
ORIGINAL RESEARCH
The immune microenvironment in EGFR- and ERBB2-mutated lung
adenocarcinoma
M. Kirchner1, K. Kluck1,2, R. Brandt1, A.-L. Volckmar1, R. Penzel1, D. Kazdal1,3z, V. Endris1, O. Neumann1, H. Seker-Cin1,
H. Goldschmid1, J. Glade1, M. Allgäuer1, M. Kriegsmann1,3, H. Winter3,4, T. Muley3,5, S. Perner6,7z, N. Frost8,9x, M. Reck7,10,
S. Fröhling2,11, P. Schirmacher1,2, M. Thomas3,12, J. Budczies1,2,3y, P. Christopoulos3,12*y & A. Stenzinger1,2,3*y
1Institute of Pathology, Heidelberg University Hospital, Heidelberg; 2German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg;
3Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg; 4Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg;
5Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg; 6Pathology of the University Medical Center Schleswig-Holstein (UKSH),
Campus Lübeck and the Research Center Borstel, Borstel; 7Airway Research Center North (ARCN), Borstel; 8Department of Infectious Diseases and Respiratory
Medicine, Charité-Universitätsmedizin Berlin, Berlin; 9Berlin Institute of Health, Berlin; 10Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Grosshansdorf;
11Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg; 12Thoraxklinik and National Center for Tumor Diseases (NCT)
at Heidelberg University Hospital, Heidelberg, Germany
*Corresp
University
Tel: þ49-6
E-mail: a
*Dr Petr

eases (NCT
berg, Germ
E-mail: p

Volume 6
Available online xxx
Background: Targeted therapies have improved survival and quality of life for patients with non-small-cell lung cancer
with actionable driver mutations. However, epidermal growth factor receptor (EGFR) and human epidermal growth
factor receptor 2 gene (HER2, also known as ERBB2) exon 20 insertions (Ex20mut) are characterized by a poor
response to currently approved tyrosine kinase inhibitors and immunotherapies. The underlying immune biology is
not well understood.
Materials and methods: We carried out messenger RNA expression profiling of lung adenocarcinomas (ADCs) with
ERBB2 (n ¼ 19) and EGFR exon 20-insertion mutations (n ¼ 13) and compared these to tumors with classical EGFR
mutations (n ¼ 40, affecting EGFR exons 18, 19 or 21) and EGFR/ERBB2 mutation-negative lung ADC (EGFR/
ERBB2wt, n ¼ 26) focusing on immunologically relevant transcripts. Tumor-infiltrating immune cells were estimated
from gene expression profiles.
Results: Cytotoxic cells were significantly lower in EGFR-mutated tumors regardless of the affected exon, while Th1 cells were
significantly lower in EGFR-Ex20mut compared to EGFR/ERBB2wt tumors.We assessed the differentially expressed genes of
ERBB2-Ex20mut and EGFR-Ex20mut tumors compared to EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors. Of these, the
genes GUSB, HDAC11, IFNGR2, PUM1, RASGRF1 and RBL2 were up-regulated, while a lower expression of CBLC,
GBP1, GBP2, GBP4 and MYC was observed in all three comparison groups. The omnibus test revealed 185 significantly
(FDR ¼ 5%) differentially expressed genes and we found these four most significant gene expression changes in the study
cohort: VHL and JAK1 were overexpressed in ERBB2-Ex20mut and EGFR-Ex20mut tumors compared to both EGFR-Ex18/
19/21mut and EGFR/ERBB2wt tumors. RIPK1 and STK11IP showed the highest expression in ERBB2-Ex20mut tumors.
Conclusions: Targeted gene expression profiling is a promising tool to read out the characteristics of the tumor
microenvironment from routine diagnostic lung cancer biopsies. Significant immune reactivity and specific
immunosuppressive characteristics in ERBB2-Ex20mut and EGFR-Ex20mut lung ADC with at least some degree of
immune infiltration support further clinical evaluation of immune-modulators as partners of immune checkpoint
inhibitors in such tumors.
Key words: lung adenocarcinoma, EGFR exon 20 insertion, ERBB2 exon 20 insertion, immunosuppression, tumor
microenvironment
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Table 1. Clinicopathological characteristics of the study cohort comprising
98 lung adenocarcinomas

Variable ERBB2-
Ex20mut

EGFR-
Ex20mut

EGFR-Ex18/19/
21mut

EGFR/
ERBB2wt

Total number 19 13 40 26
Age, years, median
(min-max)

69 (40-84) 71 (52-83) 69.5 (46-83) 65.5 (53-89)

Sex, n (%)
Male 4 (21) 4 (31) 7 (17.5) 13 (50)
Female 15 (79) 9 (69) 33 (82.5) 13 (50)

Stage, n (%)
I 3 (16) 0 (0) 0 (0) 0 (0)
II 1 (5) 1 (8) 4 (10) 0 (0)
III 4 (21) 1 (8) 10 (25) 0 (0)
IV 11 (58) 11 (84) 26 (65) 26 (100)

