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Abstract: Multicomponent reactions (MCRs) have inherent advantages in pot, atom, and step econ-
omy (PASE). This important green synthetic approach has gained increasing attention due to high
efficiency, minimal waste, saving resources, and straightforward procedures. Presented in this review
article are the recent development on 5-compoment reactions (5CRs) of the following six types: (I) five
different molecules A + B + C + D + E; pseudo-5CRs including (II) 2A + B + C + D, (III) 2A + 2B
+ C, (IV) 3A + B + C, (V) 3A + 2B, and (VI) 4A + B. 5CRs with more than five-reaction centers are
also included.

Keywords: multicomponent reaction; five-component; pseudo; one-pot; cascade; consecutive; green
synthesis; heterocycle; pot; atom; step economy

1. Introduction

Reactions with a single operational step involving three or more components are called
multicomponent reactions (MCRs) [1–4]. They have inherent advantages of pot, atom, and
step economy (PASE) in the formation of multiple bonds of complex molecules [5,6]. MCRs
integrate most of reactants to the product structures for mass efficiency, bypass the step of
intermediate purification to reduce the amount of waste, and perform one-step reaction
to simplify procedures and save resources. MCRs and associated one-pot synthesis and
cascade reactions are active topics in the development of new methodologies in organic
synthesis and catalysis [7,8].

There are couple dozen MCRs named after people, such as the well-known Ugi,
Biginelli, Petasis, Hantzsch, Passerini, Huisgen, and Groebke-Blackburn-Bienaymé (GBB)
reactions [1–4]. All these reactions are three- or four-component transformations. MCRs
involving five or more components are called high-order MCRs, which are more efficient
than regular MCRs in assembling complex structures [9]. However, the number of high-
order MCRs is limited, because the increased number of competitive reactions for side-
products make it harder to incorporate all the components in an orderly manner to form
desirable products. Shown in Figure 1 is the distribution of MCRs from three up to nine
components [10]. It shows a deep drop in paper numbers with the increase of reaction
components.

There are numerous monographs and review articles on 3CRs and 4CRs [1–4], but
only two reviews related to 5CRs in 2013 and 2020 [9,11]. Covered in this article are 5CRs
mainly published after 2013. The 5CRs are classified into the following six types: (I) 5CR
of five different components A + B + C + D + E; pseudo-5CRs of (II) 2A + B + C + D, (III)
2A + 2B + C, (IV) 3A + B + C, (V) 3A + 2B, and (VI) 4A + B. The number of these six kinds
of 5CRs are quite different. Figure 2 shows the most popular 5CR is Type-III, followed by
Type-II, and then Type-I. The number of the remaining types of MCRs is very limited.
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If a component in the 5CRs has two reaction centers, then, the reaction is a 6-center 
5-component reaction (6C5CR). It is important to note that MCRs only have a single oper-
ational step to charge all the components to the reaction vessel. If components are intro-
duced in a stepwise manner at different stages of the reaction process, they should be 
called one-pot reactions instead of MCRs [7]. 

2. Type-I, 5CRs of A + B + C + D + E 
A schematic of a Type-I 5CRs involving five different molecules A + B + C + D + E is 

shown in Scheme 1. Because of complicated reaction mechanisms, the reported numbers 
of such reactions are limited. Since all components are different, the product structures 
could be unique and complex. A large number of analogs can be readily made by using 
different sets of starting materials. 
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If a component in the 5CRs has two reaction centers, then, the reaction is a 6-center
5-component reaction (6C5CR). It is important to note that MCRs only have a single
operational step to charge all the components to the reaction vessel. If components are
introduced in a stepwise manner at different stages of the reaction process, they should be
called one-pot reactions instead of MCRs [7].

2. Type-I, 5CRs of A + B + C + D + E

A schematic of a Type-I 5CRs involving five different molecules A + B + C + D + E is
shown in Scheme 1. Because of complicated reaction mechanisms, the reported numbers of
such reactions are limited. Since all components are different, the product structures could
be unique and complex. A large number of analogs can be readily made by using different
sets of starting materials.
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Khurana and co-workers reported the synthesis of 1,2,3-triazole-linked 1,4-dihydro-
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2 with 1,3-cyclohexanediones, followed by the Michael reaction of the enamine from ethyl 
acetoacetate and ammonium acetate to afford the products 1. Another pathway (path II) 
is the Knoevenagel reaction of 1,2,3-triazoles 2 and ethyl acetoacetate, followed by Michael 
reaction of the enamine to afford products 1. It is a 6C5CR, since propargylated benzalde-
hydes have 2-reaction centers. 
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Desai and co-workers introduced a reaction of benzyl halides, N-propargyl isatins, 
sodium azide, malononitrile, and 5,5-dimethyl-1,3-cyclohexanedione (3a), 6-methyl-2H-
pyran-2,4(3H)-dione (3b) or 4-hydroxycarbazole (3c) for the synthesis of 1,2,3-triazole-
tethered spirochromenocarbazoles 4, 5 or 6 using cellulose-supported CuI nanoparticles 
(Cell-CuI NPs) as a reusable catalyst (Scheme 3) [13,14]. The first step is the condensation 
of N-propargyl isatins, malononitrile and 3a, followed by cyclization to form spirochrome-
nes 7. The Huisgen 1,3-dipolar cycloaddition of 7 with benzylic azides affords 1,2,3-tria-
zoles 4. The Cell-CuI NPs catalyst can be recovered for reuse. It is a 6C5CR since N-pro-
pargyl isatins have 2-reaction centers. All the synthesized products have been screened 

Scheme 1. 5CRs of A + B + C + D + E.

