control for microscope tuning and data acquisition (Cheng,
2015). The most revolutionary progress for instrumentation
in recent years is the advent of direct electron detection
devices (DDDs). DDDs produce significantly better images
than traditional film or charge-coupled devices (CCDs). DDD
cameras no longer converts electronic signals into optical
signals but detects electrons directly. Individual electrons are
identified (Cheng, 2015; Kuijper et al., 2015; Nogales and
Scheres, 2015). With the high-enough SNR and location of
each electron event being determined precisely enough,
DDD gives much higher detective quantum efficiency (DQE)
(McMullan et al., 2014). If the arrival point of individual
electrons can be determined to subpixel accuracy, DDDs
might be used in super-resolution mode beyond Nyquist cut-
off frequency (Kuijper et al., 2015; McMullan et al., 2016).

Another important feature of DDD cameras is their fast
frame readout rate. This allows the total electron dose used
to image biological samples to be split into multiple frames,
making the final output into subframe-motion-cor-
rectable movies (Bai et al., 2015; Cheng, 2015). Drift cor-
rection of these frames before averaging can eliminate the
beam-induced image blurring.

Many advances in image processing methods have also
been made. After the concept of single particle analysis was
established in 1970s, multivariate statistical analysis was
introduced into the particle classification process in 1981
(van Heel and Frank, 1981). In the same year, modular
software pioneered by Joachim Frank and Marin van Heel
for electron image processing emerged (Frank et al., 1981;
van Heel and Keegstra, 1981). Then in 1987, ab initio
methods for projection angle determination termed random
conical tilt and angular reconstitution (common lines) were
proposed (Radermacher et al., 1987). Projection matching
and angular refinement method were set up in 1994
(Penczek et al., 1994), followed by the adhibition of

maximum-likelihood approach in 1998 (Sigworth, 1998).
Based on these sound foundations, more algorithmic opti-
mization methods are proposed, such as the introduction of
the empirical Bayesian approach and the gold-standard
approach (Scheres, 2012a, b; Scheres and Chen, 2012),
stochastic gradient descent (SGD) and branch-and-bound
maximum likelihood optimization algorithms (Punjani et al.,
2017), the sequential Monte Carlo method based particle-
filter algorithm (Hu et al., 2018), and different approaches
used for automated particle picking (Nicholson and Glaeser,
2001; Adiga et al., 2004; Ogura and Sato, 2004; Wong et al.,
2004; Langlois et al., 2014; Wang et al., 2016; Al-Azzawi
et al., 2019b, a; Wagner et al., 2019). These explorations
eventually led to the birth of the widely used semi-automated
3D reconstruction software.

Another thing worth noting is the motion correction of the
raw data collected from cryo-EM equipped with DDD cam-
eras. The inevitable movement of molecules during the data
acquisition reduces the overall quality of the photographs
and the final resolution of the reconstruction obtained from
the data. To better understand and deal with beam-induced
motion is one of the most challenging physical problems for
cryo-EM. Beam-induced sample motion can be divided into
two components, uniform whole-frame motion and idiosyn-
cratic local motion (Brilot et al., 2012; Li et al., 2013). In 2013,
an algorithm for correcting relative motion between sub-
frames was published, in which measurements of image
shifts between all frames are performed to calculate least-
squares estimates of relative shifts between adjacent
frames. It provides an effective correction of whole-frame
motions with sufficient accuracy for near-atomic-resolution
3D reconstructions (Li et al., 2013; Zheng et al., 2017).
Individual particle tracking or local motion correction meth-
ods are proposed to simulate and estimate particle trajec-
tories and cumulative beam-induced damage, improving the
resolution of 3D reconstruction (Bai et al., 2013; Scheres,
2014; Rubinstein and Brubaker, 2015; Scheres, 2016; Zheng
et al., 2017; Zivanov et al., 2019).

The craft of sample preparation is another fast-developing
area. The invention of semi-automated sample preparation
robots is a great convenience; however, its stability and
repeatability still need to be improved. Other promising
technologies include the preparation of graphene supporting
film (Russo and Passmore, 2016), whisker-assisted blotting
(Razinkov et al., 2016; Frank, 2017a), and spraying-plunging
method (Feng et al., 2017).

