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BACKGROUND Cardiomyopathy is a leading cause of pregnancy-
related mortality and the number one cause of death in the late
postpartum period. Delay in diagnosis is associated with severe
adverse outcomes.

OBJECTIVE To evaluate the performance of an artificial
intelligence–enhanced electrocardiogram (AI-ECG) and AI-enabled
digital stethoscope to detect left ventricular systolic dysfunction
in an obstetric population.

METHODS We conducted a single-arm prospective study of preg-
nant and postpartum women enrolled at 3 sites between October
28, 2021, and October 27, 2022. Study participants completed a
standard 12-lead ECG, digital stethoscope ECG and phonocardio-
gram recordings, and a transthoracic echocardiogram within 24
hours. Diagnostic performance was evaluated using the area under
the curve (AUC).

RESULTS One hundred women were included in the final analysis.
The median age was 31 years (Q1: 27, Q3: 34). Thirty-eight percent
identified as non-Hispanic White, 32% as non-Hispanic Black, and
21% as Hispanic. Five percent and 6% had left ventricular ejection
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fraction (LVEF) ,45% and ,50%, respectively. The AI-ECG model
had near-perfect classification performance (AUC: 1.0, 100% sensi-
tivity; 99%–100% specificity) for detection of cardiomyopathy at
both LVEF categories. The AI-enabled digital stethoscope had an
AUC of 0.98 (95% CI: 0.95, 1.00) and 0.97 (95% CI: 0.93, 1.00),
for detection of LVEF ,45% and ,50%, respectively, with 100%
sensitivity and 90% specificity.

CONCLUSION We demonstrate an AI-ECG and AI-enabled digital
stethoscope were effective for detecting cardiac dysfunction in an
obstetric population. Larger studies, including an evaluation of
the impact of screening on clinical outcomes, are essential next
steps.

KEYWORDS Cardiomyopathies; ECG; Heart failure; Obstetrics; Preg-
nancy; Postpartum
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Introduction
Cardiomyopathy is a leading cause of pregnancy-related
mortality and the number one cause of death in the late post-
partum period.1,2 In addition, any form of pregnancy-
associated cardiomyopathy is known to be associated with
a high risk of severe complications.3 Antepartum diagnosis
of cardiomyopathy is challenging owing to the overlap be-
tween pregnancy physiology–related symptoms and those
suggestive of cardiomyopathy or heart failure,4,5 and a delay
in diagnosis is believed to be an important contributor to mor-
tality.6 As such, the need to develop scalable and effective
tools for routine cardiomyopathy screening in the obstetric
population is imperative.

Prior studies have demonstrated the effectiveness of an
artificial intelligence (AI)–enabled electrocardiogram (AI-
ECG) for detection of left ventricular dysfunction in unse-
lected patient populations.7–11 This AI-ECG model, based
on a standard 12-lead ECG recording, has been validated in
an emergency room setting,12 racial and ethnic subgroups,13

a retrospective community-based cohort,14 a retrospective
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sample of pregnant and postpartum women,15 and in a clin-
ical trial among patients seen for routine primary care.16

In a bid to evaluate potentially scalable and portable car-
diomyopathy screening options, an AI-enabled single-lead
ECG recording from a digital stethoscope has also been
shown to be effective for detection of left ventricular
dysfunction,17,18 and more recently, the digital stethoscope
single-lead AI-ECG model has been revised to incorporate
data from recorded phonocardiograms as well. In addition,
a smartwatch-enabled ECG demonstrated similar perfor-
mance19 in a prospective study.