Khurana and co-workers reported the synthesis of 1,2,3-triazole-linked 1,4-
dihydropyridines 1 under ultrasonic or microwave irradiation using PEG-400 as a
solvent (Scheme 2) [12]. The produced compounds were evaluated for antibacterial,
antifungal, antioxidant activities, and also for photophysical properties. In the pro-
posed reaction mechanism, the first step is a 1,3-dipolar cycloaddition of aryl azides
and propargylated benzaldehydes to form 1,2,3-triazoles 2. The next step (path I) is
the Knoevenagel reaction of 1,2,3-triazoles 2 with 1,3-cyclohexanediones, followed by
the Michael reaction of the enamine from ethyl acetoacetate and ammonium acetate to
afford the products 1. Another pathway (path II) is the Knoevenagel reaction of 1,2,3-
triazoles 2 and ethyl acetoacetate, followed by Michael reaction of the enamine to afford
products 1. It is a 6C5CR, since propargylated benzaldehydes have 2-reaction centers.
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Desai and co-workers introduced a reaction of benzyl halides, N-propargyl isatins,
sodium azide, malononitrile, and 5,5-dimethyl-1,3-cyclohexanedione (3a), 6-methyl-2H-
pyran-2,4(3H)-dione (3b) or 4-hydroxycarbazole (3c) for the synthesis of 1,2,3-triazole-
tethered spirochromenocarbazoles 4, 5 or 6 using cellulose-supported CuI nanoparticles
(Cell-CuI NPs) as a reusable catalyst (Scheme 3) [13,14]. The first step is the condensation of
N-propargyl isatins, malononitrile and 3a, followed by cyclization to form spirochromenes
7. The Huisgen 1,3-dipolar cycloaddition of 7 with benzylic azides affords 1,2,3-triazoles
4. The Cell-CuI NPs catalyst can be recovered for reuse. It is a 6C5CR since N-propargyl
isatins have 2-reaction centers. All the synthesized products have been screened against
Mycobacterium tuberculosis H37Ra (ATCC 25177), Mycobacterium bovis BCG (ATCC 35743), as
well as panel of cancer cell lines. Some products exhibited antimycobacterial, antitubercular,
antibacterial, and anti-proliferative activities.
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Wu and co-workers reported a photocatalytic reaction of aryldiazonium tetrafluorobo-
rates, styrenes, sulfur dioxide, water, and nitriles for the synthesis of β-sulfonyl amides
8 at room temperature (Scheme 4) [15]. The vicinal aminosulfonylation of styrenes with
the insertion of sulfur dioxide proceeded smoothly to give β-sulfonyl amides 8. The aryl
radical generated from the reaction of aryldiazonium tetrafluoroborate and DABCO·(SO2)2
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is captured by SO2 to form arylsulfonyl radical which then attacks the terminal position of
the styrenes to provide intermediate radicals 9. The excited Ir-photocatalyst oxidizes the
radicals to cations 10 through a single electron transfer (SET) mechanism. The nitriles as
nucleophiles react with cations 10 to form 11 and then 12 in the presence of Lewis acid and
H2O to afford products 8 after isomerization.
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Scheme 4. 5CR for β-sulfonyl amides.

Pasha and co-workers developed a reaction of substituted phenylacetonitriles, aryl
aldehydes, hydrazine, ammonium acetate, and ethyl acetoacetate for the synthesis of
4,7-dihydro-1H-pyrazolo [3,4-b]pyridin-6-amines 13 under the catalysis of meglumine
(Scheme 5) [16]. Meglumine has ammonium and alkoxy groups which can activate ethyl
acetoacetate and phenylacetonitriles through hydrogen bonding and also donate electrons
from the oxygen atom. As shown in the proposed mechanism, the protonated ethyl
acetoacetate reacts with hydrazine to yield 14. The aryl acetonitriles undergo a Knoevenagel
condensation with aryl aldehydes to form α,β-unsaturated nitriles 15. The Michael addition
of 14 and 15 followed by the nucleophilic attack of NH3 and cyclization afford products 13.
It is a 6C5CR, since hydrazine is a 2-centered reactant.

Khurana and co-workers reported a reaction of acetylacetone, aryl azides, aryl aldehy-
des, isatin, and L-proline for the synthesis of novel heterocyclic triazolyl spirooxindoles 16
(Scheme 6) using DBU as a catalyst and PEG-400 as a solvent [17]. In the reaction process,
the triazoles generated from a [3+2] cycloaddition of acetylacetone and azides undergo
aldol condensation with aryl aldehydes to give chalcone derivatives 17. Condensation of
isatin and L-proline, followed by decarboxylation give ylide 18. The final step, a [3+2]
cycloaddition of 17 and 18, gives products 16.
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Rahmati and co-workers introduced a reaction of o-benzenediamine, ethyl malonyl
chloride, aromatic aldehydes, isocyanides, and water for the synthesis of benzodiazepines
19 using MgCl2 as a catalyst and CH2Cl2 as the solvent (Scheme 7) [18]. The formation of
the amide through reaction of o-benzenediamine and ethyl malonyl chloride is followed
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by cyclization to afford seven-membered ring 20 under the catalysis by MgCl2. Then,
Knoevenagel condensation of seven-membered ring and aldehyde leads to α,β-unsaturated
molecules 21, which undergo Michael-type addition with isocyanides to form 21 followed
by hydrolysis which leads to compounds 22. The final isomerization of compounds 22
gives diazepine amides 19.
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3. Type-II, Pseudo-5CRs of 2A + B + C + D

A schematic of a Type-II pseudo-5CRs involving 2A + B + C + D is shown in Scheme 8.
Two molecules of component A are involved in the reaction process and are incorporated
into the product.
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Nikoofar and co-workers embedded aspartic acid-guanine ionic liquid on the hydrox-
ylated nano silica face for making a novel bio-based core-shell organic–inorganic nano
catalyst (Asp-Gua) IL@PEG-SiO2, and employed it for the synthesis of tricarboxamide
derivatives 23 using two equiv of aromatic amines and one equiv each of aromatic alde-
hydes, t-butyl isocyanide, and Meldrum’s acid (Scheme 9) [19]. The reaction starts with
the Knoevenagel condensation of Meldrum’s acid and aldehydes to form α,β-unsaturated
compounds 24. Michael-type addition of isocyanides to 24 followed by intermolecular
nucleophilic attack lead to compounds 25. Amidation of 25 with aromatic amines and
sequential isomerization produce tricarboxamides 23.