CRYO-EM STRUCTURES OF THE MAMMALIAN
RESPIRASOMES

The 3D structure of respirasome has been studied with EM
at low resolutions from 33 to 18 Å (Schafer et al., 2006;
Schafer et al., 2007; Althoff et al., 2011; Dudkina et al.,
2011). The emergence of new technologies has triggered an
upsurge in the use of cryo-EM in structural biology. This
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wave swept through broad and diverse areas, including the
structural research of the ETC. In 2014, first modern cryo-
EM structure of bovine complex I was reported (Vinothkumar
et al., 2014). 2016 is a momentous year for the study of
respirasomes, with near-atomic-resolution structures of
integral mammalian CI and SCI1III2IV1 being reported in
succession.

The publication of the 4.2 Å structure of the first integral
bovine-heart CI opened the prelude to these exciting results
(Zhu et al., 2016). In the immediate aftermath, we and
Sazanov’s group reported the architectures of porcine and
ovine respirasome SCI1III2IV1 at 5.4 Å and 5.8 Å, respec-
tively (Gu et al., 2016; Letts et al., 2016). The intact mam-
malian CI structure at 3.6 Å derived from SCI1III2IV1, which is
the first atomic resolution structure of CI, was also obtained
(Wu et al., 2016) shortly afterwards. In 2017, our group
pushed the resolutions of porcine and human SCI1III2IV1 to
4.0 Å and 3.9 Å (Guo et al., 2017). Our firstly obtained hu-
man respirasome structure provided the most accurate and
detailed map of mutations related to severe mitochondrial
malfunction diseases, including Alzheimer’s disease, Hunt-
ington’s disease, Parkinson’s disease, Friedreich’s ataxia
and so on. This map of mutations could help drug-develop-
ment and provide reference for prenatal diagnose of inheri-
table genetic diseases.

Until the year 2019, structures of mammalian SCI1III2IV1

in different states from various species have been deposited
into PDB, laying the foundation for further discussion of the
functional mechanism (Fig. 1A and 1B). The mammalian
respiratory SCI1III2IV1 has a dimension of around 300 Å in
length and 190 Å in height. The L-shaped CI is composed of
a transmembrane arm and a hydrophilic arm (matrix arm).
The TM arm is located in the mitochondrial IM, bending
slightly inward with its concave surface interacting with CIII2.
CIV is positioned on the concave surface formed by CIII2 and
the distal end of the TM arm of CI. According to our struc-
tures, the final human SCI1III2IV1 contains 45 subunits from
CI, 21 subunits from CIII and 14 subunits from CIV, and
possesses 133 transmembrane helices (TMHs), with 78, 26
and 29 TMHs from CI, CIII and CIV, respectively.

The interactions between CI and CIII in mammalian
SCI1III2IV1 mainly take place in two regions: the first where
the NDUFA11 and NDUFB4 subunits of CI interact with
UQCRQ subunit of CIII, and the second where the NDUFB9
and NDUFB4 subunits of CI interact with the UQCRC1,
UQCRFS1 subunits of CIII (Gu et al., 2016; Letts et al., 2016;
Sousa et al., 2016; Wu et al., 2016; Guo et al., 2017; Mile-
nkovic et al., 2017; Hirst, 2018).

The cytochrome c oxidase subunit VIIa polypeptide 2-like
protein (Cox7A2L), also known as supercomplex assembly
factor 1 (SCAF1), is proposed to be essential for the inter-
action between CIII and CIV but does not have significant
impact on the assembly or function of the respirasome
(Ikeda et al., 2013; Lapuente-Brun et al., 2013; Mourier et al.,
2014; Perez-Perez et al., 2016). The Cox7A2 subunit in our
human CIV structure may consist with results reported in