However, these AI models and digital tools have yet to be
prospectively evaluated in the obstetric population. Pregnant
and postpartum women are an ideal group for targeted
screening owing to reported delays in cardiomyopathy diag-
nosis and a high risk of cardiomyopathy-associated mortality
with the current standard of care. In addition, failure to iden-
tify symptoms of heart disease during pregnancy, which can
be difficult to distinguish from normal physiological changes
of pregnancy, is an important driver of health inequities in the
obstetric population.5 The goal of this study was to prospec-
tively evaluate the effectiveness of an AI-ECG and
AI-enabled digital stethoscope to screen for left ventricular
systolic dysfunction (LVSD) in a pilot study of pregnant
and postpartum women.
Methods
Study design
We conducted a single-arm, prospective study among preg-
nant and postpartum women (up to 12 months following de-
livery) between October 28, 2021, and October 27, 2022,
with follow-up for outcomes through November 21, 2022.
The study was approved by the Mayo Clinic Institutional Re-
view Board (IRB). A written or electronic consent was ob-
tained from each study participant in accordance with IRB
guidance.
Figure 1 Flow diagram for study participants.
Study population
Consecutive consenting study participants were enrolled at
3 sites: Mayo Clinic, Jacksonville, Florida; Agape Family
Health Clinic, Jacksonville, Florida; and Mayo Clinic, Ro-
chester, Minnesota, to ensure that a racially and ethnically
diverse group of women were included. To meet this goal,
we aimed to have at least 30% of the study sample be
Black/African American. As such, enrollment of White par-
ticipants was halted after 38 were enrolled in the study.
Study participants included patients receiving care, hospi-
tal/clinic staff, and visitors. Inclusion criteria were female
sex, aged 18–49 years, and pregnant or within 12 months
postpartum. We excluded participants with complex
congenital heart disease (status post complex cardiac sur-
gery, single-ventricle physiology, or significant shunts
with cardiac structural changes) or significant conduction
abnormalities on a resting ECG (paced ECGs or presence
of a left ventricular assist device). Study participants
completed a standard 12-lead ECG recording, a digital
stethoscope ECG recording, a questionnaire (including de-
mographic variables and clinical symptoms), and a compre-
hensive transthoracic echocardiogram on the same day or
within 24 hours. Over a 12-month enrollment period, 126
women agreed to participate and 101 were able to make it
to a scheduled research appointment. We excluded 1 partic-
ipant who did not complete all required baseline tests or the
questionnaire (Figure 1).

Standard 12-lead ECGs were acquired by trained
personnel at a sampling rate of 500 Hz using GE ECG ma-
chines (MAC 5500, MAC 7, and MAC VU360), were
stored and clinically interpreted using the MUSE ECG
data management system (GE Healthcare, Chicago, IL),
and digital XML files were exported for AI analysis. Dig-
ital stethoscope ECG and phonocardiogram recordings
were performed by study staff; 15-second recordings at 3
locations across the chest were obtained, as follows: (1)
placed vertically at the left sternal border (V2), (2) angled
across the left upper chest (angled), and (3) placed hori-
zontally over the left subclavicular area (subclavicular)
(Figure 2).

All echocardiograms were performed by trained sonogra-
phers at a Mayo Clinic site using standard image acquisition
protocols and clinically interpreted by a board-certified cardi-
ologist according to the American Society of Echocardiogra-
phy guidelines.20 All echocardiogram images and
measurements were also reviewed by the study lead (DA).
Quantitative measures including left ventricular ejection frac-
tion (LVEF) were extracted from the echocardiogram reports.



Figure 2 Digital stethoscope positions. A: Digital stethoscope connects to mobile app via Bluetooth. B: Fifteen-second single-lead electrocardiogram record-
ings were obtained at 3 locations across the chest: placed vertically at the left sternal border (V2), angled across the left upper chest (angled), and placed hori-
zontally over the left subclavicular area (subclavicular).
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ECG preprocessing

Standard 12-lead ECGs
Standard 12-lead ECGs were uploaded from GE ECG ma-
chines to the MUSE ECG database management system
(GE Healthcare). Following clinical interpretation, digital
XML files were exported to a secure research server, after
which they were processed and decoded from GE’s proprie-
tary format to a NumPy object using an open source R pack-
age21 and Mayo Clinic’s AI-ECG algorithm for detection of
left ventricular dysfunction7 was used to generate predic-
tions.

Digital stethoscope ECG and phonocardiogram recordings
Single-lead digital ECGs and phonocardiograms were ex-
tracted from the cloud server by Eko Health (Emeryville,
CA). The phonocardiogram signal is run through a Butter-
worth low-pass filter with a cutoff frequency of 800 Hz and
then through a Butterworth high-pass filter with a cutoff fre-
quency of 30 Hz. The single-lead ECG signal is first run
through a notch filter to remove interference from the main
power supply (60 Hz in the United States or 50 Hz in the
UK/other countries), then it is run through a bandpass filter
with a lower cutoff of 0.5 Hz and an upper cutoff of 40 Hz.
AI predictions based on the ECG combined with phonocar-
diogram recordings were provided by Eko Health to the
Mayo Clinic study team for each study participant (up to 3
for each participant based on recording location on the chest
wall, Figure 2). Digital stethoscope data linkage to echocar-
diogram results and area under the receiver operating charac-
teristic curve analyses were performed at Mayo Clinic.

