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Introduction: One of the causes for poor vasculogenesis of diabetes mellitus (DM) is known to rise from
the dysfunction of bone marrow-derived endothelial progenitor cells (BM EPCs). However, the origin of
its cause is less understood. We aimed to investigate the effect of oxidative stress in early stage of
diabetic BM-EPC and whether its vasculogenic dysfunction is caused by oxidative stress.
Methods: Bone marrow c-KitþSca-1þLin� (BM-KSL) cells were sorted from control and streptozotocin-
induced diabetic C57BL6J mice by flow cytometry. BM-KSLs were then assessed for vasculogenic po-
tential (colony forming assay; EPC-CFA), accumulation of intracellular ROS (CM-H2DCFDA), carbonylated
protein (ELISA), anti-oxidative enzymes expression (RT-qPCR) and catalase activity (Amplex Red).
Results: Compared to control, DM BM-KSL had significantly lower EPC-CFUs in both definitive EPC-CFU
and total EPC-CFU (p < 0.05). Interestingly, the oxidative stress level of DM BM-KSL was comparable and
was not significantly different to control followed by increased in anti-oxidative enzymes expression and
catalase activity.
Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the
oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that
primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing
the expression of anti-oxidative enzymes.

© 2015, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. All
rights reserved.
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Consistent data have supported that EPC is dysfunctional in dia-
betes, as represented by impairment in proliferation [3e5],
migration/mobilization [6e8], colony forming capacity [7e9], and
tubular formation [6].

Oxidative stress is thought as one of the factors responsible for
impairment of neovascularization and complications in diabetes
[10e12]. Reactive oxygen species (ROS) induced in diabetes down
regulates HIF-1a and weakening of SDF-1a and VEGF signaling
which disturb cells mobilization into injury site [13,14]. ROS also
thought to be responsible for EPC reduction in diabetes through
ROS-mediated apoptosis [15]. Nevertheless, previous studies on the
effect of oxidative stress on EPC dysfunction are performed on
differentiated EPC from cultured of peripheral blood (PB) or BM
mononuclear cells. The study of oxidative stress on early stage dia-
betic EPCs from BM hematopoietic population is not yet elucidated.

Recently Masuda et al., developed an EPC-colony forming assay
(EPC-CFA) to distinguish vasculogenic function of primitive or early
stage EPCs from hematopoietic stem cell population such as c-Kitþ/
Sca-1þ/Lin� (KSL) cells in mice and CD34þ or CD133þ cells in
human. EPC colony forming unit (EPC-CFU) consists of two
different EPC colonies: small (primitive; pEPC-CFU) colonies consist
of highly immature and proliferative population of EPCs and large
(definitive; dEPC-CFU) with high differentiation potential in ready
state for vasculogenesis [7,16,17].

Using EPC-CFU, our group reported vasculogenic impairment of
early stage diabetic BM-KSL (DM BM-KSL) by decreased number of
definitive and total EPC-CFU [7,9], however the mechanism or the
direct cause is not yet elucidated. Since previous reports show that
oxidative stress is one of the causes of vasculogenic impairment in
cultured EPCs, herein we will explore the effect of oxidative stress
on vasculogenic potential of diabetic BM vascular progenitor cells
from KSL cell population. Using QQc system as facilitating tool, we
aim to investigate whether improvement in diabetic EPC post-QQc
will follow by decrease in oxidative stress level. To our knowledge,
this is the first study to investigate whether diabetic vasculogenic
dysfunction resides on the oxidative stress damage of primitive
bone marrow EPCs.

2. Materials and methods

2.1. Animals and STZ-induced diabetic mouse model

All the experimental protocols described were approved by the
Animal Care Committees of Juntendo University. We used male 8
weeks old C57BL/6J (20e25 g) mice (Sankyo Laboratory) which
were housed in specific pathogen-free barrier facilities and main-
tained under a 12-hour light/dark cycle. Diabetes (DM) were
induced by intraperitoneal injection of Streptozotocin (STZ, 50 mg/
kg, Sigma) dissolved in citrate buffer (pH 4.5) for 5 consecutive
days, as previously described [9,18]. Mice with blood glucose level
equal or higher than 300 mg/dl were decided as diabetic mice
which maintained at least for 4 weeks.