mouse strain C57BL/6 that mutation of its long isoform
Cox7A2L impairs the formation of the SCIII2IV1, while res-
pirasomes can exists in fully assembled form in mice
expressing both long and short forms of Cox7A2L (Mourier
et al., 2014; Cogliati et al., 2016; Williams et al., 2016).
Previous research also indicate that Cox7A1/A2 and
Cox6A1/A2 are tissue-specific expressed subunits, with
Cox7A1 and Cox6A2 promoting CIV dimerization (Cogliati
et al., 2016; Milenkovic et al., 2017). The Cox7A1 and
Cox6A2 subunits in our monomeric human CIV structure are
replaced by Cox7A2 and Cox6A1 subunits, which is con-
sistent with the previous conclusion (Zong et al., 2018b).

Phospholipids play an important role in maintaining the
structure and function of respirasomes. The formation, sta-
bilization and function of respirasomes are impacted by the
lipid composition of the IMM. The most discussed phos-
pholipids include phosphatidylcholine (PC), phos-
phatidylethanolamine (PE), and cardiolipin (CDL). The
phospholipids identified in the published structures of res-
pirasomes confirmed their importance in stabilizing respira-
somes and helping respirasomes complete conformational
change and fulfill their functions (Zhang et al., 2002; Enrí-
quez, 2016; Letts et al., 2016; Wu et al., 2016; Guo et al.,
2017; Milenkovic et al., 2017) (Fig. 1C).

The mechanism underlying the conformational change
between “active” and “deactive” states of CI has been dis-
cussed following the reporting of CI structures (Fiedorczuk
et al., 2016; Agip et al., 2018; Blaza et al., 2018; Parey et al.,
2018). The conserved features of CI in different species
including π-bulges, interrupted TMHs and charged residues
in the membrane plane could form the structural basis for the
function of CI. The deactivation of CI may be related to the
structural disorder in the Q binding site and the conforma-
tional change of the TMH3 in ND6 (Agip et al., 2019; Letts
et al., 2019).

CIII AND CIV, NEWS IN OLDS

Mammalian CIII2 has long been regarded as a homodimer
consisting of 22 subunits in total in the past structural stud-
ies. But the full length N-terminal processed peptide
(UQCRFS1N) of the iron-sulfur Rieske protein (UQCRFS1)
subunit was not assigned in all of these structures. By
rebuilding the high-resolution crystal structures of bovine
and chicken CIII and analyzing the reconstructed density
map of cryo-EM, we draw a new conclusion that the two
10-subuint CIII protomers are linked by a single UQCRFS1N
molecule. The N-terminal segment and the C-terminal seg-
ment of one UQCRFS1N molecule bind with each CIII pro-
tomer respectively, with the two protomers being identical.
Both protomers of CIII2 are able to bind with CI, and con-
sequently our reconstructed cryo-EM density map of
SCI1III2IV1 show a mixed feature of the two possibilities
(Zong et al., 2018a). TTC19 protein is reported to be
essential for removing UQCRFS1N from the full-length
UQCRFS1 subunit. In mitochondria lacking TTC19, CIII2
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contains two full-length UQCRFS1 with two UQCRFS1N
segments. Experimental results showed that the native
molecular mass of CIII2 from Ttc19−/− knockout mouse is
slightly higher than that of CIII2 from wild type animals, which
may indicate it to be consistent with our conclusion (Bottani
et al., 2017).

NDUFA4 was originally considered as a subunit of CI, and
although there was still controversy (Kadenbach, 2017),
further studies indicated that this protein should belong to
CIV (Balsa et al., 2012; Pitceathly and Taanman, 2018).
However, NDUFA4 was never found in current CIV crystal
structures that present as homodimers. In SCI1III2IV1, CIV
rolls around the tip of CI. The state when CIV is relatively
closer to CI is more stable than the state when CIV is
approaching CIII, and the contents of particles at these two
states are basically the same. This means that if we mix up
all kinds of particles, the auto-refine of complex IV by adding
a soft mask would fail due to the excessive differences
between these two parts. If we only use one conformation,
the resolution of the SCI1III2IV1 would be too low to provide a
sufficient accuracy for local optimization. Therefore, we put
all particles together and refine it to the highest resolution.
After adding a soft mask to CIV, we classify the particles into
different conformations without performing particle align-
ment. In the last step, the class with clear structure and the
highest proportion of particles was chosen and refined.
Eventually the reconstructed density map of human CIV at a
resolution of 3.3 Å was obtained, where we found the precise
location of NDUFA4 subunit.