Prior therapy, n (%)
Naïve 19 (100) 13 (100) 40 (100) 26 (100)
Chemotherapy 0 (0) 0 (0) 0 (0) 0 (0)
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INTRODUCTION

Non-small-cell lung cancer (NSCLC) is the leading cause of
cancer-related mortality worldwide.1 By means of genetic
profiling, the molecular classification of advanced NSCLC
based on oncogenic driver mutations became feasible.
Targeted therapies, mainly tyrosine kinase inhibition (TKI),
have improved the overall survival and quality of life for
patients with actionable driver mutations.2 Epidermal
growth factor receptor (EGFR)-activating mutations repre-
sent the most frequent targetable alteration with a preva-
lence of nearly 20% in Caucasians with lung
adenocarcinomas (ADCs) and show sensitivity to various
TKIs.3 However, exon 20 insertions, which account for 1%-
10% of all EGFR mutations, define a distinct subset of lung
ADC characterized by a poor response to all currently
approved EGFR-TKIs.4,5 Similarly, 12-bp in-frame insertions
and other mutations of the human epidermal growth factor
receptor 2 gene (HER2, also known as ERBB2) are oncogenic
drivers in 2%-3% of NSCLC6-8 that are resistant to EGFR-TKIs
and difficult to target with specific ERBB2 and dual EGFR/
ERBB2 inhibitors, as they result in steric hindrance of the
drug-binding pocket.9,10

Another potential therapeutic approach is the use of
immune checkpoint inhibitors (ICIs).11-13 However, the ef-
ficacy of immunotherapy in driver-dependent NSCLC is
inferior, possibly due to oncogene-induced alterations of
the tumor microenvironment (TME).14 The biological basis
for this partial response to ICI is poorly understood, but it is
interesting that ICI sensitivity appears to vary by type of
EGFR mutation in NSCLC. Some tumors with uncommon
EGFR mutations, including exon 20 insertions, show better
responses than tumors with common EGFR mutations.15

TME composition is generally recognized as a crucial
parameter for the efficacy of ICIs, but biological data,
especially for the patients with NSCLC with uncommon
EGFR or ERBB2 mutations, are scarce.16,17

We employed the NanoString nCounter technology
(NanoString Technologies, Seattle, WA) with the PanCancer
Human IO 360 Panel to investigate the TME in 98 formalin-
fixed and paraffin-embedded (FFPE) biopsies of clinically
annotated ERBB2 exon 20-positive, EGFR exon 20-positive,
EGFR exon 18/19/21-positive and EGFR/ERBB2-negative
advanced lung ADC.

MATERIALS AND METHODS

Study cohort

This retrospective study cohort included all ERBB2 exon 20-
positive and EGFR exon 20-positive tumors with available
material and appropriate RNA quality among patients
diagnosed and treated at the Heidelberg University Hospital
between 2007 and 2020 (Table 1). In addition, 40 EGFR
exon 18/19/21-positive and 26 EGFR/ERBB2-negative
(EGFR/ERBB2wt) lung ADC were analyzed as controls.
ERBB2 and EGFR status was determined at the Heidelberg
Institute of Pathology using our routine diagnostic workflow
of combined DNA and RNA sequencing starting from FFPE
lung biopsies.18 Tumors harboring ERBB2 exon 20 insertions
2 https://doi.org/10.1016/j.esmoop.2021.100253
were classified as ERBB2 exon 20 positive (ERRB2-Ex20mut),
tumors harboring EGFR exon 20 insertions were classified
as EGFR exon 20 positive (EGFR-Ex20mut) and tumors
harboring activating mutations in exon 18, 19 or 21 of EGFR
(EGFR-Ex18/19/21mut) were classified as EGFR exon 18/19/
21 positive (Supplementary Table S1, available at https://
doi.org/10.1016/j.esmoop.2021.100253).

All patients in this cohort were therapy-naïve, i.e.
received neither TKI nor chemo- or immunotherapy before
biopsy. For all patients, only biopsies from the primary
(lung) tumor with sufficient available messenger RNA
(mRNA) for expression profiling were analyzed. The study
was approved by the ethics committee of Heidelberg Uni-
versity (S-145/2017). Part of the sub-cohort of EGFR/
ERBB2wt tumors was also analyzed in two earlier studies
characterizing the TME in different patients with lung
ADC.19,20

Targeted gene expression profiling

RNA extracts passing the following steps of quality control
were considered as suitable for gene expression analysis:
RNA concentration of at least 10 ng/ml, sufficient RNA pu-
rity with an A260/A280 in the range of 1.7-2.3 and sufficient
RNA integrity with at least 90% of the fragments longer
than 100 nucleotides. Targeted mRNA expression profiling
was conducted on the NanoString nCounter gene expres-
sion platform (NanoString Technologies) using the Pan-
Cancer Human IO 360 Panel as described before.19,20

