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SUMMARY

Walking trajectory is frequently measured to assess animal behavior. Air-supported spherical tread-

mills have been developed for real-time monitoring of animal walking trajectories. However, current

systems for mice mainly employ computer mouse microcameras (chip-on-board sensors) to monitor

ball motion, and these detectors exhibit technical issues with focus and rotation scale. In addition,

computational methods to analyze and quantify the ‘‘random walk’’ of organisms are under-devel-

oped. In this work, we overcame the hurdle of frame-to-signal translation to develop a treadmill sys-

tem with camera-based detection. Moreover, we generated a package of mathematical methods to

quantify distinct aspects ofDrosophilawalking trajectories. By extracting and quantifying certain fea-

tures of walking dynamics with high temporal resolution, we found that depending on their internal

state, flies employ different walking strategies to approach environmental cues. This camera-based

treadmill system and method package may also be applicable to monitor the walking trajectories of

other diverse animal species.

INTRODUCTION

Animals continuously integrate dynamic multisensory cues while searching their ever-changing environ-

ment for food, mates, safety, or other objectives (Anderson and Perona, 2014; Dickinson et al., 2000; Green-

span and Ferveur, 2000). After compiling sensory information, neural circuits then translate it into

movements with different trajectories, which can be observed and used as a readout for analysis. Animal

trajectories can be either three-dimensional, such as those for flight and swimming, or two-dimensional,

as for walking and crawling. As the movements of organisms are the products of multiple integrated neural

circuits, the trajectories should exhibit signatures that distinguish them from models of non-biological

movements, such as Brownian motion (Klafter et al., 1996; Dickinson et al., 2000). Lévy walk and Lévy flight

are the best-established analyses to describe the ‘‘random walk/flight’’ of animal search strategies (Bartu-

meus et al., 2005; Rhee et al., 2011). In most experiments exploring animal motility, the randomwalk is used

to describe the walking trajectories of control animals. However, starved animals are often used for olfac-

tory and gustatory studies, and accumulating evidence suggests that internal state-dependent mecha-

nisms are important determinants of walking trajectories (Van Breugel et al., 2018; Grunwald Kadow,

2019; Rengarajan et al., 2019). Whether control flies with distinct internal states exhibit similar random

walk patterns remains unclear. Therefore, a better quantitative definition of random walk (at a millisecond

timescale) is necessary. Drosophila is one of the most prevalent animal models for dissecting the connec-

tions between neural circuit integration and behavior (Gaudry et al., 2012b; Dickinson et al., 2000; Robie

et al., 2017; Branson et al., 2009; Kabra et al., 2012; Dankert et al., 2009; Grover et al., 2016). Although

many paradigms for assessing behavior have been established to evaluate animal movement under

different physiological states and during different tasks (Kim and Dickinson, 2017; Semmelhack and

Wang, 2009; Bahl et al., 2013; Coen et al., 2014; Gomez-Marin et al., 2011; Wu et al., 2014; Álvarez-Salvado

et al., 2018; Bidaye et al., 2014; Reynolds and Frye, 2007), the quantitative analytical tools to analyze the

measured trajectories remain under-developed.

Spherical treadmill systems have been developed to acquire walking trajectories or other behavioral fea-

tures of different animals during the performance of tasks, such as navigation, osmotrophotaxis, olfactory

discrimination, motion detection, auditory transduction, or gait control (Borst and Heisenberg, 1982; Taka-

saki et al., 2012; Radvansky and Dombeck, 2018; Kain et al., 2013; Buchner, 1976; Gaudry et al., 2012a; Ko-

hatsu et al., 2011; Clark et al., 2011; Lehnert et al., 2013; Seelig et al., 2010; Bahl et al., 2015; Ribeiro et al.,

2018). Notably, these systems have recently been adapted to incorporate visual or olfactory virtual reality,
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creating a powerful tool for dissecting neural circuit activity and regulatory mechanisms (Seelig et al., 2010;

Harvey et al., 2009; Radvansky and Dombeck, 2018; Sato et al., 2017; Haberkern et al., 2019; Kohatsu and

Yamamoto, 2015; Runyan et al., 2017). Such treadmill systems require minimal delay time for closed-loop

feedback and high precision of signals, both of which are largely determined by the detector that digitally

records the motion of an air-supported ball. The most widely used treadmill systems for mice, rats, and flies

utilize the sensor chips from a computer mouse tomeasure directional ball motion (Harvey et al., 2009; See-

lig et al., 2010; Gaudry et al., 2012a; Kain et al., 2013; Radvansky and Dombeck, 2018; Haberkern et al., 2019;

Kohatsu and Yamamoto, 2015). Such sensor chips offer high temporal resolution and directly report the dis-

placements of ball surface. However, there are three major limitations with these sensor chip detectors.

First, the distance between the sensor and the detected surface must be within the working distance of

the sensor. If not, a compensatory optical design is necessary to acquire the motion of the ball. However,

the fitting measurement for such compensatory optical design is lacking. Second, single optical computer

mouse sensors are not able to monitor the rotation axis of the ball. Thus, if a sensor is pointed directly at the

rotation axis, it will fail to report rotation of the ball. The use of two orthogonally aligned senor chips en-

sures the detection of ball rotation, but this design cannot give complete information about shifts in rota-

tion axis. Third, validating the accuracy of signals from the computer mouse sensors remains challenging.

An alternative modality for animal treadmill detectors is to use a camera to track visible patterns on the ball

surface (Moore et al., 2014). Such a ‘‘camera-mode’’ treadmill system would supply information about every

pixel in a region of interest (ROI), but camera detectors also suffer from limitations. First, specular reflection

on the ball surface may deteriorate the tracked patterns. This issue can be resolved by proper illumination

of the ball surface. Second, the recorded contours of patterns on the ball surface will vary based on their

positions. As such, patterns located in the central zone of the ROI will appear to be expanded, whereas

the same patterns near the rim of the ball will be distorted. Third, an established model of ball patterns

is required for reconstruction of ball motion from video frames (Moore et al., 2014). This limitation prevents

camera-mode treadmill systems from being easily adapted by other laboratories.

In this study, we developed a new camera-mode treadmill system to bypass the issues of focus and lack of

complete information about rotation that are common to ‘‘computer-mouse-mode’’ systems. Our system

also overcomes a major limitation of camera-mode systems, as it does not require a pre-established model

of visible markings on the ball (ball patterns). We successfully translated the captured frames into digital

signals, and the calibration of odor arrival delay time with a photoionization detector (PID) allowed us to

maximize temporal resolution at odor phase transitions. We identified four features of optically recorded

ball motion to collectively describe individual walking patterns: rotation, distance, straightness, and curl.

As a proof of principle, we used our system to measure the effects of internal state-dependent mechanisms

on distinct walking strategies of singleDrosophila. In addition, we revisited the idea of randomwalk in con-

trol flies, and interestingly, we did not observe differential walking patterns between starved and fed flies.

Importantly, our camera-mode treadmill system is scalable, making it suitable for studies on other animal

species in addition to Drosophila.
RESULTS

Camera-Mode Fly Treadmill System

To collect signals of ball motion that allow verifiable reconstruction of walking trajectories, we designed

and built a camera-mode fly treadmill system (Figures 1A, 1B, and S1A, Video S1). In this system, themotion

of an air-supported ball is driven by the walking maneuvers of a tethered fly. As the motion of an observed

ball surface is symmetric to its opposite surface, we positioned the camera detector underneath the air-

supported ball (Figure 1A). In previous float mounts of computer-mouse-mode treadmill systems, a single

air outlet was sufficient to support the ball and allow a tethered fly to stand on top (Buchner, 1976; Seelig

et al., 2010; Gaudry et al., 2012a; Kain et al., 2013; Haberkern et al., 2019; Kohatsu and Yamamoto, 2015;

Clark et al., 2011; Bahl et al., 2015). However, a one-air-stream float mount may suffer from two potential

drawbacks. First, air turbulence may occur during experimental sessions. Second, the walking fly may

deliver enough force to the ball that is pushed into the margin of the air outlet. To overcome these issues,

we designed a float mount with four air inlets (Figures 1A and S1B). Themutually counteracting airflow from

four outlets largely eliminated the occasional air turbulence that occurs in float mounts with a single air

outlet. This design also allowed us to position a high-speed charge-coupled device camera facing the bot-

tom of the floating ball. A small 192 3 200-pixel area of the ball bottom was brought into focus, allowing

frames to be acquired at 100 Hz (sampling time: 10 ms) (Figure 1C). We then developed a custom tracking
1146 iScience 19, 1145–1159, September 27, 2019



Figure 1. Fly Treadmill System

(A) The schematic diagram of the camera-mode fly treadmill system.