NDUFA4 may hamper the formation of CIV dimer by
binding to the dimeric interface of the crystal structures of
CIV. The TMH of NDUFA4 in CIV monomer clash with that of
Cox6A2 in another protomer of CIV dimer. BN-PAGE anal-
ysis in different species with different detergents and 2D
crystal data in lipid bilayer indicate that CIVs may exist as
monomers in membranes, while NDUFA4 subunit is impor-
tant for the formation of CIV (Wittig et al., 2006a; Balsa et al.,
2012; Osuda et al., 2016). We concluded that NDUFA4 is a
subunit, not an assembly factor, of CIV, and CIVs are more
likely to exist as monomers in native state.

FIND A WAY IN THE MAZE FOR ELECTRONS

One of the most important goals for in studying the structure
of ETC complexes and supercomplexes is to understand the
functional mechanism of the respiratory chain. Respirasome
was supposed to enhance the electron transporting effi-
ciency through substrate channeling (Vartak et al., 2013;
Genova and Lenaz, 2014; Lobo-Jarne and Ugalde, 2018).
The interaction between CI and CIII may contribute to the
functional division of Q pool (Heron et al., 1978; Ragan and
Heron, 1978; Schägger and Pfeiffer, 2000; Bianchi et al.,
2004) and is also conducive to the modulation of ROS
generation by isolating reactive intermediates (Wang et al.,
2010; Maranzana et al., 2013; Letts et al., 2016). Assembly
into supercomplexes also conduces to the stabilization and

activation of CI (Lamantea et al., 2002; Acin-Perez et al.,
2004; Schagger et al., 2004; Vempati et al., 2009).

Biochemical experimental results have indicated the
functionally relevant association between CI and CIII, and
the CIII-CIV interaction also induces the possibility of a cyt c
pool. Therefore, a widely held opinion regards the enhanced
catalysis of the respirasome to be achieved by the substrate
channeling translocating intermediate substrates from com-
plex to complex and the assembly of ETC complexes to be
the result of the functional segmentation of Q pools and cyt c
pools (Genova and Lenaz, 2011; Enríquez, 2016; Hirst,
2018).

Evidence have been provided against the existence of a
single Q pool (Lenaz and Genova, 2012). Further spectro-
scopic and kinetic analysis also show the existing contra-
dictions with both the proposals of a single or two fully
independent pools (QNADH pool and QFAD pool) (Blaza et al.,
2014). Recent studies pointed out that the QH2 from CI is
reoxidized more rapidly by added AOX outside the SC than
by CIII inside the SC, strongly questioning the existence of
the substrate channel and the segmented Q pool (Milenkovic
et al., 2017; Fedor and Hirst, 2018; Hirst, 2018). Meanwhile,
no confining protein structures are found between CI and CIII
that could guide the diffusion of Q/QH2 (Gu et al., 2016; Letts
et al., 2016; Sousa et al., 2016; Wu et al., 2016; Guo et al.,
2017). Scientists also suggest that a strictly restrained
channel and Q pool may increase the risk of the system
resisting the dysfunction of ETC complexes (Hirst, 2018).
Additionally, the existence of functionally segmented cyt c
pool is also questioned (Trouillard et al., 2011).

The prevailing view of the electron transfer process in CIII
is described by Q cycle theory first proposed by Peter
Mitchell (Mitchell, 1975a, b; Crofts et al., 1983). This theory
indicates that the oxidation of QH2 at the Qo site is a bifur-
cated reaction. In the reaction, QH2 binds to Qo site, while Q
binds to Qi site. Two electrons obtained from the oxidation of
QH2 flow to ISP and heme bL, respectively. ISP accept one
electron and pass it on to cytochrome c1, then to cyt c. The
other electron transports along the chain heme bL–heme bH–
Q (bound to Qi site). Two cycles are needed to reduce the Q
bound at Qi site to QH2 (Pietras et al., 2016; Sousa et al.,
2018) (Fig. 3A).