Data processing

Statistical analysis and graphics generation were carried out
using the programming language R (R Foundation for Sta-
tistical Computing, Vienna, Austria). Analysis of expression
data, estimation of the abundance of 14 immune cell
populations [B cells, CD45þ cells, CD56dim natural killer
(NK) cells, CD8þ T cells, cytotoxic cells, dendritic cells,
exhausted CD8þ T cells, macrophages, mast cells, neutro-
phils, NK cells, T cells, Th1 cells and regulatory T (Treg)
cells],20,21 calculation of the total score of tumor-infiltrating
lymphocytes (total TILs), hierarchical clustering and
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Figure 1. Immunological analysis of 98 lung adenocarcinomas by targeted gene expression profiling.
Clustering of the tumors by the abundance of 14 immune cell populations.
NK, natural killer; TILs, tumor-infiltrating lymphocytes; Treg, regulatory T.
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heatmap displays were carried out as described before.19,20

Abundances (or expression levels) above the mean appear
in yellow, and abundances below the mean in blue. Corre-
lations between clusters and genetic subgroups were
assessed using Fisher’s exact test.

A gene set enrichment analysis was carried out by
annotation categories given by NanoString. Significant en-
richments or depletions of groups of genes were assessed
using Fisher’s exact test.

Differences between ERRB2-Ex20mut, EGFR-Ex20mut,
EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors were
assessed for significance using the KruskaleWallis test as
omnibus test and the Wilcoxon test as post hoc test. The
BenjaminieHochberg procedure was used for P value
correction, and lists of cell populations or genes were
compiled controlling the false discovery rate (FDR) at 5%.
KEGG Mapper was used to visualize the signaling pathways
in cancer and the cytokineecytokine receptor network
(pathway hsa05200 and hsa04060).22

RESULTS

Overall, 19 ERRB2-Ex20mut and 13 EGFR-Ex20mut tumors
could be included in the study and compared to 40 EGFR-
Ex18/19/21mut and 26 EGFR/ERBB2wt lung ADC samples
(Table 1). Biopsies of each of the 98 primary tumors un-
derwent gene expression profiling with an assay of 770
genes focused on immune-related genes. The abundance of
14 immune cell populations in the TME was estimated from
the mRNA expression of marker genes and was reported on
log2 scale as described before.20,21

Overall level of immune cell infiltration

The levels of the immune cell populations were grouped by
hierarchical clustering and visualized in a heatmap
Volume 6 - Issue 5 - 2021
(Figure 1). The markers of cytotoxic cells, total TILs, T cells,
CD8þ T cells and exhausted CD8þ T cells clustered tightly
together (all pairwise Spearman correlations r > 0.74 with
P < 2.2 � 10�16). Moreover, macrophages and CD45þ cells
showed a strong positive correlation (r ¼ 0.66, P < 2.2 �
10�16). The tumors clustered together in two main immu-
nological groups, ‘cold’ tumors (n ¼ 56) and ‘hot’ tumors
(n ¼ 42). The ‘cold’ phenotype did not correlate with the
mutational status of the tumors (P ¼ 0.233), but was
the predominant pattern in 60%-77% of cases across the
mutated sample groups: 68% (13/19) of the ERRB2-
Ex20mut samples, 77% (10/13) of the EGFR-Ex20mut sam-
ples and 60% (24/40) of the EGFR-Ex18/19/21mut samples
could be assigned to the category of immunologically ‘cold’
tumors. In contrast, 32% (6/19), 23% (3/13) and 40% (16/
40), respectively, could be assigned to the immunologically
‘hot’ tumors. At the same time, there was a clear trend for
all mutated tumor samples collectively to show a colder
phenotype compared to EGFR/ERBB2wt group (P ¼ 0.068),
the majority of which could be assigned to the immuno-
logical group of ‘hot’ tumors (17/26 ¼ 65% versus 9/26 ¼
35%). While no significant difference could be shown
regarding the immunological categories between ERRB2-
Ex20mut samples (P ¼ 0.141), EGFR-Ex18/19/21mut sam-
ples (P ¼ 0.310) and EGFR/ERBB2wt samples, there was a
significant difference between EGFR-Ex20mut samples and
EGFR/ERBB2wt samples (P ¼ 0.018).

Of note, the levels of CD45þ cells and total TILs (calcu-
lated as in Danaher et al.21) did not correlate with the
mutation type, either (P ¼ 0.46 and P ¼ 0.10).

Specific immune cell populations

Three of 14 immune cell populations were significantly
different in ERRB2-Ex20mut, EGFR-Ex20mut, EGFR-Ex18/19/
https://doi.org/10.1016/j.esmoop.2021.100253 3
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21mut and EGFR/ERBB2wt tumors using omnibus testing
and multiple testing correction (Figure 2A, marked by a).
CD56dim NK cells were significantly lower in ERRB2-
Ex20mut compared to EGFR-Ex18/19/21mut tumors
[Figure 2B; fold change (FC) ¼ �1.8, P ¼ 0.00084]. Cyto-
toxic cells were significantly lower in EGFR-Ex20mut and
EGFR-Ex18/19/21mut compared to EGFR/ERBB2wt tumors
(Figure 2C; FC ¼ �2.5, P ¼ 0.0048 and FC ¼ �2.2, P ¼
4.1E�05). Here, ‘cytotoxic cells’ (marker genes: PRF1,
GZMA, GZMB, GZMH, GNLY, CTSW, KLRB1, KLRD1, KLRK1
and NKG7) refer to a broader cell population of granzyme-
releasing cells including cytotoxic T cell and cytotoxic NK
cells compared to the more specific population of ‘CD8þ T
cells’ (marker genes: CD8A and CD8B). Th1 cells were
significantly lower in EGFR-Ex20mut tumors compared to
EGFR/ERBB2wt tumors (Figure 2D; FC ¼ �3.3, P ¼ 0.0027).
Thus, EGFR-Ex20mut tumors stood out by significantly
lower cytotoxic cells and Th1 cells compared to EGFR/
ERBB2wt tumors.
Gene expression analysis