Measures
Our primary study endpoint was detection of LVSD, defined
as LVEF ,50% using the AI-ECG (based on a standard 12-
lead ECG recording) and an AI-enabled digital stethoscope.
Our secondary study endpoint was detection of LVEF
,45% using the AI-ECG (based on a standard 12-lead
ECG recording) and an AI-enabled digital stethoscope.
LVEF ,45% was selected as a secondary outcome, being
a clinically relevant threshold for identification of peripartum
cardiomyopathy in the obstetric population. LVEF measure-
ments were assessed using multiple methods in this order:
2D-biplane . 2D-linear . visual assessment. For echocar-
diographic images with more than 1 segment not clearly
seen, an ultrasound-enhancing agent was used.
Statistical analysis
This study was designed as a single-arm study to provide an
understanding of subject accrual rate, feasibility of obtaining
standard 12-lead and portable ECGs using US Food and Drug
Administration–approved devices in pregnant and post-
partum women, and the performance of the AI-enabled
ECG algorithm in this patient population. For sample size
justification, assuming a ratio of positive to negative of
1:19 (based on a retrospective analysis of obstetric patients
who had cardiovascular testing at Mayo Clinic15, a sample
size of 100 cases would be expected to have .90% power
to reject the null hypothesis that the area under the curve
(AUC) 5 0.5 at the alpha 5 0.05 level of significance pro-
vided the AUC is at least 0.90. From prior AI algorithms
for left ventricular dysfunction, this level of discrimination
was expected.

Diagnostic performance for detection of LVSD was eval-
uated for the AI-ECG and digital stethoscope using the AUC
and other measures of diagnostic accuracy, including sensi-
tivity, specificity, positive and negative predictive values,
with 95% confidence intervals calculated. We used a previ-
ously validated AI-ECG deep learning model originally
developed for identification of LVEF �35%7,16,22 without
any modifications to analyze the 12-lead ECGs obtained in
this study. The digital stethoscope had up to 3 separate AI
model predictions based on the device position on the chest
wall at the time of data acquisition (Figure 2). Model perfor-
mance was summarized for each lead configuration along
with 2 global measures: the mean of the model outputs and
the maximum model output. The maximum value was taken
as the primary summary for the digital stethoscope, as it
would represent the most sensitive summary using the de-
vice. The research reported in this paper adhered to the Stan-
dards for Reporting of Diagnostic Accuracy Studies
guidelines. P values ,.05 were considered statistically



Table 1 Demographics and clinical characteristics of the study sample

Normal LV systolic
function (n594)

LV systolic
dysfunction† (n56) Overall P values

Age 31.6 (27.5, 34.8) 30.9 (25.6, 35.2) 31.6 (27.5, 34.9) .828
Body mass index 29.0 (24.1, 32.8) 26.4 (24.2, 28.4) 28.5 (24.1, 32.7) .411
Race/ethnicity
Non-Hispanic White 34 (36.2%) 4 (66.7%) 38 (38.0%) .204
Non-Hispanic Black 30 (31.9%) 2 (33.3%) 32 (32.0%)
Hispanic or Latino 21 (22.3%) 0 (0%) 21 (21.0%)
Asian 6 (6.4%) 0 (0%) 6 (6.0%)
Native Hawaiian/Pacific Islander 1 (1.1) 0 (0%) 1 (1.0%)
Multiracial 2 (2.1%) 0 (0%) 2 (2.0%)

Recruitment site
Mayo Clinic Florida 46 (48.9%) 5 (83.3%) 51 (51.0%) .067
AGAPE Clinic 41 (43.6%) 0 (0%) 41 (41.0%)
Mayo Clinic Rochester 7 (7.5%) 1 (16.7%) 8 (8.0%)