Rahmati and coworkers developed a method for the synthesis of malonamides 26 with
two equiv of amine and one equiv each of Meldrum’s acid, arylidene malononitrile, and
isocyanide in CH2Cl2 at ambient temperature (Scheme 10) [20]. The synthesis involves the
nucleophilic attack of isocyanides to arylidene malononitriles followed by the nucleophilic
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attack of malonamides 27 produced from reaction between a Meldrum’s acid and two
molecules of amine to give the final products after tautomerization.
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Rahmati and co-workers reported the synthesis of malonamides pseudopeptidic
compounds 28 via the reaction of two equiv of amino esters, one equiv each of aromatic
aldehydes, isocyanide, and Meldrum’s acid (Scheme 11) [21]. Unsubstituted and electron-
deficient aryl aldehydes produce a mixture of two diastereomers such as 28a and 28b,
while the electron-rich aryl aldehydes produce only one isomer 28c or 28d. The results
could be explained by the order of reactants participation in the reaction. In the reaction
of unsubstituted and electron-poor aryl aldehydes, isocyanide reacts with the arylidene
Meldrum’s acid 29 and then, with amino esters to give 28b as a mixture of two diastere-
omers. In the reaction of electron-rich aryl aldehydes, amino esters react with arylidene
Meldrum’s acid 29 before the isocyanide to give 28d as a single diastereomer due to the
chirality effect of the amino esters.
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Scheme 11. Pseudo-5CR for malonamide pseudopeptidic compounds.

Rahmati and Googol reported a synthesis of dialkyl 2-(1-(alkylamino)-1,3-dioxo-3-
phenylpropan-2-yl)malonates 30 using two equiv of alcohols, one equiv each of aryl glyox-
als, isocyanides and Meldrum’s acid (Scheme 12) [22]. The synthesis involves Knoevenagel
condensation of 2-oxo-2-phenyl acetaldehydes and Meldrum’s acid to give 31, followed
by Michael-type addition of isocyanides and cyclization to form aminofurans 32. Further
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reaction of 32 with two equiv of alcohols then afforded products 30 after tautomerization.
The products could be used as low molecular weight supramolecular organogelators.
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Balalaie and co-workers developed a reaction of two equiv of cyclic ketones and
one equiv each of hydrazine hydrate, trimethylsilyl azide, and isocyanides α-hydrazino
tetrazoles for the synthesis of 33 (Scheme 13) [23]. The reaction process starts with the
condensation of two molecules of the cyclic ketones with hydrazine hydrate to form
dicycloalkydiimines 34. Nucleophilic additions of isocyanides and then trimethylsilyl
azide to 34 give intermediates 35 which undergo dipolar cyclization to provide products 33.

Ghahremanzadeh and co-workers reported a reaction of two equiv of 1H-indene-
1,3(2H)-dione and one equiv each of o-benzenediamines, 1H-indene-1,2,3-trione and
anilines under the catalysis of p-TSA to give 5-phenyldihydrospiro-(diindenopyridine-
indenoquinoxaline) diones 36 (Scheme 14) [24]. The reaction starts with the iminization-
aromatization reaction of 1H-indene-1,2,3-trione with o-benzenediamine to afford 37,
followed by Knoevenagel condensation with 1H-indene-1,3(2H)-dione to form 38,
and then Michael-type addition with a second 1H-indene-1,3(2H)-dione to produce
intermediates 39. Finally, the reaction of 39 with anilines followed by cyclization and
tautomerization afford products 36.

Wang and co-workers developed a reaction for the synthesis of highly function-
alized piperidines 40 using two equiv of aromatic aldehydes, and one equiv each
of Meldrum’s acid, substituted β-nitrostyrenes and ammonium acetate under basic
conditions (Scheme 15) [25]. First, the Michael addition of Meldrum’s acid to substi-
tuted nitrostyrenes followed by nitro-Mannich nucleophilic addition on intermediate
arylimine gives amines 41. Second aromatic aldehydes react with amines 41 followed
by intramolecular nitro-Mannich nucleophilic addition to give cyclic amines 40.
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Scheme 15. Pseudo-5CR for the synthesis of highly functionalized piperidines.

Ramírez and co-workers developed a reaction using two equiv of formaldehyde
and one equiv each of primary amine, water and isocyanide for the synthesis of N,N′-
substituted 4-imidazolidinones 42 (Scheme 16) [26]. Trifluoroethanol (TFE) was used
as both a solvent and a reagent. Imines generated in situ from formaldehyde and
amines react with isocyanides and TFE to give amines 43 which then react with second
formaldehyde followed by an intramolecular nucleophilic attack and addition of water
to form hemiorthoamides 44. Releasing of TFE from 44 gives 4-imidazolidinone 42.
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Wang and co-workers reported a method for the diastereoselective synthesis of poly-
substituted 2-piperidinones 45 using two equiv of aromatic aldehydes and one equiv each
of dialkyl malonates, nitromethane and ammonium acetate (Scheme 17) [27]. The reaction
involves Michael addition of the nitromethane to the arylidene malonates 46, followed by
nucleophilic addition to arylimines generated from the reaction of aromatic aldehydes and
ammonium acetate to form intermediates 47 which undergo lactamization to give trans
isomer cyclic piperidinones 45 (racemic) after eliminating the alcohol.
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Bodaghifard and co-workers reported a method for the synthesis of substituted 4H-
thiopyrans 48 involving two equiv of malononitrile and one equiv each of aldehydes,
carbon disulfide and primary amines under the catalysis of Et3N (Scheme 18) [28]. The
reaction involves the Knoevenagel reaction of aldehydes and malononitrile followed by
Michael addition to form 49. Nucleophilic attack on 49 by aminodithioic acids generated
from the reaction of amines and carbon disulfide followed by H-transfer and carbon–sulfur
bond cleavage gives isothiocyanates 50. H-shift of 50 and cyclization followed by another
H-shift give substituted 4H-thiopyrans 48. This reaction involves five components, but no
fragment from the primary amines remains in the products, so primary amines are used as
a reagent, not a reactant.