Despite that the Q cycle theory has been popular for a
long time, there is still no high-resolution structure or reliable
data to support the claim that the Qo site is a functional QH2-
binding site (Pietras et al., 2016). The difficulty in identifica-
tion of the intermediate states of Qo site catalysis, as well as
the necessity of avoiding semiquinone- mediated short cir-
cuits has also left a high degree of freedom for mechanistic
interpretation (Osyczka et al., 2004; Osyczka et al., 2005;
Pietras et al., 2016).

After analyzing the structure of CIII, we propose a new
mechanism for the electron transfer process of CIII. In our
model, QH2 released from CI binds to Qi site of CIII. Heme
bH accepts one electron from QH2 and passes it to heme bL,
while accepting the other electron simultaneously. The
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oxidized Q is released from Qi site. Heme bL accepts the first
electron and transfers it to the heme bL in the other CIII
monomer, enabling the first heme bL to accept the other
electron from heme bH. Heme bL transfers the electrons to
ISP, and then to cyt c1, and eventually cyt c. In this way, the
accumulation of semi-quinone radical is reduced, thus min-
imizing the generation of ROS. At the same time, as the
electron transportation between two heme bL molecules
could be faster than the conformational change of ISP, the
electron transfer between heme bL molecules could occur
earlier in our model (Wu et al., 2016; Guo et al., 2017)
(Fig. 3B). During this process, two protons dissociated from
QH2 are translocated to the IMS using the redox energy
released by electron transfer.

Our model provides an explanation to the phenomenon
that the addition of myxothiazol, an inhibitor bound at Qo site,
could stimulate generation of superoxide at Qo site (Starkov
and Fiskum, 2001; Muller et al., 2002). After two electrons
are transferred from QH2 at Qi site to two heme bL, confor-
mational change of ISP becomes the rate limiting step. The
binding of myxothiazol even further slow down the confor-
mational change of ISP, causing electrons backing up at
heme bL, becoming the source of superoxide.

The asymmetric Q binding densities in CIII segment of
SCI1III2 may indicate a more complicated functional mech-
anism (Letts et al., 2019). More research are needed to
clarify the mechanism of electron transportation in individual
ETC complexes and the respirasome as a whole, which
could include analyzing atomic structures of SCs at more

states and conducting related biophysical and biochemical
experiments. It is possible that EPR could help us under-
stand the pathway of electron transfer in the respirasome
(Ohnishi et al., 2012; Pietras et al., 2016; Wright et al., 2016).

MEGACOMPLEX, CALLING FOR TECHNOLOGY
PROGRESS

The concept of megacomplex has long been brought along
by EM/ETanalyses. In the early studies, the possibility of the
existence of dimeric CI was proposed, accompanied by the
anticipation of finding convincing evidence for a respiratory
string composed of CI, CIII and CIV (Allen et al., 1989; Nubel
et al., 2009; Wittig and Schagger, 2009; Strecker et al.,
2010). Accordingly, models of respiratory strings with differ-
ent basic units and conjunction modes were raised (Wittig
et al., 2006b; Bultema et al., 2009; Vonck, 2012; Letts et al.,
2016). MCI2III2IV2 was first supposed to be the block of a
modality of respiratory string in our results published in 2016
(Wu et al., 2016), inspired by the identification of the
supramolecular assembly form I2III2 in potato (Bultema et al.,
2009).

During our study of the respirasome, we noticed the
existence of higher-order assemblies of ETC complexes as
have been indicated by previous investigations. First, we
detected high-molecular-weight bands above SCI1III2IV1 in
BN-PAGE analysis. The results of mass spectrometry anal-
ysis suggest that the main components of these bands are
subunits of the ETC complexes, particularly CI, CIII and CIV.
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Figure 3. Mechanisms of CIII2. (A) Diagram of Q cycle theory. The ISP proteins and catalytic centers are shown in different colors.