In omnibus testing, 257 of 770 investigated genes showed
significantly different expression levels in ERRB2-Ex20mut,
EGFR-Ex20mut, EGFR-Ex18/19/21mut and EGFR/ERBB2wt
tumors (FDR ¼ 5%, Supplementary Table S2, available at
https://doi.org/10.1016/j.esmoop.2021.100253). In detail,
148 genes were differentially expressed between ERRB2-
Ex20mut and EGFR/ERBB2wt tumors, 87 genes between
EGFR-Ex20mut and EGFR/ERBB2wt tumors and 63 genes
between EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors.
In addition, we determined these genes that are signifi-
cantly up-regulated or show lower expression in this three
comparison groups ERRB2-Ex20mut versus EGFR/ERBB2wt,
EGFR-Ex20mut versus EGFR/ERBB2wt and EGFR-Ex18/19/
21mut versus EGFR/ERBB2wt exclusively (Supplementary
Table S3, available at https://doi.org/10.1016/j.esmoop.
2021.100253). Forty genes were up-regulated (Figure 3A)
and 36 genes showed lower expression levels (Figure 3B) in
the ERRB2-Ex20mut versus EGFR/ERBB2wt group. The
EGFR-Ex20mut versus EGFR/ERBB2wt group showed 18
up-regulated genes and 14 lower expressed genes. In the
EGFR-Ex18/19/21mut versus EGFR/ERBB2wt group, 13
genes were up-regulated and 20 genes were lower
expressed. Furthermore, we carried out for the differen-
tially expressed genes in each comparison group a gene set
enrichment analysis covering the 25 signaling pathways and
functional categories annotated in this panel. Interestingly,
27.6% (8/29) of the genes with low expression in the EGFR-
Ex18/19/21mut comparison group showed a significant
enrichment (P ¼ 0.047) for the functional category of
cytotoxicity (Supplementary Table S2).

A common feature of all three comparison groups is the
up-regulation of the genes GUSB, HDAC11, IFNGR2, PUM1,
RASGRF1 and RBL2 and the lower expression of the genes
CBLC, GBP1, GBP2, GBP4 and MYC.
4 https://doi.org/10.1016/j.esmoop.2021.100253
The cytolytic activity was calculated as average of
granzyme A (GZMA) and perforin (PRF1) expression.23 The
genes GZMA and PRF1 showed significantly lower
expression levels in the three mutated sample groups
compared to the EGFR/ERBB2wt samples (Supplementary
Figure S1A and B, available at https://doi.org/10.1016/j.
esmoop.2021.100253).

The comparison of the ERRB2-Ex20mut and EGFR-
Ex20mut samples with the EGFR/ERBB2wt samples
revealed a shared group of 19 up-regulated and a group of
24 genes with lower expression levels (Figure 3A and B).

The up-regulation of the genes AKT1, ARID1A, C5, CDH1,
ERBB2, GPR160, HES1, PGPEP1, PRLR and SMAP1 and the
lower expression levels of the genes AREG, CD274, CXCL10,
FASLG, FOSL1, IFIT3, OASL and S100A8 were a shared
feature of the ERRB2-Ex20mut and the EGFR-Ex18/19/
21mut group compared to the EGFR/ERBB2wt group.

Interestingly, comparing the two EGFR-mutated groups
with the EGFR/ERBB2wt group, the EGFR gene is the only
gene that shows different expression levels (up-regulation)
in both groups, but not in the ERBB2-mutated group
(Figure 3A and Supplementary Figure S1C, available at
https://doi.org/10.1016/j.esmoop.2021.100253).

Compared to the EGFR/ERBB2wt samples, both the
EGFR-Ex18/19/21mut and the ERRB2-Ex20mut samples,
but not the EGFR-Ex20mut samples, showed a higher
ERBB2 expression (Figure 3A and Supplementary Figure
S1D, available at https://doi.org/10.1016/j.esmoop.2021.
100253).