Vereshchagin and co-workers developed a reaction using two equiv of aryl aldehy-
des and one equiv each of dialkylmalonates, malononitrile or alkyl cyanoacetate, and
ammonium acetate or ammonia for the synthesis of 2-piperidinone derivatives 51 or 52
(Scheme 19) [29]. The reaction involves Knoevenagel condensation of aryl aldehydes with
malononitrile or alkyl cyanoacetate followed by Michael addition of dialkylmalonates
to afford intermediates 53. Then, Mannich-type condensation of 53, aryl aldehydes and
ammonium acetate followed by lactamization afford the corresponding 2-piperidinone
derivatives 51 or 52.
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The Adib lab developed a method for the synthesis of 3-oxacyclobuta[cd]pentalenes
54 using two equiv of dialkyl acetylenedicarboxylates and one equiv each of phenacyl
bromides, malononitrile and isocyanides at ambient temperature in absolute ethanol
(Scheme 20) [30]. The phenacyl bromides undergo nucleophilic substitution with
malononitrile in the presence of Et3N to form malononitriles 55 for the reaction with
zwitterionic intermediates 56 which are generated in situ from the reaction of the
isocyanides and the dialkyl acetylenedicarboxylates. The resulting adducts 57 undergo
cyclization followed by conjugate addition to afford the products 54.

Mohammadpoor-Baltork and co-workers reported a method for the synthesis of
biquinoline 58 employing two equiv of methyl propiolate and one equiv each of tereph-
thaldialdehyde, naphthalen-1-amine, and p-toluidine using reusable Fe3O4-TDSN-Bi(III)
catalyst (Bi(III) immobilized on triazine dendrimer-stabilized magnetic nanoparticles) un-
der microwave heating and solvent-free conditions (Scheme 21) [31]. The synthesis may
involve the condensation of terephthaldialdehyde and p-toluidine followed by Diels–Alder
reaction and aromatization to form 59. The reaction of 59 and naphthalen-1-amine followed
by another Diels–Alder reaction affords biquinoline 58 after aromatization. It is a 6C5CR,
since terephthaldialdehyde is a 2-centered reactant.
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Scheme 21. 6C5CR for a biquinoline.

Mohammadpoor-Baltork and co-workers developed a method for the synthesis of
aminonaphthoquinones 60 by reacting two equiv of 2-hydroxynaphthalene-1,4-dione with
one equiv each of terephthaldialdehyde, alkylamines and arylamines using Fe3O4-TDSN-
Bi(III) as a reusable catalyst (Scheme 22) [32]. The reaction process involves activation
of terephthaldialdehydes with Fe3O4-DSN-Bi(III) followed by condensation with amines
and addition of 2-hydroxynaphthalene-1,4-dione to give products 61 after tautomerization
and releasing of catalyst Fe3O4-DSN-Bi(III). It is a 6C5CR, since terephthaldialdehyde is a
2-centered reactant.
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4. Type-III, Pseudo-5CRs of 2A + 2B + C

A schematic of a Type-III pseudo-5CRs involving 2A + 2B + C is shown in Scheme 23.
Two molecules each of components A and B are involved in the reaction with one equiv
of compound C. In many cases, component C is a two-centered reactant which makes the
reaction classify as a 6C5CR. As shown in Figure 2, Type-III reactions are the most popular
5CRs. Product structures could be symmetrical, especially from the 6C5CRs.
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The Moradi group employed immobilized poly(2-ethyl-2-oxazoline) (PEtOx)
nanoparticles (Fe3O4@SiO2/PEtOx) for the synthesis of tetrahydrochromeno[2,3-b]
xanthene tetraones 62 using two equiv each of arylaldehydes and 1,3-cyclohexanediones
and one equiv of 2,5-dihydroxy-1,4-benzoquinone (Scheme 24) [33]. The amide bands
in PEtOx catalyze the Knoevenagel condensation of 1,3-cyclohexanediones and ben-
zaldehydes to afford intermediates 63 which then undergo double Michael additions
followed by cyclization and dehydration to give products 62. The magnetic nanocata-
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lyst could be easily separated by an external magnet and reused for five runs without
significant loss of activity.
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Pyrazoles, such as bis(1H-pyrazol-5-ols), are important fragments in drug molecules. A
common method for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives
is to conduct a pseudo-5CR of two equiv each of phenylhydrazines and ethyl acetoac-
etate with one equiv of aromatic aldehydes through a cycloaddition-Knoevenagel-Michael
reaction sequence. In recent years, the synthesis of bis(1H-pyrazol-5-ols) has been ac-
complished using different catalysts, such as nanocatalyst Pd(0)-guanidine@MCM-41 [34],
guanidine hydrochloride [35], α-Casein [36], ZnAl2O4 nanoparticle [37], La(OTf)2-grafted-
GO (graphene oxide) [38], amino acid-based ionic liquids (AAILs) [39], and CuCr2O4
nanoparticle [40]. Catalyst-free conditions have also been reported [41].