The ISP subunit colored in blue (PDB ID: 5XTE, also called as “c1 state”) and the ISP subunit colored in purple (PDB ID: 3H1I, also

called as “b state”) (Zhang et al., 1998) indicate the conformational change between two states of CIII during electron transportation.

The black dotted lines represent the mitochondrial inner membrane. The black arrows represent the change of substrates. The blue

arrow indicates the proton translocation direction. The red dotted lines indicates the electron flow in CIII dimer. The light blue circles

represent the Q-binding site Qi and Qo. (B) Diagram of the mechanism raised in our paper. The labels are consist with Fig. 3A.
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Negative stained samples were prepared for EM examina-
tion. A minor population of particles with an circular
arrangement were detected. These findings led to our pro-
posal of a higher oligomeric state named megacomplex-
I2III2IV2 (MCI2III2IV2) published in 2016. We assumed this
assembly form as a structure with dimeric CIII located in the
center, surrounded by two CIs with their membrane arms
oriented perpendicularly to the 2-fold axis of CIII2. Two CIVs
were anchored by the distal end of each CI membrane arm
and CIII2. The MCI2III2IV2 contains 139 subunits in total (45
from each CI, 14 from each CIV, and 21 from CIII2), with a
height of ∼220 Å, width of ∼280 Å, and length of ∼300 Å (Guo
et al., 2017).

Through further analysis of large amounts of cryo-EM
data, we obtained the 3D reconstruction architecture of
MCI2III2IV2 at a resolution of 17.4 Å in 2017 with about 8,600
particles out of 1.18 million (Guo et al., 2017) (Fig. 1D).
These results provoked intense debates immediately.
Skeptical opinions center around the point that MCI2III2IV2

might be an artifact caused by the usage of specific deter-
gent (digitonin) or the tendentious collection of nonspecific
particles, because of the extremely low relative content and
the lack of in situ detection or biochemical experimental
evidence. However, NBT staining of our BN-PAGE result
indeed detected a catalytically active band above the band
of respirasome (Guo et al., 2017), which we believe to be the
proof of existing higher organization form than respirasome.

In our following study, we improved the relative concen-
tration of MCI2III2IV2 and pushed the reconstruction results
to a better resolution where secondary structures can be
clearly visualized. Different initial models and unsupervised
ab initio reconstructions are tried to avoid model-bias effect.
MCI2III2IV2 are found both in porcine and human derived
mitochondrial extracts. According to our megacomplex
structure with higher resolution, we can even detect direct
interactions between CIII and two CIs, and two CIVs bind to
CIII in a different pattern from respirasome (unpublished
data). However, these progresses did not dispel all the
suspicion, mostly because no megacomplex was resolved
from cryo-ET images. We must admit the relative ratio of
MCI2III2IV2 is quite low, so it could be difficult to detect
MCI2III2IV2 from a multiple of mitochondrial slices. In con-
trast, during single particle data processing, proteins from
mitochondria in various states can be extracted, so the
chance of detecting MCI2III2IV2 is appearently higher.
Therefore, technology progress of cryo-ET is in urgent need
to reconstruct supramolecular assemblies in mitochondria
extracted from different stages of cell division cycle.

Cryo-ET and subtomogram averaging results of mito-
chondrial membranes strengthened the skepticism about the
existence of the ubiquitous respiratory strings, suggesting
that SCI1III2 is the most conserved structure across different
species (Davies et al., 2011; Davies et al., 2018). In contrast,
however, the recently published structure of SCIII2IV1–2 from
Mycobacterium smegmatis and yeast may indicate the
functional necessity of a cytochrome subunit bridged

electron transfer path for ETC complexes in prokaryotic cells
(Gong et al., 2018; Wiseman et al., 2018; Hartley et al.,
2019; Rathore et al., 2019).