2.2. Bone marrow (BM) derived KSL cells isolation

BM cells were harvested from femur, tibia, pelvis and humerus
bones of DM and control mice as previously described [9]. Eryth-
rocytes were removed by ammonium chloride. The cells were then
labeled by biotin-conjugated antibody cocktail (CD3e, CD45/B220,
Ly-6G and Ly-6C, CD-11b, TER-119) (all antibodies obtained from
eBioscience) and followed by anti-biotin micro-beads depletion by
AutoMACS (Militenyi) to obtain lineage negative (Lin�) cells. The
Lin� cells were stained with APC-labeled Sca-1 and PE-labeled c-
Kit antibodies (eBioscience), and sorted for c-KitþSca-1þLin� (KSL)
cells by FACS Aria (Becton Dickinson).
2.3. Serum free quantity and quality culture (QQc) system

Previously our group established a serum-free quality and
quantity culture (QQc) system containing thrombopoietin (TPO),
VEGF, Stem Cell Factor (SCF), IL-6 and Flt-3 ligand as an optimal
quality and quantity culture for EPC expansion to enhance their
vasculogenic and regenerative potential [19]. BM-KSL of 1 � 103

cells were cultured in QQc system as previously described [9,19,20].
Seven days later cells were harvested and the collected cells were
grouped accordingly as DM post-QQc for DM BM-KSL cells.

2.4. EPC colony formation assay (EPC-CFA)

EPC vasculogenic CFA was performed and characterized as
previously described [7,9,16,17,20]. Briefly a total of 500 BM-KSL
cells/dish suspends in semi-solid culture medium for EPC-CFA
and were seeded into 35 mm primaria culture dish. The fre-
quency of primitive/small (pEPC-CFU), definitive/large (dEPC-CFU)
and total colony forming unit (tEPC-CFU) were assessed on day-7
by two investigators who were blinded to the experimental con-
ditions. Experiments were performed in triplicate.

2.5. Intracellular ROS detection

Intracellular ROS levels were evaluated with 5-(and -6)-chlor-
omethyl-20,70-dichlorodihydrofluorescein diacetate, acetyl ester
(CM-H2DCFDA, Invitrogen) by followed the manufacture's protocol.
Freshly prepared BM-KSL and post-QQc BM-KSL cells from control
and or diabetic mice were labeled with CM-H2DCFDA and incu-
bated for 15 min at 37 �C. The CM-H2DCFDA labeled cells were then
analyzed using FACS Calibur (Becton Dickinson).

2.6. Protein carbonyl detection for oxidative stress marker

Protein was extracted with RIPA buffer (Thermo Scientific) with
protease inhibitor cocktail (Roche). Protein was derivatized with
DNPH (2,4-dinitrophenyl hydrazine) as previously described [21].
After removing the excess of DNPH, 96-well ELISA plates were
coated at 4 �C overnight with samples. After removing them, the
wells were blocked with 3%BSA/PBS at 37 �C for 1 h. Anti DNPH
antibody (1:150, Millipore) was added and incubated at 37 �C for
1 h. HRP-labeled anti-rabbit antibody (1:300, Millipore) was added
and incubate at 37 �C for 1 h (both first and secondary antibodies
were part of Oxyblot Kit, Millipore, Chemicon International). To
develop color the o-phenylendiamin dihydrochloride (Sigma) was
added for 40 min and stopped by 1 N sulfuric acid. The absorbance
was measured at 492 nm [22]. The result presents as ratio of car-
bonylated protein.