Shown in Scheme 25 is an example for the synthesis of 4,4′-(arylmethylene)-bis(1H-
pyrazol-5-ols) 64 through a pseudo-5CR. The reaction reported by the Filian group em-
ployed two equiv each of phenylhydrazines and ethyl acetoacetate and one equiv of aro-
matic aldehydes in the presence of Pd(0)-guanidine@MCM-41 as a nanocatalyst [34]. The
carbonyl groups of ethyl acetoacetate are activated by the Pd-nanocatalyst for the reaction
with phenyl hydrazine to afford pyrazolone 65 which then undergoes Knoevenagel-type
reaction to give intermediate 66 for Michael addition with pyrazolone tautomer to afford
bis(1H-pyrazol-5-ols) 64.
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Scheme 25. Pseudo-5CR for 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives.

Safaei-Ghomi and coworkers developed a method for the synthesis of bis(pyrazol-5-
ol) derivatives 67 using two equiv each of arylhydrazine, acetylenedicarboxylates and one
equiv of aromatic aldehydes under the catalysis of CeO2 nanoparticles (Scheme 26) [42].
Nucleophilic reaction of arylhydrazine with acetylenedicarboxylates followed by cyclization
form pyrazolone intermediate 68. Knoevenagel condensation of 68 and aromatic aldehydes
followed by Michael addition with 68 afford bis(pyrazol-5-ol) derivatives 67. The Xu group
conducted a similar reaction using Dabco-base ionic liquid as a catalyst [43].

Mohammadpoor-Baltork and co-workers extended the 2A + B + C + D type pseudo-
5CR shown in Scheme 21 to a 2A + 2B + C type by using diamines (Scheme 27A) or dialde-
hydes (Scheme 27B) as two-centered reactants in the synthesis of symmetric bisquinolines
69 and 70 [31]. It only took 15–20 min for accomplishing the reaction under microwave
irradiation condition.

Heravi and coworkers developed a method for the synthesis of 5,5′-(arylmethylene)-
bis(4-hydroxythiazole-2(3H)-one) derivatives 71 by reacting one equiv of aryl aldehydes
and two equiv each of monochloroacetic acid and ammonium thiocyanate in TFE/water
(1:1) under ultrasound irradiation at room temperature (Scheme 28) [44]. In this reaction,
the condensation between monochloroacetic acid and ammonium thiocyanate followed
by hydrolysis and cyclization affords thiazolone 72. Knoevenagel condensation of 72 with
aromatic aldehydes followed by Michael addition and tautomerization then affords final
products 71.

The Hamidinasab group employed magnetic nanocatalyst NiFe2O4@TiO2-DEA-OSO3H
in the synthesis of bis-1H-indazolo[1,2-b]phthalazinetriones 73a and 73b through a reaction
of two equiv each of dimedone and phthalhydrazide and one equiv of diarylaldehydes
(Scheme 29) [45]. The reaction process involves acidic nanocatalyst-promoted Knoevenagel
condensation of dialdehydes and dimedones followed by Michael-type addition with
phthalhydrazide to give intermediates 74. Cyclization of 74 and tautomerization gives
products 73.
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The Mukhopadhyay group reported a method for the synthesis of highly-functionalized
spiro[indole-3,2′-pyrrole] compounds 75a using two equiv each of arylamines and isatins
and one equiv of β-keto esters in the presence of wet picric acid (Scheme 30) [46]. The
condensation of β-keto esters with isatins followed by condensation with arylamines give
intermediates 76. The nucleophilic addition of 76 and intermediates 77 generated from
condensation of arylamines and isatins affords syn products 75 via Si-facial attack in a wet
picric acid-stabilized charge transfer complex transition state.
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The Lalitha group reported a method for the synthesis of novel bis(2-phenyl-2,3-
dihydroquinazolin-4(1H)-one) derivatives 78 using two equiv each of isatoic anhydride
and aromatic aldehydes and one equiv of p-phenylenediamine in glacial acetic acid under
reflux conditions (Scheme 31) [47]. The synthesized products have been evaluated for
antioxidant property and anticancer activity. The reaction process involves a nucleophilic
attack of p-phenylenediamine on the carbonyl group of protonated isatoic anhydride
followed by decarboxylation to afford intermediate 79. Double condensations of 79 with
two aldehydes give imines for cyclization to afford products 78. It is a 6C5CR, since
p-phenylenediamine is a 2-centered reactant. The same group modified the reaction by
using terephthaldialdehyde to replace p-phenylenediamine as a 2-centered reactant in the
synthesis of 2,2′-(1,4-phenylene)bis(3-phenyl-2,3-dihydroquinazolin-4(1H)-one) derivatives
80 (Scheme 32) [47]. The Nikoofar group recently employed multi-layered nano [(Asp-Gua)
IL@PEG-SiO2] catalyst for the synthesis of bis(2-phenyl-2,3-dihydroquinazolin-4(1H)-one)
derivatives using p-phenylenediamine as a 2-centered reactant [19].
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The Mohammadi group developed a 6C5CR for the synthesis of novel bis[spiro
(quinazoline-oxindole)] derivatives 81 using two equiv each of isatoic anhydride and
isatins and one equiv of diamines under the catalysis of alum (KAl(SO4)2

•12H2O)
(Scheme 33) [48]. The condensation of two isatoic anhydride with ethylenediamine
followed by second condensation with isatins give iminoisatins 82 after dehydration.
Two intramolecular nucleophilic additions of 82 lead to the formation of products 81.
The same group applied this method for the synthesis of bis(quinazolinon-4(1H)-one)
derivatives 83 by replacing isatins with orthoesters (Scheme 34) [49].
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Mohammadpoor-Baltork and co-workers extended the 2A + B + C + D pseudo-5CR
shown in Scheme 22 to a 2A + 2B + C pseudo-5CR by using diamines (Scheme 35A)
or dialdehydes (Scheme 35B) as 2-centered reactants in the synthesis of symmetric
bisaminonaphthoquinones 84 and 85 [32].