As a powerful tool for in situ reconstruction, cryo-ET is
one of the most promising technology that might be able to
extricate us from the current predicament. However, cryo-ET
is facing the dilemma once faced by cryo-EM single particle
analysis—the bottleneck of limited resolution, which is a
comprehensive result of manifold causes. For cryo-ET,
effective methods still need to be derived in areas including
sample preparation, determination of the area to be detec-
ted, phase plate performance, motion correction and tilt
series alignment, CTF estimation, treatment for the loss of
information at high tilt angles, image processing algorithm
and many more. Subtomogram averaging provides a
scheme to balance the advantages of both single particle
analysis and traditional cryo-tomography methods (Wan and
Briggs, 2016; Leigh et al., 2019; Schur, 2019). With the
application of newly developed 3D-CTF estimation algo-
rithm, the resolution of subtomogram averaging reconstruc-
tion could reach 3.4 Å (Turonova et al., 2017). This
methodology is largely a variant of single particle analysis,
thus the large-scale in situ reconstruction at high resolution
still needs the invention of new techniques and new ideas.

Time-resolved cryo-EM is also a possible developing
trend depending on better classification methods and
dynamic simulation algorithms (White et al., 2003; Fu et al.,
2016; Frank, 2017b). As the star technology gaining great
attention, cryo-EM/ET still has tremendous potential to be
explored.

CONCLUSIONS AND PERSPECTIVES

The curiosity into respiration encapsulates people’s desire
for exploring the mysteries of life. Through the efforts of
scientists over the past century, features of the molecular
machineries that are responsible for this physiological pro-
cess have become gradually known to us. The rapid devel-
opment in cryo-EM technology provides us with a powerful
tool to break through the bottleneck of analyzing the atomic
structure of macromolecular protein complexes, pushing the
research field of respirasome forward into a new stage. High-
resolution structures of eukaryotic respiratory supercomplex
I1III2IV1 and III2IV2 have been acquired successively. New
features of mammalian ETC complex III and IV have also
come into view. The discovery of MCI2III2IV2 may provide a
new possibility to the study of the electron transfer mecha-
nism. With new theoretical arguments and experimental
results emerging, widely accepted theories are starting to be
challenged. All of these results together could help us clarify
the functional mechanism of the respirasome, which is of
great significance to elucidating the pathogenesis of mito-
chondrial diseases and finding the treatment methods of
mitochondrial diseases.

ETCs are the most abundant protein within mitochondrial
inner membrane, and they are closely related to the
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maintaining of cristae shape. Taken our structures and the
in situ cryo-ET images together, it is now widely accepted that
the CV oligomers sit on the tip of cristae ridges, while respi-
ratory chain complexes are located on the relatively flat cristae
plane, whether assemble into supercomplex (even mega-
complex) or stayalone.Protonsareenriched in the intracristae
space, especially at the cristae tips. This arrangement ofETCs
could be most efficient in energy conversion (Fig. 4A and 4B),
For complexes I, II, III, IV, andV in bovineheartmitochondria, a
ratio (1.1 ± 0.2) : (1.3 ± 0.1) : 3 : (6.7 ± 0.8) : (3.5 ± 0.2) was
determined (Schagger and Pfeiffer, 2001). Appearantly, the
ratio of CIV is much higher than CI and CIII, so the binding
pattern of CIV could be either with CI, CIII, or staying alone.
Actually, we even identified some respirasome particles con-
taining more than one copy of CIV.

However, the recent debates over the new proposals
indicate that much more evidence are still needed to dispel
the doubts. In situ reconstruction of respirasomes under
different cell conditions might provide a break point to the
current situation. In situ and time- resolution reconstruction
are the developing directions of cryo-EM/ET that have
received wide attention. For cryo-ET, resolution of the 3D
reconstruction is still the most prominent limitation for its
application. The advances in super-resolution light micro-
scopy may also be useful for dynamic research of respira-
somes. In addition, more biochemical and biophysical
experiments are also needed to help clarify the speculations.

The history for scientists to get to know respirasome is a
combination of technological development and theoretical
innovation, which also holds true in the broad scientific
world. With the combined effort of all scientists in this field,
we expect that one day the whole picture of respiration could
be presented to us.
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