(B) Lateral view of a tethered fly walking on the ball suspended on the float mount.

(C) Bottom view of the ball (left panel). (Middle and right panels) A single frame of infrared video recording of ball motion.

Asterisks mark the four air inlets. The arrowhead indicates a mark for positioning the nozzle.

(D) (Top) The on and off phases of the solenoid valves of the odor delivery system. (Middle) The dynamics of odor

concentration (10�1 dilution of pentanoic acid) detected by photoionization detector (PID). Black dots indicate the

average of 29 trials (green lines) and are shown as mean G SD. Gray zone is the on phase of solenoid valves. Note a 22-s

delay between the switching on of solenoid valves and the arrival of odor at a flow rate 17 mL/min. (Bottom) After

calibration to the PID signal, the odor history can be divided as pre-odor (off, blue), during odor (on, orange), and post-

odor (off, magenta) phases. All experimental data show odor delivery phases after PID signal correction, unless otherwise

noted. Scale bars, 2 mm in (B) and 1 mm in (C).

See also Figures S1 and S2, and Video S1.
program in C++. The fundamental idea behind the tracking program is that for each frame, the pattern in

the central zone of the air-supported ball is fitted with the previous frame. The displacement and the rota-

tion of the pattern are then considered as motion in the X-Y plane and along the rotation axis. Note that in

this work, ‘‘motion’’ and ‘‘movement’’ are used to specifically refer to the movements of the ball and the fly,

respectively.

We also built an odor delivery system, consisting of a pipeline and nozzle, to flow-in odorants to the teth-

ered fly (Figures 1D and S2). Delivery is controlled by four two-way solenoid valves (Figure 1D, top). To es-

timate the delay time between switching on odor flow with the solenoid valves and odor arrival at the fly, a

PID was placed on the ball surface in the same position as a tethered fly (Figure S1E). In this system, the

delay time was 22 s when the odor was delivered at 17 mL/min (middle panel in Figure 1D). Therefore

the odor signal timing in our experiments was adjusted according to the measured delay time for the cor-

responding flow rate (bottom panel in Figure 1D).
Digitizing Fly Walking Trajectories

A major challenge in the development of our camera-mode treadmill system was digitizing fly walking tra-

jectories from the video recording of ball motion. To this end, we tested four methods: gradients pyramid,

grayscale value pyramid, low discrepancy sampling, and optic flow (Figure S3, Video S2). We found that the

motion of tested object can be best translated from a serial set of frames using optic flow.

The ball motion videos were subjected to optic flow analysis to translate the frame information to flow vectors.

The flow vectors were then used to generate five features: displacement along the x axis (X), displacement

along the y axis (Y), rotation center at X, rotation center at Y, and curl (Figure 2A) (seeMethods for a description

of the relationships between rotation centers, yaw, roll, and pitch). X and Y were then further used to calculate
iScience 19, 1145–1159, September 27, 2019 1147



Figure 2. Reconstructing Fly Trajectories from Ball Motion

(A) (Top) Time history of starved fly-driven ball motion as displacement along X-dimension (X), displacement along Y-dimension (Y), distance, orientation,

rotation center at X, rotation center at Y, and curl at every 10-ms interval (sampling time). The features were derived from the motion of the ball. The speed

(mm/10 ms) has the same pattern as walking distance. Odor was a 10�1 dilution of pentanoic acid at 17 mL/min.

(B) A reconstructed walking trajectory of a starved fly according to the first two features in (A). Dashed-line contoured area indicates the direction of the

nozzle. Color codes of odor phases are the same as (A).

(C) Reconstructed walking trajectories of 16 starved flies.

(D) The position of the ball rotation center derived from the same fly as in (B).

(E) The position of ball rotation centers derived from the same group of flies as in (C).

See also Figure S3 and Video S2.
the ‘‘distance’’ and ‘‘orientation,’’ which stand for the magnitude and the direction of displacement in the X-Y

plane, respectively (explained in detail below) (Figure 2A). Next, the first two features were integrated to

reconstruct the walking trajectories of individual flies (Figures 2B and 2C). In addition, the ball rotation center

can be reconstructed from rotation center-X and rotation center-Y (Figures 2D and 2E).

Flies with different internal states are expected to differentially value the same food odor or stimuli (Van

Breugel et al., 2018; Grunwald Kadow, 2019). We therefore reasoned that flies with different internal states

may show distinct walking patterns in response to the same environmental cues, and the trajectory features

we measured should be sufficient to identify such differences. To test this hypothesis and validate our sys-

tem, individual flies that were either fed or starved were placed on the ball of the treadmill system, and after

some time, food odor or water vapor was administered. The seven distinct features of ball motion were ex-

tracted (Figures 3A–3C) and used to reconstruct the walking trajectories (Figures 3D–3F) and ball rotation

centers (Figures 3G–3I) for single flies. As expected, we saw that flies with different internal states were

likely to exhibit distinct walking trajectory patterns in response to environmental cues, odor, or water vapor

(explained in detail below).

Flies in Different Internal Status Orientated the External Cues in Different Kinetics

Two ball motion features, displacement along the x axis and displacement along the y axis, were used to

derive the orientation of a tested fly (Figure 4A). Orientation was calculated as the counterclockwise angle
1148 iScience 19, 1145–1159, September 27, 2019



Figure 3. Trajectories Derived from Flies with Different Internal States Show Different Walking Characteristics

(A–C) Similar to Figure 2A, the panels show the time history of ball motion features driven by a fed fly in response to food odor (A), by a starved fly in response

to food odor (B), and by a starved fly in response to water vapor (C). A 10�1 dilution of pentanoic acid or water vapor was applied at 17 mL/min. (B) The same

data as shown in Figure 2A.
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Figure 3. Continued

(D–F) Similar to Figure 2C, the panels show the reconstructed walking trajectories of 15 fed flies in response to food odor (D), 16 starved flies in response to

food odor (E), and 17 starved flies in response to water vapor (F). (E) Same data as shown in Figure 2C.

(G–I) Similar to Figure 2E, the panels show the reconstructed rotation centers of 15 fed flies in response to food odor (G), 16 starved flies in response to food

odor (H), and 17 starved flies in response to water vapor (I). (H) The same data as shown in Figure 2E.
(q) between two sampling time points (middle panel in Figure 4A). Accordingly, the orientation dynamics of

a representative fly in pre-odor, odor, and post-odor phases were reconstructed to an orientation distribu-

tion map (right panel in Figure 4A). In the example shown, the fly tended to orient itself to �288� during
odor and post-odor phases, which corresponds to the approximate position of nozzle (odor source covers

the area from �270� to 306�). Maps from all single flies in the same test group were then compiled and are

shown as a normalized distribution map (Figure 4B). To better understand the individual variability of

walking dynamics, we did not exclude statistical outliers; instead, all collected trajectories were used in

the analyses.

Several factors, such as the genetic background of flies, the concentration of odor, and the speed of odor

plume, may influence the results. To optimize the test conditions, we first examined the odor distribution

maps of flies from five different genetic backgrounds (Figure S4A). We found that DL wild-type flies have

most consistent orientation responses to odor, so we used DL wild-type flies in subsequent experiments.