Pregnancy status
Pregnant 76 (80.9%) 2 (33.3%) 78 (78.0%) .02‡

- First trimester 9 (9.6%) 1 (16.7%) 10 (10.0%)
- Second trimester 37 (39.4%) 0 (0.0%) 37 (37.0%)
- Third trimester 30 (31.9%) 1 (16.7%) 31 (31.0%)

Postpartum 18 (19.2%) 4 (66.7%) 22 (22.0%)
Vital signs
Systolic blood pressure 113.0 (105.3, 120.0) 106.0 (93.3, 118.0) 113.0 (104.8, 120.0) .186
Diastolic blood pressure 70.0 (64.0, 75.0) 68.5 (62.3, 76.3) 70.0 (63.0, 75.3) .788
Heart rate 76.0 (68.3, 85.0) 98.5 (84.3, 109.0) 76.5 (69.0, 86.3) .01

Echocardiographic parameters
LV end-diastolic diameter (mm) 46.0 (43.0, 49.0) 60.0 (57.3, 64.3) 46.0 (43.0, 50.0) ,.001
LV end-systolic diameter (mm) 30.0 (28.0, 33.0) 54.0 (49.3, 59.5) 30.0 (28.0, 33.0) ,.001
LV septal wall thickness (mm) 8.0 (8.0, 9.0) 7.5 (7.0, 8.8) 8.0 (8.0, 9.0) .283
LV relative wall thickness (%) 38.0 (33.3, 42.0) 27.0 (25.3, 28.0) 37.0 (33.0, 42.0) ,.001
LV mass index (g/m2) 73.0 (61.0, 80.0) 98.5 (86.3, 119.0) 73.5 (61.8, 82.3) .008
LV posterior wall thickness (mm) 9.0 (8.0, 10.0) 8.0 (8.0, 8.0) 9.0 (8.0, 10.0) .244
Mitral valve early diastolic filling
velocity – E (m/s)

0.8 (0.7, 0.9) 1.1 (0.9, 1.3) 0.8 (0.7, 1.0) .033

Medial mitral annulus velocity by
tissue Doppler – eʹ (m/s)

0.11 (0.09, 0.12) 0.07 (0.07, 0.08) 0.10 (0.08, 0.12) .001

Mitral valve E/eʹ ratio 7.8 (6.4, 9.0) 16.3 (11.3, 18.6) 7.8 (6.4, 9.2) .001
Cardiac output – Doppler method (L/
min)

5.6 (4.1, 6.2) 5.3 (4.9, 5.5) 5.6 (4.9, 6.1) .437

Cardiac index – Doppler method (L/
min/m2)

3.0 (2.7, 3.4) 2.9 (2.7, 3.0) 3.0 (2.7, 3.4) .379

Peak tricuspid valve regurgitation
velocity (m/s)

2.0 (1.8, 2.3) 2.9 (2.7, 3.1) 2.1 (1.8, 2.3) .007

Left atrial volume index (mL/m2) 25.0 (21.0, 28.3) 28.0 (26.0, 31.0) 25.0 (21.0, 29.0) .266
Right atrial volume index (mL/m2) 19.0 (15.0, 23.1) 16.5 (14.0, 29.0) 18.9 (15.0, 23.2) .943
LV global longitudinal systolic strain -19.0 (-21.0, -18.0) -9.5 (-10.8, -8.0) -19.0 (-21.0, -18.0) .001

LV geometry
Normal 61 (64.9%) 2 (33.3%) 63 (63.0%) .006
Concentric remodeling 23 (24.5%) 0 (0%) 23 (23.0%)
Eccentric hypertrophy 9 (9.6%) 4 (66.7%) 13 (13.0%)
Concentric hypertrophy 1 (1.1%) 0 (0%) 1 (1.0%)

Diastolic function
Normal 87 (92.6%) 2 (33.3%) 89 (89.0%) .001
Abnormal 4 (4.3%) 2 (33.3%) 6 (6.0%)
Indeterminate 3 (3.2%) 2 (33.3%) 5 (5.0%)

Medical history
Chronic hypertension 3 (3.2%) 0 (0%) 3 (3.0%) 1
Gestational hypertension 1 (1.1%) 2 (33.3%) 3 (3.0%) .009
Preeclampsia 2 (2.1%) 2 (33.3%) 4 (4.0%) .017
Gestational diabetes 5 (5.3%) 2 (33.3%) 7 (7.0%) .055
Small for gestational age 3 (3.2%) 0 (0%) 3 (3.0%) 1
Preterm birth 2 (2.1%) 1 (16.7%) 3 (3.0%) .171
Other 22 (23.4%) 2 (33.3%) 24 (24.0%) .628