2.7. Quantitative real-time PCR (RT-qPCR)

Total RNA was extracted using Trizol (Invitrogen) following the
manufacturer's protocol. cDNA was synthesized using SuperScript
First-Strand Synthesis System (Invitrogen). The genes expression
was measured on an ABI 7500 FAST Real-Time PCR system using
TaqMan probes 18S rRNA (ribosomal RNA control reagents),
MnSOD (Sod2, Mm01313000_m1), catalase (Cat, Mm004379
92_m1) and glutathione Peroxidase-1 (Gpx1, Mm00656767_g1)
(Life Technologies). Relative expression of the target gene was
demonstrated by the DDCt.

2.8. Catalase activity

BM-KSL cells (as minimal 2 � 104 cells) were extracted in 0.2%
Triton X-100 in 0.1 M phosphate buffer (pH 7.7) and extracts were
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prepared on a 96-well plate and incubate with 40 mM H2O2 for
30 min at room temperature. Catalase activity was measured as the
residual H2O2 levels by Amplex red catalase assay kit (Invitrogen)
following the manufacture's protocol.
2.9. Microarray analysis

RNA was isolated from sorted fresh BM-KSL from both control
and diabetic group, using RNeasy Micro Kit (Qiagen) according to
manufacturer's protocols. Microarray was performed using one
color microarray-based gene expression analysis (Agilent Tech-
nologies) as described in manufacturer's instructions. The expres-
sion values for the genes were determined using Gene Spring GX
software version 11. The genes analysis was based on ontology
analysis. All experiments were done in duplicates.
Fig. 1. Improvement of DM BM-KSL vasculogenic dysfunction by culturing in QQc system. a
which showed increased the frequency of all stages of EPC-CFU. DM BM-KSL post-QQc sh
(p < 0.0001), and total EPC-CFU (tEPC) (p < 0.0001), respectively compared to DM pre-QQc.
intracellular ROS level (p < 0.05) compared to control. c. Ratio of carbonylated protein (D
(p < 0.05) compared to pre-QQc.
2.10. Statistical analysis

Comparison of the two groups with normally distributed vari-
able was performed using student t test analyzed by GraphPad
Prism 5. Statistical significance was defined as a value of p < 0.05.
All data are presented as the mean ± SEM. In this study the ex-
periments were performed in three to five samples with two to
three mice/sample.

3. Results

3.1. Diabetic BM-KSL is dysfunction and restored by QQc system

EPC vasculogenic function was assessed by EPC-CFU number
[9,16,17]. DM BM-KSL have significantly lower number of dEPC-CFU
(6.0 ± 0.53 vs. 9.56 ± 0.77; p < 0.05) and tEPC-CFU (39.33 ± 1.93 vs.
. Diabetic BM-KSLs dysfunction can be restored by culturing in QQc system (post-QQc)
owed increase in primitive EPC-CFU (pEPC) (p < 0.0001), definitive EPC-CFU (dEPC)
b. Intracellular ROS level in DM BM-KSL. Post-QQc of DM BM-KSLs showed decrease in
NPH) in DM BM-KSL. Post-QQ DM BM-KLS showed decrease in carbonylated protein
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46.0 ± 1.17; p < 0.05) compared to control BM-KSL. To investigate
the key factor restoring vasculogenic dysfunction in diabetic EPC
we used QQc culture system as previously described [9]. First we
compared DM BM-KSL in pre-QQc (fresh BM-KSL) and post-QQc for
EPC-CFU number to assess vasculogenic potential. DM post-QQc
demonstrated significant increase in primitive EPC-CFU (pEPC)
(3.72 ± 0.15 vs. 1.52 ± 0.01, p < 0.0001), definitive EPC-CFU (dEPC)
(3.07 ± 0.27 vs. 0.77 ± 0.04, p < 0.0001), and total EPC-CFU (tEPC)
(3.79 ± 0.15 vs. 1.59 ± 0.02, p < 0.0001), respectively compared to
DM pre-QQc (Fig. 1a). To determine whether QQc restores DM BM-
KSL vasculogenic function followed by changes in ROS level, we
investigated intracellular ROS level in DM BM-KSL pre and post-
QQc. Intracellular ROS level of DM BM-KSL post-QQc was
decreased (1.05 ± 0.01) compared to DM BM-KSL pre-QQc
(2.05 ± 0.18; p < 0.05) (Fig. 1b). In addition we also verified the
carbonylated protein in DM BM-KSL pre and post-QQc. DM BM-KSL
post-QQc demonstrated significant decreased in carbonylated
protein level compare to DM BM-KSL pre-QQc (0.4 ± 0.05 vs.
0.987 ± 0.08, p < 0.05) (Fig. 1c). Taken together our findings suggest
that QQc system restored vasculogenic potential of DM BM-KSL
followed by decreased in ROS level.
3.2. Oxidative stress levels are not higher in diabetic BM-KSLs
compared to controls