The airflow delivery system for odor or water vapor has two potential effects on fly behavioral responses

(Zhou and Wilson, 2012). First, the airflow itself produces shearing forces on flies. Second, the magnitude

of airflow determines the dynamics of odor concentration and the delay time for the odor plume to reach

the fly. Therefore, we examined the effects of odor delivery at 10, 17, and 22 mL/min on the orientation dis-

tributions of flies (Figure S4B). Flies from three experimental groups showed the most differential dynamic

responses to odor delivered at 17 mL/min. Therefore, we used an odor delivery flow rate of 17 mL/min for

subsequent experiments.

To address whether the internal state of a fly would affect its response toward a stimulus, we administered

pentanoic acid food odor to either fed or starved DL flies. We found that both groups of flies effectively

oriented themselves toward the odor, suggesting they were attracted by the food odor (comparing pre-

odor and odor phases, Figure 4B). However, fed and starved flies showed different orientation dynamics

across pre-odor, odor, and post-odor phases (Figures 4C and 4D). Starved flies tended to orient them-

selves toward the odor faster at the initial stage of odor phase; in contrast, fed flies tended to stay oriented

toward the odor at late stage of odor phase. A similar response at the initial stage of the odor phase was

also observed when water vapor was applied to starved flies (right panel, Figures 4B–4D). Such differences

are unlikely to be the result of reduced locomotor activity in starved flies based on control experiments (Fig-

ure S5, Methods). These results suggested that starved flies respondmore quickly to an environmental cue,

no matter whether it is food odor or water. In addition, the same food odor may have different valence to

starved and fed flies.

Flies with Different Internal States Exhibit Different Walking Patterns in Response to

Environmental Cues

The first feature we extracted from the ball motion, orientation, was sufficient to show that flies with

different internal states have distinct response dynamics to the same food odor. We next asked whether

flies with different internal states tend to use different walking strategies to explore the environmental

cues. In addition, we were interested to know whether flies with similar internal states exhibit different

walking patterns in response to different external cues. To delineate these responses, we evaluated three

additional features: distance, straightness (derived from displacement and distance), and curl (Figure 5).

The dynamic changes in distance suggested that flies tend to walk longer for certain time after encoun-

tering food odor, but not water (Figures 5A and 5B). This movement pattern was particularly obvious in

starved flies encountering food odor.

Straightness is a feature that describes the twists and turns of curves (Figure 5C, Methods) and was calcu-

lated in 5-s bins. For a given straightness close to 1, the path traversed by the fly is close to a straight line.

More dynamic (changes in) straightness along time represents a higher frequency of a fly’s walking trajec-

tory alternating between straight lines and tortuous paths. Immediately upon and during administration of
1150 iScience 19, 1145–1159, September 27, 2019
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Figure 4. Flies with Different Internal States Oriented toward Environmental Cues with Different Temporal Dynamics

(A) Schematic illustrating the calculation of orientation. (Left) A reconstructed walking trajectory. Asterisk indicates the trajectory phase, which is enlarged in

themiddle panel. (Middle) Orientation is estimated as the counterclockwise angle (black arrow) between the positive x axis (black dashed line) and the vector

drawn along the trajectory in a given time interval (gray arrow). (Right) Reconstructed orientation distribution map of a fly during pre-odor (blue), odor

(orange), and post-odor (magenta) phases. Radius is the percentage of orientation angles (see Methods). The representative fly tended to orient toward

�288� during odor and post-odor phases. Orange bracket indicates the positional range of the odor source (�270�–306�).
(B) Reconstructed orientation distribution maps from 15 fed flies in response to food odor (left), 16 starved flies in response to food odor (middle), or 17

starved flies in response to water vapor (right) during pre-odor (blue), odor (orange), and post-odor (magenta) phases. Orange brackets indicate the

positional range of the odor source (�270�–306�). The percentages of orientation angles derived from flies in the same experimental group and in different

odor phases were subjected to statistical analysis (see Methods). Mann-Whitney U test was used to compare the unpaired phases. N.S., not significant.

*p < 0.05.

(C) Orientation distribution of groups of flies with different internal states (n = 15, 16, and 17 for fed/applied odor, starved/applied odor, and starved/applied

water vapor groups, respectively). The orientations of flies were calculated in 10-s time bins. The percentages of orientation distributions of flies in the same

group in a given time bin were normalized and shown as heatmap. Orange lines indicate the positional range of the odor source (�270�–306�).
(D) Data were analyzed similar to (C), but only the orientation distribution data in the range between 270� and 306� in (C) were extracted. Each dot represents

the normalized frequencies between 270� and 306� of the same group in each time bin.

See also Figures S4 and S5.
food odor, fed flies tended to travel more in straight line, as evidenced by the slight increase in straightness

(Figure 5D). Interestingly, the fed flies exhibited reduced straightness soon after the odor was turned off. In

contrast, although starved flies also tended to travel more in straight line when they encountered food odor

or water, this trend was sustained when the external cues were turned off (Figure 5D).

The rotation of the ball, as evaluated by curl, reflects the behavior of a tethered fly coordinating its six legs

to move differentially, rather than walking straight or sideways (Figures 1C and 5E). Notably, curl contains

information of magnitude and direction, which includes both positive and negative values that typically

cancel each other out when averaged over any appreciable timescale (Figure 5F). Therefore, we focused

on only the magnitude, jcurlj (Figure 5G). We found that starved flies, but not fed flies, tended to have

slightly higher jcurlj when they encountered food odor or water (Figure 5G). Interestingly, this trend was

only sustained in the post-odor phase for starved flies encountering food odor, but not water vapor. These

results collectively suggested that both fed and starved flies tend to walk straighter and/or faster when they

encounter environmental cues. Such trends were especially observed in starved flies, which tended to walk

much faster when encountering food odor but walked much straighter when encountering water vapor.

Interestingly, only starved flies exposed to food odor tended to maintain the walking patterns after the

odor was turned off.

The Feature of Ball Rotation Cannot Be Ignored

We next sought to explore how the interplay between distance and curl may reflect the patterns of ball mo-

tion and thus fly walking trajectories. We analyzed the cross-correlation between the series of distance and

the series of jcurlj in 5-s time bins (see Methods). No obvious correlations were found between these two

features in any of the three groups for any odor phase (Figure 5H), indicating that jcurlj did not shift, either

linearly or simultaneously, with changes in distance.

To further understand the interaction between jcurlj and distance, we examined the correlation between

the average and standard deviation of distance and jcurlj in each odor signal phase (Figures 5I and S6).

The jcurlj value (average) and the changes in jcurlj (SD) were both strongly correlated to the distance

and changes in distance. These results suggested that the feature distance is only correlated to the feature

jcurlj (ball rotation) over a short time period (a 5-s time bin), but not at every single sampling time (10 ms).

When the ball rotates along the roll or pitch axis, curl has high correlation with displacement in the X-Y

plane. In contrast, when the ball rotates along the yaw axis, curl does not correlate with the displacements

along the x and y axes. Therefore, based on our findings that the ball center shifts during experiments (Fig-

ures 3G–3I) and the strong correlation between jcurlj and distance (Figure 5I), ball rotation is an indispens-

able feature when reconstructing walking trajectories from the motion of a ball in treadmill systems.

Revisiting the Random Walk of Control Flies

A random walk is mathematically defined as a path or process that is composed of a succession of consis-

tently random steps. Although the biological definition of ‘‘random walk’’ is less clear, the walking patterns
1152 iScience 19, 1145–1159, September 27, 2019
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Figure 5. Extracting Walking Features of Flies with Different Internal States

(A) A schematic diagram of distance. Distance (black arrow) is the position change along X- and Y-dimensions between two consecutive 10-ms sampling

times.

(B) The average of distance in a given 5-s time bin is shown. Each line represents the average distance traversed by a fly in three odor phases, with same color

codes as Figure 1D. The black dots and lines show mean G SD in each time bin.

(C) A schematic diagram of straightness. Straightness was calculated as the displacement (black arrow)/accumulated distance (gray line) in a 5-s time bin.

(D) The dynamics of straightness in three odor phases. The black dots and lines show mean G SD in each time bin.

(E) A schematic diagram of curl is shown from the bottom view of the ball. Curl was calculated as the rotation of a displacement field at pixels between two

consecutive frames as indicated by arrows.