To examine whether there is a difference in gene
expression levels between the individual mutation groups
(ERRB2-Ex20mut, EGFR-Ex20mut and EGFR-Ex18/19/
21mut), a list of 185 significantly (FDR ¼ 5%) differentially
expressed genes emerged and was analyzed in a heatmap
(Figure 4). This gene list partitioned the mutated tumor
samples into three sample clusters: S1 including 95% (39/
41) of EGFR-Ex18/19/21mut samples, S2 including 78% (18/
23) of ERRB2-Ex20mut samples and S3 including 100% (8/8)
of EGFR-Ex20mut samples. In these sample clusters, we
detected three gene clusters (G1, G2 and G3) with different
expression patterns: The sample cluster S1 with the highest
proportion of EGFR-Ex18/19/21mut samples was charac-
terized by high expression of gene cluster G3, which in-
cludes one B-cell marker (BLK), one marker for dendritic
cells (CCL13), one mast cell marker (HDC) and one marker
for CD56dim NK cells (KIR3DL). The sample clusters S2 and
S3 with the highest proportion of ERBB2 Ex20- and EGFR
Ex20-mutated samples were characterized by high expres-
sion of gene cluster G2 which includes two neutrophil
markers (CEACAM3, CSF3R), one T-cell marker (CD3E), one
marker for exhausted CD8þ T cells (LAG3) and two B-cell
markers (CD19, FAM30A) and a low expression of gene
cluster G3. For gene cluster G1, which includes the genes
ERBB2, EDN1 and ABCF1, we observed high expression in
sample cluster S2 and an intermediate expression in sample
clusters S1 and S3.
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Based on this list of 185 significantly (FDR ¼ 5%) differ-
entially expressed genes detected by the omnibus test, we
found these four most significant gene expression changes in
the study cohort (Supplementary Figure S2A-D, available
at https://doi.org/10.1016/j.esmoop.2021.100253): VHL
was overexpressed in ERRB2-Ex20mut and EGFR-Ex20mut
tumors compared to both EGFR-Ex18/19/21mut and EGFR/
ERBB2wt tumors. RIPK1 showed the highest expression in
ERRB2-Ex20mut tumors, an intermediate expression in EGFR-
Ex20mut tumors and the lowest expression in EGFR-Ex18/
19/21mut and EGFR/ERBB2wt tumors. STK11IP showed the
highest expression in ERRB2-Ex20mut tumors, an interme-
diate expression in EGFR-Ex20mut tumors, a lower expres-
sion in EGFR-Ex18/19/21mut tumors and the lowest
expression in EGFR/ERBB2wt tumors. JAK1 showed a similar
expression pattern as VHL.
Analysis of signaling pathways in cancer

In addition to estimation of immune cell populations, gene
expression analysis may promote the understanding of
complex mechanisms that contribute to the development
and progression of cancer. Of 531 genes annotated in the
KEGG map of pathways in cancer, 150 genes (28%) were
covered by the used targeted expression assay. Of these,
39 genes (26%) were differentially expressed, 24 between
ERRB2-Ex20mut and EGFR/ERBB2wt tumors, 7 between
EGFR-Ex20mut and EGFR/ERBB2wt tumors and 10
between EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors.
We assigned the changes to the map of the pathways in
cancer (Supplementary Figure S3A-C, available at https://
doi.org/10.1016/j.esmoop.2021.100253). Compared to
EGFR/ERBB2wt tumors, we observed in mutated tumors
expression changes mainly in genes related to the pathways
of apoptosis, Wnt signaling and hypoxia-inducible factor 1
signaling (Supplementary Table S4A-C, available at https://
doi.org/10.1016/j.esmoop.2021.100253).
Analysis of the cytokineecytokine receptor signaling
network

Beyond the estimation of immune cell abundance in the
TME, gene expression profiling offers the opportunity to
gain insight into the regulation of immune response. Of 295
genes annotated in the KEGG map of cytokines and cytokine
receptors, 119 genes (40%) were covered by the used tar-
geted expression assay. Of these, 23 genes (19%) were
differentially expressed, 17 between ERRB2-Ex20mut and
EGFR/ERBB2wt tumors, 8 between EGFR-Ex20mut and
EGFR/ERBB2wt tumors and 7 between EGFR-Ex18/19/
21mut and EGFR/ERBB2wt tumors (Figure 3). Compared
to EGFR/ERBB2wt tumors, four genes were differently
(A) FCs of the immune cell levels between ERBB2-Ex20mut, EGFR-Ex20mut, EGFR-Ex18
significant differences. aSignificant in omnibus test. (B-D) Absolute levels of CD56dim N
and upper quartile. If there are significant differences, the FC and the P value are given
Ex20mut compared to EGFR-Ex18/19/21mut tumors. (C) Significantly lower cytotoxi
tumors. (D) Significantly lower Th1 cells in EGFR-Ex20mut compared to EGFR/ERBB2
NK, natural killer; Treg, regulatory T.
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expressed in both ERRB2-Ex20mut and EGFR-Ex20mut tu-
mors, while nine genes showed differential expression
solely in ERRB2-Ex20mut tumors and three genes showed
differential expression solely in EGFR-Ex20mut tumors.
Three genes were differentially expressed solely in EGFR-
Ex18/19/21mut tumors compared to EGFR/ERBB2wt tu-
mors, while no cytokine or cytokine receptor gene showed
differential expression in both EGFR-Ex20mut and EGFR-
Ex18/19/21mut tumors. The genes CXCL10 and FASLG
showed a lower expression in ERRB2-Ex20mut and EGFR-
Ex18/19/21mut tumors, while PRLR was up-regulated
compared to EGFR/ERBB2wt tumors. We assigned the
changes to the map of the interaction of cytokines and
receptors (Supplementary Figure S4A-C, available at https://
doi.org/10.1016/j.esmoop.2021.100253).