The Safaei-Ghomi group employed a nanocrystalline nano-CdZr4(PO4)6 ceramic as a
retrievable catalyst in the synthesis of bisthiazolidinone derivatives 86 through a reaction
of two equiv each of aldehydes and thioglycolic acid with one equiv of 2-centered reactant
ethylenediamine in toluene under reflux conditions (Scheme 36) [50]. The condensation
of two aldehyde molecules with ethylenediamine followed by attacking of two thiogly-
colic acids gives 87. The final step of double cyclization of 87 affords bisthiazolidinone
products 86.
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Scheme 36. Pseudo 5-CR for the synthesis of bis-thiazolidinone derivatives.

The Olyaei group reported a solvent-free 6C5CR for the synthesis of bisBetti bases
(bis(1-aminomethyl-2-hydroxy)naphthalenes) 88 using two equiv each of aryl aldehydes
and heteroaryl amines and one equiv of 2,3-dihydroxynaphthalene under the catalysis of
formic acid at 80 ◦C (Scheme 37) [51].

The Wang group developed an Et3N-promoted reaction using two equiv each of aryl
aldehydes and substituted cyanoacetates and one equiv of nitromethane to give densely
functionalized cyclohexene β-aminoesters 89a and 89b (Scheme 38) [52]. The Knoevenagel
condensation of aromatic aldehydes and nitromethane followed by the Michael addition of
cyanoacetate anions affords intermediates 90. Next, Knoevenagel condensation of aromatic
aldehydes and cyanoacetate followed by the Michael addition of 90 and intramolecular
nucleophilic addition affords intermediates 91 and then, products 89a after tautomerization.
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Intermediates 91 could also be converted to products 89b through decarboxylation of the
α-carboxylic esters.
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Scheme 38. Pseudo-5CR for functionalized cyclohexene β-aminoesters.

Prajapati and co-workers reported a microwave reaction using two equiv each of 1,3-
indanediones and aromatic aldehydes and one equiv of ammonium acetate for the synthesis
of novel spiroindenotetrahydropyridine derivatives 92 under catalyst- and solvent-free
conditions involving cascade Knoevenagel/aza-Diels-Alder reactions (Scheme 39) [53].
The Knoevenagel condensation of indanedione and aldehydes gives dienophiles 93. Con-
densation of 93 with ammonium acetate followed by aza–Diels–Alder cycloaddition of
dienophiles 93 affords products 92.
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Scheme 39. Pseudo-5CR for spiroindenotetrahydropyridine derivatives.

Ghahremanzadeh and co-workers reported a reaction for diastereoselective synthesis
of dispiro[furan-2,1′-naphthalene-4′,2′ ′-furan]tetracarboxylates 94 using two equiv each of
isocyanides and dialkyl acetylenedicarboxylates and one equiv of 2,3-dichloronaphthalene-
1,4-dione in acetonitrile at room temperature (Scheme 40) [54]. The isocyanides react with
dialkyl acetylenedicarboxylates to form 1:1 zwitterionic intermediates 95 for nucleophilic
attack at both carbonyls of 2,3-dichloronaphthalene-1,4-dione to form the species for dipolar
cyclization to give products 94.
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The Zhang group reported the first example of a double 1,3-dipolar cycloaddition of
two nonstabilized azomethine ylides for the diastereoselective synthesis of polycyclic pyrro-
lidines 96 using two equiv each of aromatic aldehydes and N-substituted maleimides and
one equiv of amino acids (Scheme 41) [55]. The first decarboxylative [3+2] cycloaddition
affords pyrrolidine diastereomers 97 and 97′, which then react with aromatic aldehydes
to generate a second 1,3-dipolar species for another [3+2] cycloaddition with maleimides
to form pyrrolidine-containing tetracyclic compounds 96. The same group has previously
reported another double 1,3-dipolar cycloaddition using amino esters instead of amino
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acids [56]. The Quiroga group also reported a reaction of amino esters in the synthesis of
polycyclic pyrrolidines 98 (Scheme 42) [57].
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Scheme 42. Pseudo-5CR for the synthesis of pyrazolylpyrrolizine derivatives.

The Wu group developed an iodine-promoted reaction using two equiv each of
phenylhydrazines and acetoacetate esters and one equiv of aryl methyl ketones for the
synthesis of pyrazolone-oxepine-pyrazoles 99 (Scheme 43) [58]. Aryl methyl ketones are
converted to 100 via iodination and Kornblum oxidation, while phenylhydrazines react
with acetoacetate esters through dehydration condensation/aminolysis sequence to form
intermediates 101. The condensation of 100 and 101 followed by Michael addition with
another molecule of 101 forms 102. Iodination of 102 generates 103a or 103b followed by
iodine-based oxidative coupling which affords products 99.
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Piperidine is a privileged N-heterocyclic ring and its derivatives possess di-
verse pharmacological activities such as anticancer, antimicrobial, antioxidant, anti-
inflammatory, and acetylcholinesterase inhibitory activities [59]. There are several
papers on the synthesis of piperidine derivatives through the reaction of aromatic
aldehydes, anilines, and β-keto esters under different conditions. Catalysts used for
the reactions include acetic acid [60], ethylenediammonium diformate (EDDF) [61],
nanostructured PbCrxFe12−xO19 [62], Fe3O4@TDSN-Bi(III) [63], anionic surfactants
sodium dioctyl sulfosuccinate (SDOSS), and sodium dodecyl sulfate (SDS) [64].
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The Abbas lab reported a silica sulfuric acid (SSA)-catalyzed reaction for the synthesis
of highly functionalized piperidine compounds 104 using two equiv each of aldehydes
and amines and one equiv of β-ketoesters (Scheme 44) [65]. The amines reacted with
β-ketoesters and aldehydes to afford β-enaminoenes 105 and imines 106, respectively.
Intermolecular Mannich reaction of 105 and 106 followed by condensation with another
aldehyde affords intermediates 107. The tautomers 108 undergo intramolecular Mannich-
type reaction followed by tautomerization to generate the corresponding piperidine deriva-
tives 104.