(F) The curl derived from single flies in each 5-s time bin was averaged. The black dots and lines show mean G SD in each time bin.

(G) Similar to (F) but shows the absolute value of curl, jcurlj.
(H) The cross-correlation between the distance and jcurlj was tested in the three groups of flies.

(I) The correlation between average of distance and average of curl in each 5-s time bin derived from three groups of flies.

(B, D, E, G, and H) Mann–Whitney U-test was used to assess paired data for time-binned feature distributions during phase switches. *p < 0.05, **p < 0.01,

***p < 0.005; N.S., not significant. See also Figure S6.
of starved animals under a control environment (without applied cues) are generally described using this

term.

We may stipulate that flies were under a control environment before the application of food odor or water

vapor, which is the pre-odor phase in our experimental sets. Thus, we reasoned that the features we use to

characterize trajectories should allow us to describe the biological randomwalk of flies, and furthermore we

expected that flies with different internal states would differentially perform random walks. We therefore

compared the pre-odor phase walking features of fed and starved flies (Figures 6A–6D). We found that

starved and fed flies did not exhibit differences in accumulated distance, straightness, frequency of normal-

ized distribution of orientation (within 270�–306�), or accumulated jcurlj (Figure 6C). The 28 variables

extracted from the walking patterns of fed and starved flies were then subjected to principle-component

analysis (PCA) to test whether these variables can collectively distinguish between the walking patterns of

fed and starved flies (Figures 6D and S7). We did not observe clear separation of the two clusters, suggest-

ing that fed and starved flies may have similar walking patterns when there was no obvious external cue.

Lévy walk and Lévy flight, two types of scale-free behavior, are the best-established analyses to describe

the ‘‘random walk/flight’’ of animal search strategies (Rhee et al., 2011; Bartumeus et al., 2005; Reynolds

and Frye, 2007). The distribution of velocity patterns for Brownian motion exhibits a normal distribution,

whereas that of scale-free movement is not normal; instead, it is characterized by a fat tail or self-similarity

(Mörters and Peres, 2010; Clauset et al., 2009). To further address whether flies walked in a scale-free

manner or as a random walk without application of external cues, we subjected the features of distance,

change of orientation, and change of curl to scale-free analysis (Figures 6E and 6F). This analysis involves

calculating the power-law scaling a from the structure functions for displacements DXT over sampling time

T . When the power-law scaling a < 0.5, the movement of subjects is considered to be odd. When a approx-

imates 0.5, the subject movement is considered to be a random walk. When a > 0.5, the walking patterns

are considered to be scale free, as they follow a power-law function (Figure 6E). We found that fed and

starved flies both exhibited scale-free patterns for all three tested features (Figure 6F).

After calculating orientation, distance, straightness and curl to characterize the walking features of a fly re-

corded by the treadmill system, we sought to test whether these features are collectively sufficient to iden-

tify differential walking strategies. We plotted the changes of orientation and curl along the cumulative

distance for each of the three odor signal phases (Figures 6G and S8). Indeed, these features clearly re-

flected the differential walking patterns or strategies employed by flies with different internal states and

encountering different environmental cues.

DISCUSSION

Treadmill systems have been widely employed to monitor animal walking trajectories and to dissect neural

mechanisms in subjects that are performing assigned tasks. The most prevalent treadmill systems used for

mammals and insects are computer-mouse-mode systems that have the advantage of a fast closed feed-

back loop but lack focus verification and information about rotation index. To bypass these two issues, we

built an easily adapted camera-mode treadmill system and identified a set of features that sufficiently

describe fly walking trajectories. We further demonstrated the power of this system by decoding the
1154 iScience 19, 1145–1159, September 27, 2019



Figure 6. Flies with Different Internal States Showed Similar Scale-free Walking Patterns

(A) The reconstructed walking trajectories of fed (left panel, n = 15) or starved (right panel, n = 33) flies in the pre-odor phase. The trajectories are coded blue

(start) to black (end) as indicated.

(B) The features of a single fed (left) or a single starved (right) fly.

(C) Accumulated distance, straightness, frequency of normalized distribution of orientation within 270�–306�, and accumulated jcurlj of fed and starved flies.

The black dots and lines show mean G SD in each group. Mann-Whitney U test to compare the unpaired phases. N.S., not significant.

(D) Principle-component analysis of 28 features derived from the fed and starved fly walking patterns in the pre-odor phase.

(E) A representative scale-free analysis of a starved fly walking trajectories in the pre-odor phase. Power-scaling z was calculated from least-squares linear

fitting of the structure functions showing displacements DXT in an increased sampling time T on a log-log plot (top). The power-law scaling a was obtained

by least-squares linear fitting of the power-scaling z against the power q (bottom) (Methods). In this case, the power-law scaling a = 0.73.

(F) The power-law scaling for distance, Dorientation, and Dcurl derived from fed and starved flies in the pre-odor phase.

(G) Representative trials from three flies with different internal states and encountered different environmental cues. The dynamics of three walking features,

curl, orientation, and accumulated displacement are shown throughout the three phases. Representative data from flies in the three groups are shown. The

odor-phase is indicated by the gray shadow. The y axis shows the value of curl (positive and negative values represent two opposite rotation directions).

Orientation is color coded as shown. Scale bar for curl, 0.1.

See also Figures S7 and S8.
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differential walking strategies that reflect the internal states of animals. The major difference in output be-

tween our system and those equipped with two-chip sensors is that the yaw, pitch, and roll of ball motion

are derived from the X and Y displacements, respectively, detected by two chips in those mouse-mode

treadmills, but ours directly measures the rotation and curl of ball motion. Moreover, unlike previous cam-

era-mode treadmill, a pre-established ball pattern model is not required by our system. Importantly, the

system described here can also be scaled up for application to other animal species.

The Camera-Mode Treadmill System

Our camera-mode treadmill system has several advantages. First, the float mount is equipped with four

airflow inlets to support the ball, which largely eliminated the frequent problem of air turbulence when us-

ing a single airflow inlet; thus, our system is amenable to long-term recording. Second, camera-based

video recording combined with frame-by-frame signal translation by optical flow allows for verification

of reconstructed trajectories. Third, a set of features, including curl from ball rotation, effectively describes

the trajectory patterns. In addition, the estimation of odor arrival delay time with a PID improves the accu-

racy of measuring dynamic trajectory pattern responses to odor administration.

We assembled a set of features to describe the reconstructed walking trajectories: distance, straightness,

orientation, and curl (Figures 4 and 5). These four features have enough power to describe the different

walking patterns of flies with different internal states and encountering different external cues. Most impor-

tantly, we found that curl is highly correlated with distance, which means that this parameter is indispens-

able when analyzing X- and Y-displacement (also see below discussion) (Figures 5I and S6). Distance and

straightness are the products of ball motion along an X-Y plane, whereas jcurlj is derived from the rotation

of the ball. All these three features collaboratively reflect the movement of a fly. Accordingly, we may

further envision the combination of standard deviation of curl and the average of displacement as the prod-

uct of fly walking speed. Therefore, our results suggest that the faster a fly walks on the ball, the more dy-

namic (variable) the ball rotation is. Our findings further support the idea that curl can serve as a biologically

meaningful feature of fly walking behavior that can be measured by treadmill systems. Specifically, when

curl is calculated over a very short sampling time (e.g., millisecond scale), it may reflect changes in fly step-

ping patterns. On the other hand, when the sample time is on the scale of seconds, curl may instead reflect

effects on guidance strategies.

Ball Rotation and Curl

The computer-mouse-mode treadmill systems used for flies, mice, and rats lack the capacity to detect ball

rotation and/or shift of the rotation center. It is not clear how this information deficit may affect the recon-

structed walking trajectories. However, using our camera-mode treadmill system, we found the ball rota-

tion centers frequently shifted during experimental phases (Figures 2D, 2E, and 3G–3I). Such rotation

center drift demonstrated that the ball often switched its rotation along yaw, roll, or pitch axes. Therefore,

reconstructing the trajectories through two orthogonally aligned mouse cameras may result in under- or

over-estimated distances. To better understand the relationship between ball rotation and reconstructed

distance, we calculated curl to quantify ball rotation along time. We found that the average and standard

deviation of jcurlj are highly correlated with the average and standard deviation of distance (Figures 5I and

S6). Therefore, the ball rotation feature cannot be ignored when reconstructing animal walking trajectories.