We next investigate the oxidative stress levels of DM BM-KSLs
compared to control. Interestingly intracellular ROS level was
comparable between DM BM-KSL cells (2.05 ± 0.18) and control
(1.95 ± 0.17; p > 0.05) (Fig. 2a). The carbonylated protein level of
DM BM-KSLs (0.987 ± 0.08) also in similar amount compared to
controls (1.0 ± 0.03, p > 0.05) (Fig. 2b). These findings suggest that
oxidative stress on DM BM-KSL is not significantly different
compared to control BM-KSL cells.
Fig. 2. Oxidative stress level in BM-KSLs. a. Intracellular ROS in DM BM-KSL was comparable
carbonylated protein in DM BM-KSL verified the result that oxidative stress in DM BM-KSL
3.3. Diabetic BM-KSLs have higher expression of anti-oxidative
genes compared to controls

To screen the gene expression profile of BM-KSL cells for
“cellular response to oxidative stress” (GO term 006979) we per-
formed microarray analysis. A gene tree analysis of 363 probes
related to “cellular response to oxidative stress” showed increase
expressions of anti-oxidative genes such as superoxide dismutase
(SOD), oxidative stress response1 protein (Oxsr1), peroxiredoxins
(Prdx), GPx and catalase in DM BM-KSL cells (Fig. 3a) within 1.01 up
to 1.36 fold increases. To assess the RNA expression of the main
anti-oxidative enzymes we confirmed the results by RT-qPCR. DM
BM-KSL showed higher expression of MnSOD (2.0 folds increase),
GPx (3.49 folds increase) and catalase (2.2 folds increase) compared
to control respectively (Fig. 3b). These results showed that there
were augmented mRNA expressions of anti-oxidative enzymes in
DM BM-KSL.
3.4. Diabetic BM-KSLs have higher activity of catalase compared to
controls

Catalase is an important enzyme in superoxide final removal
through hydrogen peroxide detoxifying. DM BM-KSL showed slight
increase in catalase activity (9.73 ± 0.80) compare to control
(8.13 ± 0.60, p > 0.05) (Fig. 4). Taken together with the results of
anti-oxidative gene expressions, it indicates that DM BM-KSLs in-
crease the catalase RNA expression followed by its enzyme activity
to eliminate the oxidative stress received by the diabetic condition.
4. Discussion

We investigated the vasculogenic potential of primitiveBM-
EPCs in the bone marrow hematopoietic population (KSLs) by EPC-
to control and was not significantly different (p > 0.05). b. Further measurement of ratio
was not higher than control (p > 0.05).



Fig. 3. Anti-oxidative genes expression in BM-KSL cells. a. Microarray analysis of BM-
KSLs in “cell response to oxidative stress”. Expression levels are shown by color, blue
representing low gene expression and red representing high expression. b. mRNA
expression of anti-oxidative enzymes in BM-KSL. The figures represented fold increase
in mRNA expression of the respective genes.