Pregnancy outcome

(Continued )
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Table 1 (Continued )

Normal LV systolic
function (n594)

LV systolic
dysfunction† (n56) Overall P values

Live birth (single) 77 (81.9%) 5 (83.3%) 82 (82.0%) .139
Live birth (multiple) 1 (1.1%) 1 (16.7%) 2 (2.0%)

Median, 25th percentile (Q1), and 75th percentile (Q3) reported for all numeric variables.
Frequency counts and percentages reported for categorical variables.
LV 5 left ventricular.

†LV systolic dysfunction is defined as left ventricular ejection fraction ,50%.
‡Fisher’s exact P value computed for the comparison of pregnant vs postpartum. The enumeration of the stage of pregnancy was not used in the analysis.
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significant. All analysis were performed using R version
4.0.3 (Vienna, Austria).23
Results
One hundred pregnant and postpartum women were included
in the final analysis. At the time of enrollment, 78% were
pregnant and 22% were within 12 months postpartum. Sum-
mary sample characteristics are provided in Table 1. The me-
dian age of participants was 31 years (Q1: 27, Q3: 34).
Thirty-eight percent identified as non-Hispanic White, 32%
as non-Hispanic Black, 21% as Hispanic, and 9% as other
(comprising 6% Asian, 2% multiracial, and 1% Native Ha-
waiian/Pacific Islander). Five percent and 6% had LVEF
,45% and ,50%, respectively.

Twelve-lead ECG
The AI-ECG model had excellent classification performance
for detection of cardiomyopathy at both LVEF categories
(,45% and ,50%), correctly identifying all cases of
LVSD in our study sample and achieving near-perfect
discrimination (Figure 3A–3D, Supplemental Table 1). At
the LVEF ,50% threshold, all 100 participants were
correctly classified (AUC 1.0, sensitivity and specificity
were 100%). At LVEF ,45%, AUC was 1.0, sensitivity
was 100%, and specificity was 98.9%. Overall accuracy
was 99% (99/100; 95% CI: 94.6%–100.0%), with the 1 mis-
classified individual having an LVEF of 49% and classified
as a false positive. Standard 12-lead ECG tracings are shown
in Figure 4 for a patient with LVEF of 35% and another with
LVEF 66%. These are shown side by side to demonstrate the
similarity between both ECGs on visual appreciation.
Although minor differences are appreciated on the ECGs, a
formal cardiologist’s clinical interpretation of the ECGs
would be insufficient for definite determination of low
LVEF status.

Digital stethoscope with AI-enabled single-lead
ECG and phonocardiogram
Across all 3 stethoscope positions, diagnostic performance
was robust. The number of evaluable ECGs by position, how-
ever, varied, with 99, 98, and 96 participants providing ECG
signals for the V2, angled, and subclavicular positions,
respectively. Of the 3 positions, the angled position for the
digital stethoscope provided the numerically highest discrim-
ination, with AUC of 0.987 (95% CI: 0.967, 1.00) for both
the detection of LVEF ,50% (Supplemental Table 2) and
LVEF ,45% (Supplemental Table 3). To provide predic-
tions for all participants, the diagnostic performance for the
mean and maximum model outputs over the 3 positions
was also considered. For the maximum model output, which
would have the highest sensitivity of any of the combinations
of positions, the AUC, sensitivity, and specificity were 0.968
(95% CI: 0.934, 1.000), 100.0% (95% CI: 54.1%, 100.0%),
and 90.4% (85/94; 95% CI: 82.6%, 95.5%) for LVEF
,50% (Supplemental Figure 1A and 1B). Model perfor-
mance metrics for all other stethoscope positions and
LVEF thresholds are provided in Supplemental Tables 2–4.
A subgroup analysis was performed and showed stable per-
formance of the AI model by age and race/ethnicity cate-
gories (Supplemental Figure 2) at both LVEF thresholds
(,45% and ,50%). The model outputs from both the 12-
lead ECG and digital stethoscope recordings appear to be
appropriately correlated with LVEF and other lead/device
configurations (Supplemental Figure 3).
Discussion
This pilot prospective study of an AI-powered screening tool
for LVSD among pregnant and postpartum women had 3
main findings. First in this US-based population,
pregnancy-related cardiomyopathy was relatively common,
impacting 6% of consecutive women enrolled in the study
(4 diagnosed with peripartum cardiomyopathy and 2 with
dilated cardiomyopathy). Second, a standard 12-lead ECG,
a ubiquitous, inexpensive test that is integrated in clinical
workflows, was a powerful screening test for LVSD among
pregnant and postpartum women with the addition of AI
analysis, demonstrating near-perfect discrimination in this
cohort (AUC 5 1.0). Third, a digital stethoscope with
single-lead ECG recording capability combined with a
phonocardiogram recording had a similarly strong perfor-
mance (AUC5 0.987). These findings, if confirmed in larger
studies, would support widespread screening for this impor-
tant condition that impacts young women and children.24