Interestingly, the overexpression of interferon-g receptor
2 (IFNGR2) was a shared feature of all three comparison
groups. IFNGR2 forms the unit of the interferon-g receptor
which is needed to stimulate activation of the JAK/STAT
signaling pathway by ligand binding.24 ERBB2-Ex20mut and
EGFR-Ex20mut tumors showed, compared to EGFR/
ERBB2wt tumors, an underexpression (FC ¼ 2.5, P ¼ 3.2E06
and FC ¼ 1.9, P ¼ 0.0039) of IL15, a cytokine that is
required for NK cell development. IL2, an interferon that is
important for the proliferation of lymphocytes, was over-
expressed in EGFR-Ex18/19/21mut tumors compared to
EGFR/ERBB2wt tumors (FC ¼ 3.8, P ¼ 0.00012). In EGFR-
Ex20mut tumors, we observed, compared to EGFR/
ERBB2wt tumors, an underexpression (FC ¼ �3.7, P ¼
0.002) of thymic stromal lymphopoietin (TSLP), a growth
factor that contributes to the generation of natural Treg
cells in thymus.25 FASLG, a cytokine that binds to the re-
ceptor FAS that transduces apoptotic signals in cells, was
underexpressed in ERRB2-Ex20mut and EGFR-Ex18/19/
21mut tumors compared to EGFR/ERBB2wt tumors
(FC ¼ �3.9, P ¼ 0.0018 and FC ¼ �4.2, P ¼ 6.3E�05), an
observation possibly related to the lower abundance of
cytotoxic cells in EGFR-positive tumors. Prolactin receptor
(PRLR), which was suggested as a therapeutic target in
subgroups of breast and of prostate cancer,26 was overex-
pressed in ERRB2-Ex20mut and EGFR-Ex18/19/21mut tu-
mors compared to EGFR/ERBB2wt tumors (FC ¼ 8.2,
P ¼ 0.00028 and FC ¼ 4.3, P ¼ 0.0012).
DISCUSSION

In the first part of our analysis, we detected two groups of
immunologically ‘cold’ and ‘hot’ tumors, which were not
restricted to one of the specific subgroups (ERRB2-Ex20mut,
EGFR-Ex20mut, EGFR-Ex18/19/21mut or EGFR/ERBB2wt).
However, 77% (10/13) of the EGFR-Ex20mut tumors could
be assigned to the immunological group of ‘cold’ tumors
/19/21mut and EGFR/ERBB2wt lung adenocarcinomas. Brightly colored bars show
K cells, cytotoxic cells and Th1 cells. Distributions are shown with median, lower
above the respective bracket. (B) Significantly lower CD56dim NK cells in ERBB2-

c cells in EGFR-Ex20mut and EGFR-Ex18/19/21mut compared to EGFR/ERBB2wt
wt tumors.
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Figure 3. Differentially expressed genes in ERBB2-Ex20mut, EGFR-Ex20mut and EGFR-Ex18/19/21mut compared to EGFR/ERBB2wt lung adenocarcinomas.
(A) Venn chart with significantly up-regulated genes. (B) Venn chart with significantly lower expressed genes.
Underlined and in italics: cytokine genes.
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Figure 4. Heatmap with 185 significantly (FDR [ 5%) differentially expressed genes.
These gene expression levels partitioned the mutated tumor samples into three sample clusters: S1 including 95% (39/41) of EGFR-Ex18/19/21-mutated samples, S2
including 78% (18/23) of ERBB2-Ex20-mutated samples and S3 including 100% (8/8) of EGFR-Ex20-mutated samples. In these sample clusters, we detected three gene
clusters (G1, G2 and G3) with different expression patterns.
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compared to 65% (17/26) of the EGFR/ERBB2wt assigned to
‘hot’ tumors (P ¼ 0.018). The analysis of specific cell pop-
ulations revealed similar modifications of the TME in EGFR-
Ex20mut and EGFR-Ex18/19/21mut compared to EGFR/
ERBB2wt tumors, respectively: While we observed a lack of
cytotoxic cells and Th1 cells in EGFR-Ex20mut samples,
EGFR-Ex18/19/21mut samples displayed only an absence of
cytotoxic cells, confirmed by gene set enrichment analysis.
This suggests similar underlying mechanisms that prevent a
well-balanced immune response. EGFR-mutant NSCLC has a
unique TME27 which presents with both significantly
reduced levels of CD8þ TIL28-30 and diminished CD8þ TIL
function,31 leading to impaired cytotoxicity and resulting
poor response to ICIs. In addition, EGFR-TKIs may modulate
the immune response by regulating TME.27
8 https://doi.org/10.1016/j.esmoop.2021.100253
Recently, it was described in EGFR-mutated lung cancer
cells that the up-regulation of CBL proto-oncogene c (CBLC)
contributes to tumor progression due to dysregulation of
activated EGFR. In contrast, we observed a lower expression
of CBLC in all three mutated sample groups compared to
EGFR/ERBB2wt tumors. CBLC is a protein which has E3
ubiquitin ligase activity toward activated receptor tyrosine
kinases. CBLC knockdown renders EGFR-mutant NSCLC cells
more sensitive to TKI treatments, probably by inhibiting the
transport of activated EGFR to the nucleus. Patients with
NSCLC harboring EGFR mutations might benefit from
combinational therapies with CBLC inhibition and TKI
administration.32 In addition to CBLC underexpression, we
found the guanylate-binding proteins GBP1, GBP2 and GBP4
were underexpressed in all three comparison groups. As
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lately shown by in vitro and in vivo experiments, up-
regulated GBP1 expression is associated with poor prog-
nosis in patients with NSCLC and seems to contribute to
erlotinib resistance, while decreased GBP1 expression
seems to have the opposite effect. Functional testing
confirmed that GBP1 regulates epithelialemesenchymal
transition in NSCLC.33 Recently, it was shown that GBP1
and GBP4 are IFNG-dependent and were directly co-
expressed with CD8A in colorectal cancer. In lung squa-
mous carcinoma, up-regulated IFNG correlates with
up-regulation of GBP1 and GBP4.34 Furthermore, we
observed underexpression of cellular oncogene MYC in all
three mutated sample groups compared to EGFR/ERBB2wt
tumors. These results match the results of a more recent
study that revealed an association of MYC overexpression
with the histological subtype in lung cancer: In ADC, MYC
expression was normal, while in squamous cell carcinoma
MYC overexpression was present in >50% of tested
samples.35