Fig. 4. Catalase activity of BM-KSL cells. DM BM-KSL cells showed slight increase in
catalase activity compared to control and was not significantly different (p > 0.05).
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CFA and demonstrated that in early diabetic primitive BM-EPC has
vasculogenic dysfunction in differentiative capacity as represented
by lower definitive and total EPC-CFU number compare to controls.
We further demonstrated that this vasculogenic dysfunction can be
restored by culturing the BM-KSL cells in QQc system. Interestingly,
compare to pre-QQc (freshly isolated BM-KSL cells), post-QQc DM
BM-KSL cells not just improved their vasculogenic potential but
also significantly decreased the oxidative stress of the cells. These
data have addressed us that vasculogenic dysfunction of DM BM-
KSLs could be restored by releasing the cells from diabetic oxida-
tive stress environment and that oxidative stress may be the central
cause of primitive EPC dysfunction in early diabetes.

Despite the fact of other studies reporting that EPC dysfunction
is caused by oxidative stress [10e12,23], interestingly our result
showed that DM BM-KSLs as primitive EPCs have similar oxidative
stress level to control. Our results suggested that the oxidative
stress is not greatly increased and may not be the strong factor to
control the function of vasculogenesis in primitive DM BM-KSL
cells.

There are several reasons to the discrepancy between our result
and the other reports [24e27]. First, it may be due to the difference
in cell source. We used freshly isolated BM-KSLs which represent as
primitive BM-EPC, while others use circulating EPCs or cultured PB-
MNC [10,11,24] or BM-MNC [27,28] which contains more differen-
tiated EPC phenotype.

BM-KSLs reside in the bone marrow niche, a place of lowest end
of physiological perfusion gradient with less blood perfusion
providing lesser contact between the progenitor cells with harmful
metabolites, we believe that the DM BM-KSLs receives less oxida-
tive stress compared to circulating EPCs [29,30]. The second reason
may be due to diabetic duration of the mice. Here we used 4th
weeks STZ-induced diabetic mice. Although there is no study that
directly compares the short and long term diabetes, study by
Orlandi et al., has showed that bone marrow impairment was
observed in long term diabetes (20 weeks) but not yet observed in
short term diabetes (4e12 weeks) [31].

Another interesting finding of our study showed increase
expression of MnSOD, GPx and Catalase in DM BM-KSL compare to
control. Taken together with the results of oxidative stress levels,
our results indicate the possible existence of compensatory
mechanism in DM BM-KSLs to fight against oxidative stress by
increasing the expression and activity of anti-oxidative genes
[32e34]. This finding is in line with the previous studies which
demonstrated higher anti-oxidative gene expression in progenitor
cells [32e34]. All together, we believe that level of oxidative stress
is well tolerated and not at the level where diabetic BM-KSLs is
damaged to exhibit high level of ROS and carbonylated protein and
to affect the vasculogenic potential. Therefore, the vasculogenic
dysfunction of early stage DMBM-KSLsmay happen before the cells
are receiving oxidative stress, under other mechanism of oxidative
stress mediating in cellular damage/to cause dysfunction. It also
indicates the possibilities of other underlying mechanism which is
activated earlier than oxidative stress in mediating cellular dam-
age/dysfunction. Since Notch pathway has been shown to have
close relation to EPC functions such proliferation, adhesion,
apoptosis [35], mobilization [36] and play important role in EPCs
development [37,38] we are now investigating the possibility of
Notch signaling as one of the cause of DM BM-KSLs dysfunction.

5. Conclusion

Our study have demonstrated for the first time that oxidative
stress level in early diabetic is not the main factor taking in part of
primitive bone marrow EPC dysfunction. Our findings indicate that
diabetic BM-KSLs demonstrate to withstand towards oxidative
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stress in part through increasing the expression and activity of anti-
oxidative genes. In addition, there is possibility that oxidative stress
is not the initiating factor of vasculogenic dysfunction in diabetic
primitive BM-KSL. Our study has provided new insights to further
elucidate the possible mechanism which is activated prior to
oxidative stress in causing vasculogenic impairment of DM BM-KSL.
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