Internal State-Dependent Walking Strategies

A growing body of evidence has demonstrated that inner conditions and past experiences contribute to

motivation and decision-making mechanisms that guide animal behavior in response to environmental

cues (Kim and Dickinson, 2017; Rengarajan et al., 2019; Jennings et al., 2019). Flies in different physical con-

ditions may have different motivation levels and sensitivity to environmental cues, depending on the cor-

respondence between these cues and their internal states. We therefore applied either food odor or water

vapor to fed or starved flies and monitored their walking trajectories during different odor phases to test

the performance of the four features of trajectory that we analyzed.

Starved flies oriented themselves toward the external cues more quickly than fed flies, irrespective of

whether the cue was food odor or water vapor (Figures 4C and 4D). This result implies that starved flies

may be more attentive to environmental cues than fed flies. Interestingly, as soon as the food odor was

turned off, fed flies immediately returned to walking patterns with shorter distance or lower speed, whereas

starved flies continued to walk with longer distance or higher speed (Figure 5B). Differential post-odor
1156 iScience 19, 1145–1159, September 27, 2019



behaviors were also found in the average of jcurlj for starved flies. When the odor supply was turned off,

starved flies experiencing food odor maintained the higher average of jcurlj, whereas in starved flies expe-

riencing water vapor, this feature immediately dropped to a level similar to that in the pre-odor phase (Fig-

ure 5G). These results suggest that starved and fed flies exhibit different post-experience behaviors.

Because the PCA did not show obvious clustering of different experimental groups or odor phases, it may

be that 28 walking variables are not sufficient to discriminate groups or phases in the eigenspace. This

insufficiency could result from minor differences in walking features among the test subjects. Collectively,

the four features of rotation, distance, straightness, and curl have enough power to distinguish the internal

status-dependent behaviors both during and after the administration of cues.

Random Walk Revisited

Starved flies have been broadly used as controls in many experimental paradigms; however, this internal

state clearly biases the decision making that determines walking patterns. We therefore revisited the

idea that control flies perform a random walk. We did not observe significant differences between fed

and starved flies in any examined baseline features or analyses (Figure 6). Thus, our results offer support

to the notion that fed and starved flies do not show significant differences in walking patterns when there

is no obvious external cue. However, we cannot exclude the possibility that the analytic tools used in this

work do not have sufficient power to identify subtle differences.

The fundamental difference between Brownian motion and scale-free movement is in the distribution of

velocity patterns: Brownian motion has a normal distribution, whereas scale-free motion has a non-normal

distribution. Moreover, scale-free movement may exhibit strong correlation between events along time,

which is not a feature of Brownian motion. Therefore, such scale-free walking trajectories may reflect the

existence of a ‘‘mind’’ or ‘‘thinking’’ (Raichlen et al., 2014). Interestingly, we noticed that the correlation be-

tween jcurlj and distance existed over short time periods (Figures 5I and S6) and not at every single sam-

pling time (Figure 5H). This observation indicated that the correlation was not derived from simultaneous

fluctuations of distance and jcurlj but from their global tendencies. In the future, it will be interesting to

explore possible relationship between the global tendencies of distance and jcurlj and the event correla-

tion properties of scale-free movement.

Limitations of the Study

Although the current camera-mode treadmill system solves some problems with computer-mouse-mode

treadmill systems, the build reported herein did not offer fast-enough feedback signals to reconstruct tra-

jectories in real time. In the future, faster frame capture and transmission may overcome this limitation. In

addition, we did not simultaneously record the gait or movements of the six legs on each tested fly while it

was walking on the ball. This lack of information made correlating the individual features of ball motion to

any aspect of fly movement infeasible. In the future, simultaneous recording of the fly and the ball (Kain

et al., 2013) will solve this issue.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The original, unprocessed data and script used in this study will be available upon request.
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Figure S1. The settings of fly treadmill (Related to Figure 1) 

(A) Photograph of the camera-mode treadmill system. 1, high speed CCD camera (#2); 2, float mount; 3, 

infrared LED illuminator; 4, controller for infrared LED illuminator; 5, high speed CCD camera (#1); 6, 

controller for air pump; 7, flowmeter supplier; 8, mass flow meter; 9, 3-way joint #1; 10, four sets of 2-way 

solenoid valves (arrowheads); 11, flask with odor and/or water; 12, 3-way joint #2. The schematic diagrams 

of treadmill system (items in red) and odor delivery system (items in orange) can be found in Figure 1A and 

Figure S2A, respectively. (B) Schematic of float mount. Arrowheads indicate the inlets of air streams. (C, D) 

1, float mount; 2, fly tether; 3, tip of nozzle; 4, high speed CCD camera (#2). (C) Lateral view of float mount 

shows a tethered fly. An enlargement of the image is shown in Figure 1B. (D) Top view of float mount shows 

a tethered fly. Inset shows the odor-delivery needle (nozzle) with a 1.5-cm disposable polyethylene end tube 

(bracket). Arrowhead indicates the ball. Scale bars, 1 cm. (E) A photoionization detector (PID) is located at 

the detector tip (arrowhead) in the position of a tethered fly. (F) The schematic diagram of air pipeline to the 

float mount (see Methods). 



 
Figure S2. The odor delivery system (Related to Figure 1) 

(A) Schematic of the odor delivery system. The air was 21% O2 and 79% N2. (B) The efficacy of PID and 2-

way solenoid system. The dynamics of odor concentrations were monitored when saturated EtOH was 

flowed under the control of on-off 2-way solenoid system with: constant on, 50-min on and 1-min off, with 

50-min on and 5-min off, or with 50-min on and 10-min off (from left to right). The concentration of odor flow 

released from the nozzle was monitored real-time by PID when 10 ml absolute EtOH was flowed by 10 

mL/min airflow. The odor delivery reached a steady state after 60 min, which reflects the accumulation time 

of saturated EtOH in the delivery system.  The odor concentration signal was elevated at around 235 min, 

which reflects the time at which the PID battery ran down.  

 

  



 

 

Figure S3. Translation of object motion in serial frames to a trajectory (Related to Figure 2) 

(A) A single frame of tested video (200 pixels x 200 pixels) (Supplementary Movie 2). The photo moves 

based on the trajectory (real trajectory in B). (B) Comparisons of the trajectories constructed through four 

different methods (Gradient pyramid, Grayscale value pyramid, Low discrepancy sampling, and optic flow; 

orange) and the real trajectory (black). The trajectory reconstructed by optic flow best recaptures the real 

trajectory. (See also video S2.) 

 

  



Figure S4. The responses of different wild-type strains of flies to odor (Related to Figure 4) 

(A) Orientation distribution of five wild-type strains of starved flies in response to a 10-1 dilution of pentanoic 

acid (17 mL/min). Similar to Figure 4C, the orientations of flies were calculated in 10-sec time bins. The 

orientation distributions of flies in the same group in a given time bin were normalized and shown as a heat-

map. Note that DL flies show more consistent orientation dynamics in the three odor-phases. The number 

in each group was 5 (Canton S), 5 (Oregon R), 16 (DL), 6 (PR) and 6 (TB) flies. Orange lines indicate the 

positional range of the odor source (~270°-306°). 

(B) (Left) The PID signal in three solenoid on-off phases under three different flow rates are shown as in 

Figure 1D. The mean delay time was 34 sec, 22 sec, and 18 sec for odor plume delivery at 10 mL/min, 17 

mL/min and 22 mL/min, respectively. Black lines indicate the average of 7, 29, or 8 trials (green lines) for 

10, 17 and 22 mL/min, respectively, and are shown as mean ± S.D. (Middle to right) The orientations of flies 

with different internal states toward odor or water vapors delivered through three different flow rates. The 

results in pre-odor, odor and post-odor phases were calibrated based on the PID signals. The number in 

each group was 14, 11, and 10 (Top row, left to right), 15, 16, and 17 (middle row, left to right) and 10 

(bottom row). The PID and orientation distribution at 17 mL/min are the same as shown in Fig. 1D and 4C, 

respectively. Orange lines indicate the positional range of the odor source (~270°-306°). 