The up-regulation of the genes RBL2, PUM1, IFNGR2,
HDAC11, GUSB and RASGRF1 is a shared feature of all three
comparison groups in our cohort. The retinoblastoma-like
protein RBL2, a key factor in cell cycle regulation and
apoptosis, was lately identified as a direct substrate of the
AKT kinase which is known as a key antiapoptotic factor
that is hyperactive in multiple cancer types. AKT inhibition
increased RBL2 expression and triggered apoptosis in both
lung cancer and mesothelioma cell lines.36 MicroRNA
(miRNA) plays a major role in the biological behavior of
cancer cells by regulating the expression of target genes.
Most recently, it was reported that PUM1 could be the
target of miR-411-5p, for which overexpression may inhibit
proliferation and promote apoptosis of NSCLC cells.37

Recent studies demonstrated that lung ADC cells showed
IFNG hypo-responsiveness even though there were no dif-
ferences in the expression of IFNGR1 and IFNGR2.38 Our
findings of overexpression of histone deacetylase HDAC11
correspond to those of a recent study which reports that
high HDAC11 levels in human lung tumor tissues correlate
with poor prognosis. Inhibition of HDAC11 not only signif-
icantly reduces self-renewal capacity of cancer stem cells
from NSCLC but also decreases SOX2 expression that is
essential for their maintenance.39

Patients with NSCLC with EGFR exon 20 insertions show
very poor response rates to ICIs, especially when given in
the first-line therapy setting.40 This could indicate that
these tumors have a more immunosuppressed microenvi-
ronment than, for example, ERBB2 Ex20-mutated tumors. In
our cohort, EGFR-Ex20mut tumors stood out by significantly
lower cytotoxic cells and Th1 cells, while ERRB2-Ex20mut
samples exhibited a lack of CD56dim NK cells. Furthermore,
we observed in ERRB2-Ex20mut samples a significant up-
regulation of TNFRSF4 (also known as OX40), a cos-
timulatory molecule which modifies T-cell response,41 and
CXCR4, which is an alpha-chemokine receptor specific for
stromal-derived-factor-1 (SDF-1 also known as CXCL12), a
molecule endowed with potent chemotactic activity for
lymphocytes.42 In a phase I study of patients with refractory
Volume 6 - Issue 5 - 2021
metastatic solid tumors, administration of a murine
agonistic anti-human OX-40 monoclonal antibody resulted
in an increased proliferation of CD8þ and CD4þFoxP3�T
cells, thus restoring dendritic cell and antitumor activity.43 It
was shown that many NSCLC cell lines express high levels of
CXCR4 and that SDF-1-activated CXCR4 promotes migration
and invasion of these cell lines in vitro.44 Furthermore, we
observed a significant underexpression for two molecules
belonging to the tumor necrosis factor (TNF) superfamily:
the cytokine TNFSF12 (aka TWEAK), which can induce
apoptosis via multiple pathways of cell death in a cell type-
specific manner, and for CD70, which is expressed on highly
activated lymphocytes.43 Lower expression levels of TWEAK,
respectively, CD70 are described in NSCLC, especially for
tumors carrying activating EGFR mutations.45,46 Addition-
ally, we detected a significant down-regulation of IFNG. This
observation might be related to the lower abundance of
CD56dim NK cells in ERRB2-Ex20mut tumors. Mature
(CD56dim) NK cells are generally considered more cytotoxic
and carry out antibody-dependent cell-mediated cytotox-
icity, whereas immature (CD56bright) NK cells are effective
producers of IFNG, which is conventionally recognized as an
inflammatory cytokine that plays a central role in antitumor
immunity.47 Low levels of IFNG in the TME increase the risk
of tumor metastasis during immunotherapy and are closely
associated with poor prognosis in patients with NSCLC.48