The frequency and clinical impact of LVSD occurring
during pregnancy or postpartum is incompletely under-
stood. Studies have suggested that peripartum cardiomyop-
athy is likely under-recognized and underdiagnosed.25 Its
incidence varies in different patient populations, with the
highest estimates reported in predominantly Black popula-
tions (1 in 100 deliveries in Nigeria and 1 in 300 deliveries



Figure 3 Twelve-lead electrocardiogram (ECG) receiver operating characteristic (ROC) curves and confusion matrix. A, B: ROC curve (A) and confusion
matrix (B) for detection of left ventricular ejection fraction (LVEF),50% using a 12-lead artificial intelligence–enabled ECG (AI-ECG) algorithm among preg-
nant and postpartumwomen.C, D: ROC curve (C) and confusion matrix (D) for detection of LVEF,45% using 12-lead AI-ECG algorithm among pregnant and
postpartum women. The 1 false-positive case had an ejection fraction of 49%.
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in Haiti).25,26 The incidence of peripartum cardiomyopathy
in the United States was estimated at approximately 1 in 850
live births based on the National Inpatient Sample (NIS)
data from 2011, which is up from approximately 1 in
1200 in 2004.26 Among women aged 40 and older, the inci-
dence is reported to be as high as 1 in 270 live births.27 It is
important to detect and initiate appropriate therapy for car-
diomyopathy early owing to the high risk (up to 13%) for
severe maternal morbidity (left ventricular assist device
placement or heart transplantation) and mortality,28 with
important implications for the infant as well. Novel clinical
approaches and tools, such as the AI-powered ECG, are
needed to help identify disease sooner in an effort to help
decrease maternal and fetal morbidity and mortality related
to this condition. The presented screening approach, which
leverages the ECG enhanced with AI and confirmatory eval-
uation by echocardiogram if an AI-positive flag is obtained,
has been demonstrated to be cost effective.29

Current guidelines from the American College of Cardiol-
ogy and the American College of Obstetrics and Gynecology
(ACOG) do not recommend routine screening for any cardio-
myopathy in the obstetric population. This may in part reflect
the current need for expensive imaging tests (echocardio-
gram, computed tomography, or magnetic resonance imag-
ing) that can include radiation or high-magnetic-force
exposure to mother and fetus, making such screening imprac-
tical. The availability of an ECG-based AI screen may change
the equation. This study provides important preliminary data
supporting the use of AI-powered tools for cardiovascular
screening during pregnancy.

The performance of both the 12-lead ECG and digital
stethoscope significantly exceeded the strong performance



Figure 4 Standard 12-lead electrocardiogram (ECG) examples. ECG tracings for 2 patients in our study sample, with clinical interpretations: 1 with left ven-
tricular ejection fraction (LVEF) of 35% (AI-predicted probability 0.796) and the other with LVEF of 66% (AI-predicted probability 0.180). The previously deter-
mined AI-predicted probability threshold for a positive flag is 0.256.
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previously reported in retrospective7 and prospective16

studies of the same algorithm that included older, general pa-
tient populations. In contrast to previous studies, in which in-
dividuals with normal ventricular function (control) had
many comorbidities such as hypertension, diabetes, hyperlip-
idemia, and renal dysfunction, the control subjects in the pre-
sent study were younger and healthier. This likely facilitated
the ability of the AI-ECG to powerfully classify normal from
abnormal ventricular function. We have previously demon-
strated the ability of AI analysis of a single-lead ECG from
a watch to detect ventricular dysfunction,19 with only mini-
mal loss in test performance compared to the 12-lead model.
Thus, it was not surprising to find a similar very modest
degradation of test performance using the digital single-
lead ECG stethoscope recording. Prior to the implementation
of AI models in clinical practice, it is essential that they be
thoroughly validated in populations in which they are in-
tended for use,30 with prospective validation studies being
an important step, as well as ensuring dataset diversity for
model training and validation.31,32