 



 

Figure S5. Flies with different internal states have no obvious circadian-dependent effects during 

day on the response to odor or water vapor (Related to Figure 4) 

(A) The accumulated distances of flies are independent to the data acquisition time. The day and night cycle 

is shaded in white and grey, respectively. Each dot represents the data of an individual fed fly in response 

to odor (grey), starved fly in response to odor (green) or starved flies in response to water vapor (light green). 

(B) Similar to (A), but each dot represents the locomotor activity of a fly. Starved flies (green and light green) 

did not show obvious locomotor activity differences compared to fed flies (grey).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S6. The correlation between distance and |curl| (Related to Figure 5) 

(A) The correlation between average of distance and S.D. of distance. Each dot represents the average 

distance and S.D. of distance from a given fly in a given 5-sec time bin. The dots were color-coded to 

indicate pre-odor (blue), odor (orange) and post-odor (magenta) phases.  

(B) Similar to (A) but shows the correlation between average of |curl| and S.D. of |curl|.  

(C-F) Similar to (A) but shows the correlations between average of distance and average of |curl| (C), S.D. 

of distance and average of |curl| (D), average of distance and S.D. of |curl| (E), or S.D. of distance and S.D. 

of |curl| (F). (C) is the same as those shown in Figure 5I.  



 

Figure S7. Principle component analysis of fly responses to odor or water (Related to 

Figure 6) 

(A) The walking features of fed flies in response to odor (grey), starved flies in response to odor (dark green), 

or starved flies in response to water vapor (green) before, during and after stimulation were subjected to 

principle component analysis (PCA). No group-dependent clustering was observed in any phase. 

(B) The walking features of fed flies in response to odor (left panel), starved flies in response to odor (middle 

panel), or starved flies in response to water vapor (right panel) before (blue dots), during (orange dots) and 

after (magenta dots) stimulations were subjected to PCA. No phase-dependent clustering was observed in 

any group. 

(C) The walking trajectories of three groups of flies in three phases were subjected to PCA. Features 

analyzed in (A, B) and (C) were in 5-sec and 1-min time bins, respectively.   



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S8. The walking patterns of individual flies to odor. (Related to Figure 6) 

Flies with different internal states (fed or starved) were exposed to odor or water vapor. The dynamics of 

three walking features (curl, orientation and accumulated distance) were arranged based on individual 

locomotor activities from high (top) to low (bottom). The odor-phase is in grey shadow. The Y-axis shows 

the value of curl (positive and negative values indicate two opposite directions). Orientation was color-coded 

as shown. The trajectories lacking locomotor activity data are indicated with asterisks. The three trajectories 

shown in Figure 6G are indicated with dots. Scale bar for curl, 0.1.  

  



Supplemental Table 

Table S1. Statistical test results for Figures 4B, 5B, 5D, 5F, 5G, 5Hand 6C (Related to Figures 

4, 5, and 6) 

Figure Feature Group Phase/ time bins p-value 

Figure 4B 
(unpaired) 

Orientation distribution Fed/ odor Pre-odor vs Odor 0.01177* 

   Pre-odor vs Post-odor 0.2538 

   Odor vs Post odor 0.02568* 

  Starved/ odor Pre-odor vs Odor 0.04383* 

   Pre-odor vs Post-odor 0.91 

   Odor vs Post odor 0.1707 

  Starved/ water Pre-odor vs Odor 0.1136 

   Pre-odor vs Post-odor 0.9678 

   Odor vs Post odor 0.08598 

Figure 5B 
(paired) 

Average of distance Fed/ odor 11 vs 12 0.1354 

   23 vs 24 0.1354 

  Starved/ odor 11 vs 12 0.02899* 

   23 vs 24 0.09399 

  Starved/ water 11 vs 12 0.07968 

   23 vs 24 0.1089 

Figure 5D 
(paired) 

Straightness Fed/ odor 11 vs 12 0.1354 

   23 vs 24 0.01508* 

  Starved/ odor 11 vs 12 0.4037 

   23 vs 24 0.5282 

  Starved/ water 11 vs 12 0.009338** 

   23 vs 24 0.7467 

Figure 5F 
(paired) 

Average of curl Fed/ odor 11 vs 12 0.1876 

   23 vs 24 0.8469 

  Starved/ odor 11 vs 12 0.782 

   23 vs 24 0.3484 

  Starved/ water 11 vs 12 0.006653** 

   23 vs 24 0.5791 

Figure 5G 
(paired) 

Average of |curl| Fed/ odor 11 vs 12 0.3894 



Mann–Whitney U-test was used. *p < 0.05, **p < 0.01, ***p < 0.005.

   23 vs 24 0.073 

  Starved/ odor 11 vs 12 0.007629** 

   23 vs 24 0.9799 

  Starved/ water 11 vs 12 0.3529 

   23 vs 24 0.003159*** 

Figure 5H 
(paired) 

Cross correlation between 
distance and |curl| 

Fed/ odor 11 vs 12 0.8469 

   23 vs 24 0.7197 

  Starved/ odor 11 vs 12 0.7436 

   23 vs 24 0.4332 

  Starved/ water 11 vs 12 0.4874 

   23 vs 24 1 

Figure 6C 
(unpaired) 

Accumulated distance Fed vs Starved  0.5231 

 Straightness Fed vs Starved  0.895 

 Frequency of normalized 
distribution 

Fed vs Starved  0.6795 

 Accumulated |curl| Fed vs Starved  0.2994 



 

Supplemental Videos 

Video S1. A tethered fly walking on the treadmill system (Related to Figure 1) 

A starved wild-type fly encountered the food odor pentanoic acid (10-1 dilution, applied at 17 

mL/min). Individual 20-sec videos were extracted from 1-min recordings of pre-odor, odor and 

post-odor phases, respectively.  

Video S2. The video used to test the translation of object motion in 2489 serial frames to a 

trajectory (Related to Figure 2 and Figure S3) 

 

  



 

Transparent Methods 

Fly care and genotypes 

Flies were raised at 25°C in an incubator with 12 h light-dark cycles. No obvious circadian-dependent 

differences in walking trajectories were observed (Figure S5). All experiments were conducted in the 

behavior room, which was constantly controlled at 25°C, 70% humidity and absolute darkness. Genotypes 

of flies used in this study were Canton S (Bloomington stock center, BL-1), Oregon R (gift from Thomas 

Clandinin), and wild-caught fly strains DL (Kabra et al., 2012), PR  and TB (gifts from Michael Dickinson).  

Treadmill systems 

The treadmill consisted of an air-supported ball (weight: 0.11 g, diameter: 5.95 mm; 6 mm-PP ball, Holo 

Pack, Taiwan) suspended on a float mount through the support of four mutually counteracting air streams 

(designed by K.T.T. and manufactured by the High Precision Machine Shop, Institute of Physics, Academia 

Sinica). The four-stream air support largely reduced the ball rotation resistance and occasional turbulence, 

allowing the fruit fly to easily walk on the treadmill. The motion of the air-supported ball was monitored by 

a high speed CCD camera (GS3-U3-23S6M-C, Point Grey) at 100 frames/sec, which was later used in 

calculations of the fly walking trajectory. A ring infrared LED (AgileLite system, HOLY STAR) between the 

ball and camera was used for illumination (Figure 1A, Figure S1). In some experiments, fly walking was 

simultaneously recorded by a second high speed CCD camera (acA2040-180kmNIR, BASLER) at 30 

frames/sec. 