Molecules 2021, 26, x FOR PEER REVIEW 26 of 34 
 

 

ketoesters and aldehydes to afford β-enaminoenes 105 and imines 106, respectively. Inter-
molecular Mannich reaction of 105 and 106 followed by condensation with another alde-
hyde affords intermediates 107. The tautomers 108 undergo intramolecular Mannich-type 
reaction followed by tautomerization to generate the corresponding piperidine deriva-
tives 104. 

 
Scheme 44. Pseudo-5CR for functionalized piperidines. 

The Amrollahi lab reported a catalyst-free 6C5CR for the synthesis of symmetric car-
boxamide compounds 109 using two equiv each of alkyl isocyanides and Meldrum’s acids 
and one equiv of 2-centered reactant 4,4′-methylene- or 4,4′-oxydianiline (Scheme 45) [66]. 
Cycloaddition of isocyanides and alkylidene-substituted Meldrum’s acids followed by 
conjugate addition with dianilines gives intermediates 110. The elimination of acetone via 
electrocyclic ring opening of Meldrum’s acid moiety of 110 followed by double cyclization 
delivers desired products 109. 

 
Scheme 45. 6C5CR for the synthesis of carboxamide compounds. 
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The Amrollahi lab reported a catalyst-free 6C5CR for the synthesis of symmetric car-
boxamide compounds 109 using two equiv each of alkyl isocyanides and Meldrum’s acids
and one equiv of 2-centered reactant 4,4′-methylene- or 4,4′-oxydianiline (Scheme 45) [66].
Cycloaddition of isocyanides and alkylidene-substituted Meldrum’s acids followed by
conjugate addition with dianilines gives intermediates 110. The elimination of acetone via
electrocyclic ring opening of Meldrum’s acid moiety of 110 followed by double cyclization
delivers desired products 109.
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Van der Eycken’s group reported an aldehyde–alkyne–amine (A3)-coupling reaction
for the synthesis of tertiary propargylic amines 111 by integrating two molecules each of
aldehydes and alkynes and one molecule of amino esters under the catalysis of CuBr in
toluene at 100 ◦C (Scheme 46) [67].
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Scheme 46. Pseudo 5-CR for tertiary propargylic amines.

The Asghari lab reported an unexpected 6C5CR of two equiv each of acetylenic es-
ters and alkyl isocyanides and one equiv of N,N’-diphenylthioparabanic acid amide to
form γ-dispiroiminolactones 112 (Scheme 47) [68]. The reaction mechanism could in-
volve the Michael-type reaction of isocyanides with dialkyl acetylenedicarboxylates to
form reactive zwitterionic intermediates 113 which react with a carbonyl group of N,N′-
diphenylthioparabanic acid amide to afford intermediates 114 for sequential cyclization
to form γ-spiroiminolactones 115. Another carbonyl group of 115 reacts with zwitteri-
onic intermediates 113 followed by a second cyclization to give γ-dispiroiminolactone
products 112.
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Mukhopadhyay and coworkers reported a catalyst-free reaction involving
Knovenagel/Michael-type addition/ring closure/cyclization/aromatization sequence
for the synthesis of functionalized 1,6-naphthyridines 116 using two equiv each of
methyl ketones and malononitrile and one equiv of amines (Scheme 48) [69]. Knoeve-
nagel condensation of aromatic ketones with malononitrile followed by Michael-type
reaction and subsequent elimination of malononitrile afford intermediate 117. Mal-
ononitrile attacks 117 triggering the ring closure to form intermediates 118 which
then react with an amine to produce final products 116 after aromatization. A similar
process reported by the Thirumalai group using same components, but different molar
ratio, gave similar products [70]. The biological evaluation results indicated that all
the synthesized products possess in-vitro anti-inflammatory and antioxidant activities.
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5. Type-IV, Pseudo-5CRs of 3A + B + C

A schematic of a Type-IV pseudo-5CRs involving 3A + B + C is shown in Scheme 49. Re-
actions of three molecules of component A with one molecule each of B and C is very rare. The
Ravikumar group reported a Rh-catalyzed reaction for the synthesis of aza-polycyclic aromatic
hydrocarbons (N-PAHs) 119 using three equiv of diphenylacetylene and one equiv each of an
aryl ketone and hydroxylamine-O-sulfonic acid (HOSA) (Scheme 50) [71]. In this reaction, the
aminating reagent HOSA acts as an in situ redox-neutral directing group for the construction
of N-PAHs through cascade triple C−H bond activations and multiple bond formations. The
beginning of the reaction is the activation of [Cp*RhCl2]2 with AgOAc to form a rhodium
catalyst which undergoes cyclometallation with E-(((1-phenylethylidene)amino)oxy)sulfonic
acid to form 120 followed by insertion of diphenylacetylene to form 121. Redox-neutral
cyclization of 121 forms isoquinoline 122 which is converted to 123 followed by insertion of
two equiv of diphenylacetylene to form 124 and then 125. Final reductive elimination of 125
gives products 119 and N-PAHs and Cp*Rh(I) is oxidized by Cu(II) to regenerate the catalyst.
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6. Type-V, Pseudo-5CRs of 3A + 2B

A schematic of a Type-V pseudo-5CRs involving 3A + 2B is shown in Scheme 51.
Reactions of three molecules of A with two molecules of B is a very special MCR process.
Rong and co-workers developed a reaction involving three equiv of isatins and two equiv
of 3-oxo-N-arylbutanamide for the synthesis of pyrrolo[3,4-c]quinoline derivatives 126
(Scheme 52) [72]. In the reaction process, isatins first react with two molecules of ace-
toacetanilides followed by the Knoevenagel condensation reaction with two molecules of
isatins to form intermediates 127. Intramolecular annulation of 127 and hemiaminal ring
opening followed by losing two molecules of water gives products 126.
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7. Type-VI, Pseudo-5CRs of 4A + B

A schematic of a Type-VI pseudo-5CRs involving 4A + B is shown in Scheme 53. MCRs
of four molecules of A with one molecule of B is a very special reaction. We only found one
example from the literature. Yan, Sun, and co-workers reported a method for the synthesis
of unique polycyclic bicyclo[2.2.2]octane derivatives 128, by integrating four equiv of 1,3-
indanedione and one equiv of aromatic aldehydes under Et3N catalysis in refluxing EtOH
(Scheme 54) [73]. The reaction process involves a base-catalyzed cyclotrimerization of
1,3-indanedione to form active cyclic diene 129 followed by the endo-selective Diels−Alder
reaction with in situ generated 2-arylidene-1,3-indanediones to give bicyclo[2.2.2]octane
derivatives 128 as pure diastereomers.