The findings of a recent phase Ib trial showed that the
administration of nivolumab in combination with an IL15
superagonist led to expansion of NK cells and CD8þ T cells
as well as raised serum concentration of IFNG in patients
with NSCLC.49

In EGFR-Ex20mut samples, we observed significant up-
regulation of IFNA and CSF1R. Recent data demonstrated
that upon T-cell receptor recognition, specific NSCLC tumor
cells strongly induced the expression of TNFSF10, an
apoptosis-inducing cytokine, on CD4þ but not on CD8þ
cytotoxic T-cell clones. This expression was slightly increased
in the presence of the immune modulating cytokine IFN-a,
leading to tumor growth inhibition.50 CSF1R, a receptor for
colony stimulating factor 1, is overexpressed in many
cancers.51

Interestingly, the proinflammatory cytokine IL2 was up-
regulated for EGFR-Ex18/19/21mut samples, while the
chemokine CXCL11 and TNF receptor superfamily member
1A TNFRSF1A (aka TNFR1) were lower expressed. IL2 is
known to modulate the development and expansion of
regulatory T cells exerting immunosuppressive effects.52

EGFR-positive tumors feature a CD8þ-deprived environ-
ment that is modulated by lower expression levels of
CXCL11, the ligand for CXCR3 on cytotoxic T cells, negatively
modulating CD8þ T-cell migration.53,54 TNFR1 is one of the
major receptors for the TNF-a, which mediates apoptosis
and regulates inflammation. It was described that MEK in-
hibition leads to increased cell surface expression of TNFR1
and may sensitize tumor cells to TNFA-induced apoptosis.
This finding suggests that therapies that enhance cytokine
production in the TME (e.g. ICI) may synergize with MEK
inhibitors.55
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It was shown that protein expression levels of chemokine
CXCL16 which regulates inflammation, growth hormone
receptor (GHR) and PRL were elevated in lung tumor tissue,
which was associated with decreased survival of patients
with lung cancer.56,57 We observed an up-regulation of
CXCL16, a chemokine, playing an important role in inflam-
matory regulation, and GHR in ERRB2-Ex20mut and EGFR-
Ex20mut tumors. The results of a recent study suggested
that extracellular PRL enhanced NSCLC cell proliferation and
promoted JAK2/STAT3 signaling activity through GHR, but
not PRLR as previously reported in breast and prostate
cancers.26,57 The regulation of autocrine PRL and GHR levels
might evolve into a therapeutic strategy in patients with
NSCLC.

Lately, two novel and irreversibly binding TKIs were tested
in clinical trials: mobocertinib, which binds to EGFR via co-
valent modification of the Cys797 residue in the EGFR active
site,58 and poziotinib, a covalent and potent inhibitor of
EGFR and ERBB2 exon 20 insertions.59 Despite encouraging
earlier results for the efficacy of poziotinib, the Zenith 20 trial
revealed a low response rate of 14% in patients with NSCLC
with EGFR exon 20 insertions.9 Moreover, both TKIs showed
high rates of EGFR wild-type-driven toxicity, limiting their
clinical applicability.2 Recently, amivantamab, an EGFR-MET
bispecific antibody with immune cell-directing activity
demonstrated a response rate of 40% with good tolerability
in pretreated patients with NSCLC harboring EGFR exon 20
insertions.60,61 To date, no targeted therapies are approved
for patients with NSCLC with EGFR or ERBB2 exon 20-
activating mutations, which presents an unmet clinical need.

In conclusion, our data revealed heterogeneous types of
TME modification in ERBB2-positive and EGFR-positive
NSCLC, respectively, each accompanied by a specific
pattern of cytokine signaling. Given this complexity, it is
essential to identify the optimal sequence of treatment and
strategies for patients with NSCLC with ERBB2/EGFR mu-
tations. Moreover, mechanisms to induce long-lasting anti-
tumor activity in the TME and to maximize the effect of
immunotherapy in patients can still be improved. This may
be achievable by tailored combinations of ICIs with radio-
and chemotherapy, or by more subtle, specific approaches
that either inhibit specific immunosuppressive agents
enriched in or supplement and boost proinflammatory
molecules depleted in ‘cold’ tumors. There is also a clear
unmet need for establishing prognostic molecular and
clinical markers, dosages, schedules, the optimal sequence
of treatment and strategies when combining immuno-
therapy with other therapies. There is a substantial need to
investigate the variety of immune reactivity in oncogene-
addicted NSCLC, leading to the detection of immunomod-
ulators currently explored in various pre-clinical studies and
clinical trials.
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