The ball was suspended on the float mount through the support of four air streams pumped by an air 

compressor (JUN-AIR 3-4 Lubricated Quiet Air Compressor). Room air was pumped by the compressor, 

sequentially stored in a pressure vessel (4 L, Dana-Tank) and an air storage tank (PUMA AST-22), passed 

through a set of oil mist filters (CKD M4000-15-W), and then released into the air tubing. To generate 

constant converged air streams, three air regulators were equipped downstream of the pressure vessel, air 

tank and filter to gradually reduce the pressure (0.12 kg/cm2 at the end point of 3rd regulator). A five-way 

joint was used to split the air flow into four streams that fed into the float mount supporting the treadmill ball 

(Figure S1F). 

Odor delivery system 

 A tubing system was assembled to deliver odor or water vapor to the test fly (Figure S1A, Figure S2A). A 

continuous stream of compressed air from a gas cylinder (21% O2 and 79% N2) was used to drive odor or 

water vapor delivery. To maintain the air flow at a constant rate, the compressed air was first passed through 

a mass flow controller (Brooks 5850E) coupled with a power supply (PROTEC PC-510 MFC Readout) with 

a user interface to display current flow rate and to set a default flow rate (17 mL/min). The air flow with 

constant flow rate was then infused into a 125-mL glass Erlenmeyer flask with 50 ml liquid solution, such 

as 10-1 pentanoic acid (diluted with distilled water), absolute EtOH, or distilled water. The pressure in the 

flask drove the odorant or water vapor into the tubing system. A switch system, including four sets of 2-way 

solenoid valves and two 3-way joints, was inserted at the terminal part of the tubing system to control the 

odor application in different periods (Figure S2A). The sets of 2-way solenoid valves (SUNWELL SC03-2Z) 

were used to switch between the on and off of odor/water vapor delivery while maintaining a constant 

pressure at the terminal part during the switching. Teflon tubes (1/8” OD) were used for the entire tubing 

system, except for the terminal ends, to keep residual odor low. The terminal ends of the tubing leading in 



 

and out of the odorant/water flask were stainless steel (1/8” OD). The end of tubing system was a 23G 

needle with a disposable 1.5-cm polyethylene tube. The flow rate used in experiments was 17 mL/min (after 

16 mL/min used in Borst and Heisenberg, 1982), and preliminary tests were performed with 10 mL/min 

(Gaudry et al., 2012) and 22 mL/min (Figure S4B). A photoionization detector (HAL-HVX501, HalTech (for 

EtOH) or PhoCheck TIGER, Ion Science (for pentanoic acid)) was used to monitor the dynamic 

concentrations of absolute EtOH (32221, Sigma-Aldrich) and pentanoic acid (240370, Sigma-Aldrich) in the 

air stream. 

Tethering flies 

All flies used in this study were 3-8-day-old females, group housed with males and other females before 

experiments. A stainless steel inset pin (Minutiens ∅ 0.10 mm, Entomoravia - Austerlitz Insect Pins®) was 

fixed on the notum of a fly with a drop of UV glue (LIPIT, DENTAMERICA), which was cured by a 20-sec 

UV exposure (UV gun, LITEX 696, DENTAMERICA). The pin-carrying fly was then tethered on the ball of 

treadmill and allowed to recover for 1 hr before the experiment. During the 1-hr recovery, the same airflow 

as administered in the pre-odor phase was constantly applied to the fly. The experiments were conducted 

in absolute darkness to avoid any visual stimuli. Flies had intact wings and, therefore, wing vibrations 

occasionally occurred during experiments. We did not observe obvious effects of wing vibration on walking 

trajectories. 

Starving flies 

Flies were starved in a 1% agar-based fly vial for 15-25 hr in an incubator with a 12-hr light cycle at 25°C 

and 70% humidity. 

Digitizing fly walking trajectories 

The motion of the air-supported ball was entirely driven by the test fruit fly on the top of the ball. Therefore, 

the ball motion along time accurately reflected the walking trajectory of the fly.  In this treadmill system, the 

motion of the ball was monitored by a high-speed CCD camera (GS3-U3-23S6M-C, Point Grey), equipped 

with a zoom lens (AF 18-35mm f/3.5-4.5D ED, NIKON) and mounted under the air-supported ball (Figure 

1A). The performance of the high speed CCD camera is 1920 × 1200 pixels at 162 frames/sec (GS3-U3-

23S6M-C, Point Grey). Frames of 192 × 200 pixels were acquired at 100 Hz (sampling time: 10 msec) with 

focus on the bottom of ball (radius r = 1.41 mm). A custom-made tracking program was written in C++. The 

central zone of the acquired ball bottom image in each frame was fitted with the same zone in the previous 

frame. To minimize the impact of the curvature of the ball surface and allow analysis in a space that 

approximates a 2-D plane, a small ROI in the ball central zone was extracted from video frames. 

Accordingly, after calculating the drift between any two consecutive frames, the shifted displacement and 

the rotation were considered as motion in the X-Y plane and along the rotation axis. The ball motion in the 

whole recording was then translated as ball motion trajectory through optic flow 

(https://docs.opencv.org/3.1.0/d7/d8b/tutorial_py_lucas_kanade.html) (Black, 1992). 

Climbing test  

After each experimental trial, the insect pin was removed from the tethered fly, and a climbing test was 

performed to assess locomotor activity. In the climbing test, the fly was placed in a 14 mL polystyrene 

round-bottom tube (PN. 352057, FALCON), with a scale along the height showing mL. Based on the scale, 



 

the test tube was divided to zones: tube bottom to 1 mL was zone 0, 1 mL - 2mL was zone 1, etc. The 

region from 11 mL – 12 mL was zone 11. The fly was gently shaken to the bottom of vial and allowed to 

climb toward the top for 15 sec. The locomotor activity score corresponded to the zone where the fly climbed 

to before the end of the test. The score was zero when the fly stayed at the bottom of the tube; the maximal 

score was 11 if the fly climbed to or past zone 11. 

Distance and displacement 

The video of ball motion was subjected to optic flow analysis to calculate the flow vector of each pixel; the 

vectors were then assembled as the optical flow field between two consecutive frames. Because optical 

flow can only be used for 2-D areas, the ROI needed to be sufficiently small (radius r = 6 pixels). The 

horizontal average component and the vertical average component of a given flow field yielded the 

displacements in the X-dimension and Y-dimension, respectively. The root mean square of the X-dimension 

and Y-dimension displacements produced the shifting distance in X-Y plane between two frames (Figures 

2A, 5A). The displacement in a given time period was the sum of displacements (contains magnitude and 

direction information) at each sampling time interval (10 msec). Accumulated distance was the sum of 

magnitude of displacements at each sampling time interval (Figure 5C). Accordingly, distance refers to the 

length of the route and displacement refers to the shortest length between the start and end points of a 

route. 

Orientation 

Orientation is the direction of displacement. The angular coordinate of a polar coordinate system was used 

to describe orientation, where positive-X coordinate equals 0° and the counterclockwise rotation from this 

reference was defined as the degree of orientation () (middle panel in Figure 4A). To quantify and better 

describe the dynamics of orientation distributions in three different odor phases, all orientation events in a 

phase (60 sec/phase) were aggregated into 6o bins and normalized by the number of total events in that 

phase (No. of events in one angular bin/No. of total events in a given phase) (right panel in Figure 4A). The 

orientation angles along time derived for flies of the same experimental group in a given odor phase were 

compiled as an orientation distribution. The orientation distributions of the same group of flies in any two 

odor phases were subjected to Mann-Whitney U test to identity possible statistical differences (Figure 4B). 

On the other hand, the orientation events along time were pooled in both angular bins and time bins (10 

sec/bin). Each collection of events in a given angular and time bin was normalized by the number of total 

events in the corresponding time bin (No. of events in one angular and time bin/No. of total events in the 

corresponding time bin) (Figure 4C, Figure S4). 

Straightness 

Straightness was used to quantify the tendency of a fly to walk along a straight path in a given time period. 

For example, for a given walking trajectory over 5 sec, the straightness equals the magnitude of 

displacement in 5 sec divided by the accumulated distance in 5 sec (Figure 5C). The closer the straightness 

was to 1, the straighter the path the fly walked. If straightness was close to 0, the fly walked around within 

5 sec but did not move far from the initial position.    

 



 

Curl 

In a small ROI of the ball bottom (radius r = 6 pixels), the spherical surface was treated as a 2-D area. 