Molecules 2021, 26, x FOR PEER REVIEW 30 of 34 
 

 

 
Scheme 53. 5CRs of 4A + B. 

 
Scheme 54. Pseudo-5CR for bicyclo[2.2.2]octane derivatives. 

8. Conclusions 
Multicomponent reactions and associated one-pot and cascade reactions are increas-

ing their popularity in the synthesis of complex molecules due to their inherent ad-
vantages on mass efficiency, simple operation, resource saving, and less waste disposal. 
Five-component reactions play a special role in MCRs. Compared to popular 3CRs and 
4CRs, the number of reported 5CRs is much less and it is hard to develop new 5CRs due 
to competitive side reactions. However, 5CRs are more efficient in the construction of 
complex structures which have a large space for structural complexity and substitution 
diversity using commercially available starting materials such as amines/hydrazines, al-
cohols, azides, aldehydes/ketones, isonitriles, and carboxylic acids/esters. 

Presented in this paper are six different kinds of 5CRs including five pseudo-5CRs 
which demonstrate the feasibility of 5CRs for the construction of complex molecules, es-
pecially polycyclic and heterocyclic molecules. The power of 5CRs could be enhanced by 
the following modifications: (1) performing step-wise reactions instead of addition of all 
components together to improve conversion and product selectivity; (2) conducting post-
condensation reactions including consecutive MCRs [74], cyclization and cycloaddition 
reactions to access new structures with high diversity and complexity [7,8]; and (3) inte-
grating 5CRs with other reactions, such as radical cascade reactions, photoredox-, transi-
tion metal- and organocatalysis, and electrochemical reactions. We have no doubt that 
5CRs and other high-order MCRs will be unique tools in making complex molecules with 
potential biological and functional material applications. 

Scheme 53. 5CRs of 4A + B.



Molecules 2021, 26, 1986 35 of 39

Molecules 2021, 26, x FOR PEER REVIEW 30 of 34 
 

 

 
Scheme 53. 5CRs of 4A + B. 

 
Scheme 54. Pseudo-5CR for bicyclo[2.2.2]octane derivatives. 

8. Conclusions 
Multicomponent reactions and associated one-pot and cascade reactions are increas-

ing their popularity in the synthesis of complex molecules due to their inherent ad-
vantages on mass efficiency, simple operation, resource saving, and less waste disposal. 
Five-component reactions play a special role in MCRs. Compared to popular 3CRs and 
4CRs, the number of reported 5CRs is much less and it is hard to develop new 5CRs due 
to competitive side reactions. However, 5CRs are more efficient in the construction of 
complex structures which have a large space for structural complexity and substitution 
diversity using commercially available starting materials such as amines/hydrazines, al-
cohols, azides, aldehydes/ketones, isonitriles, and carboxylic acids/esters. 

Presented in this paper are six different kinds of 5CRs including five pseudo-5CRs 
which demonstrate the feasibility of 5CRs for the construction of complex molecules, es-
pecially polycyclic and heterocyclic molecules. The power of 5CRs could be enhanced by 
the following modifications: (1) performing step-wise reactions instead of addition of all 
components together to improve conversion and product selectivity; (2) conducting post-
condensation reactions including consecutive MCRs [74], cyclization and cycloaddition 
reactions to access new structures with high diversity and complexity [7,8]; and (3) inte-
grating 5CRs with other reactions, such as radical cascade reactions, photoredox-, transi-
tion metal- and organocatalysis, and electrochemical reactions. We have no doubt that 
5CRs and other high-order MCRs will be unique tools in making complex molecules with 
potential biological and functional material applications. 

Scheme 54. Pseudo-5CR for bicyclo[2.2.2]octane derivatives.

8. Conclusions

Multicomponent reactions and associated one-pot and cascade reactions are increasing
their popularity in the synthesis of complex molecules due to their inherent advantages
on mass efficiency, simple operation, resource saving, and less waste disposal. Five-
component reactions play a special role in MCRs. Compared to popular 3CRs and 4CRs,
the number of reported 5CRs is much less and it is hard to develop new 5CRs due to
competitive side reactions. However, 5CRs are more efficient in the construction of complex
structures which have a large space for structural complexity and substitution diversity
using commercially available starting materials such as amines/hydrazines, alcohols,
azides, aldehydes/ketones, isonitriles, and carboxylic acids/esters.

Presented in this paper are six different kinds of 5CRs including five pseudo-5CRs
which demonstrate the feasibility of 5CRs for the construction of complex molecules, es-
pecially polycyclic and heterocyclic molecules. The power of 5CRs could be enhanced
by the following modifications: (1) performing step-wise reactions instead of addition of
all components together to improve conversion and product selectivity; (2) conducting
post-condensation reactions including consecutive MCRs [74], cyclization and cycload-
dition reactions to access new structures with high diversity and complexity [7,8]; and
(3) integrating 5CRs with other reactions, such as radical cascade reactions, photoredox-,
transition metal- and organocatalysis, and electrochemical reactions. We have no doubt
that 5CRs and other high-order MCRs will be unique tools in making complex molecules
with potential biological and functional material applications.
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