While routine screening is not recommended, the ACOG
guidelines do recommend a cardiovascular toolkit be used to
risk-stratify patients with suspected cardiovascular disease.5

This toolkit uses a combination of symptoms, vital signs,
risk factors from medical history, and physical examination
findings to determine risk, and, based on a combination of
these, an ECG and natriuretic peptide measurement are the
recommended first-line screening tests.33,34 Clinical interpre-
tation of the ECG alone is insufficient for identification of
LVSD, and natriuretic peptide levels are known to vary by
pregnancy trimester35 and can be altered by obesity36,37 or
preeclampsia.38
Our study leverages the ECG, a simple, effective, scalable,
and cost-effective screening tool to screen for LVSD in the
obstetric population. Our team has previously evaluated the
effectiveness of the AI-ECG for detection of LVSD in a retro-
spective sample of pregnant and postpartum women seen at
Mayo Clinic, demonstrating its effectiveness (AUC 5
0.92) and that it outperformed natriuretic peptides.15 In addi-
tion, the current study evaluated a portable device, the digital
stethoscope, as an alternative to the standard 12-lead ECG
and showed it remained effective, thus providing an alternate
option for obstetric cardiovascular screening in clinical set-
tings, nonclinical settings, and low-resource settings. While
12-lead ECGs are readily available in standard cardiovascular
outpatient and in-patient practices, this may not necessarily
be the case in obstetric care settings, particularly in the outpa-
tient clinics. As such, the ability to use a portable device in
various health care settings as well as for remote/virtual
care or in the community can have a profound impact as a
public health intervention. The diagnostic performance of
the AI-ECG for detection of left ventricular dysfunction is
notably impressive when compared to screening tests used
in routine clinical care, such as mammography,39 pap
smear,40,41 and natriuretic peptide screening for heart fail-
ure,19 with AUC values ranging from 0.71 to 0.85. The AI-
ECG also demonstrates superior diagnostic performance
when compared to commonly used diagnostic tests in cardio-
vascular medicine, such as SPECT myocardial perfusion im-
aging for detection of obstructive coronary disease (AUC 5
0.87 based on a meta-analysis)42 and stress echocardiography
(AUC 5 0.73–0.84).43

A key limitation of this study is the relatively small sam-
ple size with a low number of participants having LVSD, as
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such model performance needs to be interpreted cautiously
in this context. In addition, the low number of cases limits
subgroup analysis (including age and race categories),
with less precise confidence intervals around calculated es-
timates of diagnostic performance. The sample for this study
was intentionally small to allow for the initial examination
of the AI-ECG algorithm in pregnant and postpartum
women. The sample size justification used a lower threshold
of AUC5 0.5 to allow for any discrimination above chance
to be considered evidence that the algorithm shows some
diagnostic performance in this population. As such, a posi-
tive signal in this study would warrant a larger, more
comprehensive study.

Strengths include the use of standard and portable ECG re-
cordings for AI-based cardiomyopathy prediction, targeted
enrollment of a racially and ethnically diverse group of
women, and performance of the ECGs on the same day as
or (in 1 patient) within 24 hours of the echocardiogram,
which allows for an almost simultaneous assessment of the
AI-based predictions with echo-based left ventricular func-
tion assessment.
Conclusion
In this pilot prospective study, we found that a 12-lead AI-
ECG and an AI-enabled digital stethoscope (single-lead
ECG 1 phonocardiogram) are powerful screening tools for
LVSD in obstetric patients, a treatable, under-recognized
condition with significant morbidity and mortality. This sug-
gests AI-ECG tools may provide powerful point-of-care
screening for pregnant and postpartum women.
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