Accordingly, the flow field in this Cartesian coordinate system is 

 𝐹⃗(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖̂ + 𝐹𝑦𝑗̂ + 𝐹𝑧𝑘̂, (1) 

where 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 are the components of 𝐹⃗ in X-, Y-, and Z-axis, respectively. Because the flow field is in 

a 2-D plane (𝐹𝑧 = 0), curl 𝐹⃗ was used to calculate the magnitude of rotation of the flow field as 

 ∇ × 𝐹⃗ = (
𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
) 𝑘̂ = ( lim

∆𝑥→0

𝐹𝑦(𝑥0+∆𝑥,𝑦0)−𝐹𝑦(𝑥0,𝑦0)

∆𝑥
− lim

∆𝑦→0

𝐹𝑥(𝑥0,𝑦0+∆𝑦)−𝐹𝑥(𝑥0,𝑦0)

∆𝑦
) 𝑘̂. (2) 

Where 𝐹𝑥(𝑥0, 𝑦0)  and 𝐹𝑦(𝑥0, 𝑦0)  are flow vector in X- and Y-axis at a given pixel (𝑥0, 𝑦0)  in the ROI, 

respectively. The magnitude of rotation in the flow field, called curl, was calculated as 

∑
𝐹𝑦(𝑥𝑖+1,𝑦𝑖)−𝐹𝑦(𝑥𝑖,𝑦𝑖)

1𝑖 in ROI ∑ 𝑖𝑖 in ROI⁄ − ∑
𝐹𝑥(𝑥𝑖,𝑦𝑖+1)−𝐹𝑥(𝑥𝑖,𝑦𝑖)

1𝑖 in ROI ∑ 𝑖𝑖 in ROI⁄  over all pixels in the ROI.  

Rotation center  

Since the spherical surface of the ROI was treated as a 2-D area, the rotary axis of estimated rotation 

centers is along the Z-coordinate and not the radial coordinate. Accordingly, when the estimated rotation 

center falls in the center of the ROI (X-Y space), the ball exhibits yaw rotation. In other cases where the 

estimated rotation center falls outside the ROI center, the ball is exhibiting a more roll or pitch rotation. In 

an extreme case of roll or pitch rotation, the rotation center would fall in infinity. Whenever the rotation 

center is not infinity, the normal lines of the flow vectors in a given single-rotary-center flow field are 

expected to cross at a particular rotation center. The position of this rotation center in the X-Y plane (𝐶𝑥, 

𝐶𝑦) is 

 𝐶𝑥 =

(𝑦𝑖 − 𝑦𝑗) + (
𝑢𝑖

𝑣𝑖
𝑥𝑖 −

𝑢𝑗

𝑣𝑗
𝑥𝑗)

𝑢𝑖

𝑣𝑖
−

𝑢𝑗

𝑣𝑗

 (3) 

 𝐶𝑦 = −
𝑢𝑖

𝑣𝑖
𝐶𝑥 + (𝑦𝑖 +

𝑢𝑖

𝑣𝑖
𝑥𝑖), (4) 

where  (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the position of pixel 𝑖  and 𝑗, respectively. (𝑢𝑖, 𝑣𝑖) and (𝑢𝑗 , 𝑣𝑗) are the flow 

vectors at the positions of pixel 𝑖 and 𝑗, respectively. Since the error may become large when the flow vector 

is small, all rotation centers (𝐶𝑥, 𝐶𝑦) derived from any two pixel positions were further averaged as 

 𝐶𝑥
′ =

∑ 𝐶𝑥,𝑖𝑗 × 𝑊𝑖𝑗𝑖,𝑗∈ROI;𝑖≠𝑗

∑ 𝑊𝑖𝑗𝑖,𝑗∈ROI;𝑖≠𝑗

 (5) 

 𝐶𝑦
′ =

∑ 𝐶𝑦,𝑖𝑗×𝑊𝑖𝑗𝑖,𝑗∈ROI;𝑖≠𝑗

∑ 𝑊𝑖𝑗𝑖,𝑗∈ROI;𝑖≠𝑗
, (6) 

where 𝐶𝑥,𝑖𝑗 and 𝐶𝑦,𝑖𝑗 are (𝐶𝑥 , 𝐶𝑦) derived from the positions of pixel 𝑖 and 𝑗. The weight of each  𝐶𝑥,𝑖𝑗 and 

𝐶𝑦,𝑖𝑗 is 

 𝑊𝑖𝑗 = √𝑢𝑖
2 + 𝑣𝑖

2 + √𝑢𝑗
2 + 𝑣𝑗

2. (7) 

 



 

Correlation 

Cross-correlation (Pearson correlation) was used to estimate the correlation between distance 𝑙 and |curl| 

m = |∇ × 𝐹⃗| (Figure 5H). The cross-correlation was calculated as 

 
∑ (𝑙𝑡−𝑙)̅𝑡∈𝜏 (𝑚𝑡−𝑚̅)

√∑ (𝑙𝑡−𝑙)̅2
𝑡∈𝜏 √∑ (𝑚𝑡−𝑚̅)2

𝑡∈𝜏
, (8) 

where 𝜏 was the time period of every 5 sec. The 𝑙𝑡  and 𝑚𝑡  indicated the distance and |curl| at time 𝑡, 

respectively. The 𝑙 ̅ and 𝑚̅  were the average of 𝑙𝑡|𝑡∈𝜏  and 𝑚𝑡|𝑡∈𝜏 , respectively. Accordingly, the cross-

correlation between distance and |curl| represented their correlation in all sampling times of a 5-sec time 

period. In addition, least-squares fitting was used to estimate the correlation between distance and |curl| 

(Figure 5I, Figure S6). The linear correlations between average and S.D. of distance and |curl| in each 5-

sec time period were identified. The linear correlations represented the correlation between two analyzed 

features in a short time period. 

Principal component analysis 

The 28 walking variables in each 5-sec time bin for individual flies that were used for principal component 

analysis (PCA) included: average and standard deviation of rotation centers in X-Y plane, average and 

standard deviation of distances between rotation centers and the center of ROI, average and standard 

deviation of curls, weighted average of rotation centers by distance, average and standard deviation of 

distance, magnitude of directed displacement, accumulated distance, average and standard deviation of 

orientations, orientation of directed displacement, accumulated orientation, weighted average of 

orientations by distances, median distance, cross-correlation between distances and curls, weighted 

average of rotation centers by curls, average and standard deviation of |curl|, cross-correlation between 

distances and |curl|, accumulated |curl|, and straightness. For PCA, each variable of a fly in a time bin was 

normalized to the range of the given feature among all the time bins and across all the compared individual 

flies – for example, (average of distance of a fly in a time bin – minimum of average of distance of flies over 

time bins) / (maximum of average of distance of flies over time bins – minimum of average of distance of 

flies over time bins) – such that each value fell between 0 and 1. Normalized values were then subjected 

to PCA, coded in the C++ language.  

Scale-free index 

The walking distance in a given time interval 𝑇 is estimated as 

 |∆X𝑇| = √(𝑥(𝑡) − 𝑥(𝑡 − 𝑇))
2

+ (𝑦(𝑡) − 𝑦(𝑡 − 𝑇))
2
, (9) 

where (𝑥(𝑡), 𝑦(𝑡)) is the position of the fly at time 𝑡. To determine whether flies walked on the treadmill in a 

scale-free manner, the average of walking distance to the power of 𝑞 was calculated in different time scales 

as 〈|∆X𝑇|𝑞〉, 

 〈|∆X𝑇|𝑞〉 ∝ 𝑇𝑎(𝑞). (10) 

After plotting 〈|∆X𝑇|𝑞〉 and 𝑇 on a log-log plot, the slope 𝜁 is 𝜁 = 𝛼𝑞. If 𝛼 ≈ 0.5, the fly exhibited a random 

walk. For 𝛼 larger than 0.5, the fly walked in a more scale-free manner. In addition to distance, the data of 

orientation and curl were also applied to test the scale-free nature of the results (Figure 6F). 
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