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Abstract
Objective
To characterize how disease progression is associated withmortality in a large cohort of patients
with Parkinson disease (PD) with long-term follow-up after subthalamic nucleus deep brain
stimulation (STN-DBS).

Methods
Motor and cognitive disabilities were assessed before and 1, 2, 5, and 10 years after STN-DBS in
143 consecutive patients with PD. We measured motor symptoms “off” and “on” levodopa and
STN-DBS and recorded causes of death. We used linear mixedmodels to characterize symptom
progression, including interactions between treatment conditions and time to determine how
treatments changed efficacy. We used joint models to link symptom progression to mortality.

Results
Median observation time was 12 years after surgery, during which akinesia, rigidity, and axial
symptoms worsened, with mean increases of 8.8 (SD 6.5), 1.8 (3.1), and 5.4 (4.1) points from
year 1–10 after surgery (“on” dopamine/“on” STN-DBS), respectively. Responses to dopa-
minergic medication and STN-DBS were attenuated with time, but remained effective for all
except axial symptoms, for which both treatments and their combination were predicted to be
ineffective 20 years after surgery. Cognitive status significantly declined. Forty-one patients
died, with a median time to death of 9 years after surgery. The current level of axial disability was
the only symptom that significantly predicted death (hazard ratio 4.30 [SE 1.50] per unit of
square-root transformed axial score).

Conclusions
We quantified long-term symptom progression and attenuation of dopaminergic medication
and STN-DBS treatment efficacy in patients with PD and linked symptom progression to
mortality. Axial disability significantly predicts individual risk of death after surgery, which may
be useful for planning therapeutic strategies in PD.
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Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire
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In the last 20 years, deep brain stimulation of the subthalamic
nucleus (STN-DBS) has been shown to be effective for re-
ducing akinesia, rigidity, and tremor as well as gait and balance
disorders in short (1-year) and medium duration (5-year)
follow-up studies.1 Small cohort studies, with 12–34 patients,
reported the effects of STN-DBS on Parkinson disease (PD)
more than 7 years after surgery. These studies show sustained
improvement of rigidity and tremor, but a progressive wors-
ening of akinesia and decreasing efficacy for treating gait and
balance disorders.2–4 The prevalence of dementia also increa-
ses, with a rate of 6%–43% 7–10 years after STN-DBS.2–4 In
patients with PD with STN-DBS followed more than 7 years
after surgery, death occurred in 30% of patients, with a mean
delay of 23 years after disease onset and 5.5 years after
surgery.2–5 In contrast, mortality occurs 7–15 years after disease
onset in nonoperated patients with PD,6 with 2 retrospective
studies suggesting that patients with PD with STN-DBS may
survive longer.7,8 It is therefore possible that relationships be-
tween long-term disease progression and death in STN-DBS
patients differs from those in nonoperated patients.

The number of patients with PD with STN-DBS included in
long-term studies is low and evidence is insufficient to predict
the long-term outcome and mortality.9 Here, we aimed to
model PD symptom progression and to determine how pro-
gression was associated with mortality in a large cohort of 143
STN-DBS patients with PD followed in our center for more
than 10 years after surgery.We developed a statistical model for
the long-term progression of different motor and cognitive
outcomes, using the progression of these outcomes to predict
the likelihood of death at the individual patient level.

Methods
Patients
In this longitudinal cohort study, we enrolled consecutive
patients with PD operated for STN-DBS, including tremor
dominant forms, at the Pitié-Salpêtrière Hospital between
February 1996 and December 2003. We included patients for
surgery using the following criteria10: (1) age younger than 70
years; (2) a severe form of the disease (Hoehn & Yahr stage
≥2.5); (3) >40% decrease in motor symptoms with levodopa
treatment; and (4) presence of disabling levodopa-induced
motor complications despite optimal medical treatment. Ex-
clusion criteria included dementia (Mini-Mental State <24 or
Mattis Dementia Rating Scale [MDRS] <130), ongoing psy-
chiatric disturbances (e.g., major depressive episode, delirium),
surgical contraindications (e.g., contraindication to anesthesia,
coagulopathies, actual malignancy, uncontrolled hypertension),

and relevant brain lesions (e.g., severe atrophy ormajor vascular
brain lesions) detected on MRI. We performed clinical
assessments according to our standard procedure for patients
with PDwith STN-DBS.11 In accordance with local clinical care
during the enrollment period, patients were examined 1–3
months before surgery (preoperative assessment) and 1, 2, 5,
and 10 years after surgery. The database was locked in July
2016, after a maximum observation period of 224 months.

Standard protocol approvals, registrations,
and patient consents
This study received approval from the local ethics committee,
and all patients gave written informed consent.

Outcome measures
To assess disease progression, we used the Unified Parkin-
son’s Disease Rating Scale–III (UPDRS, motor disability).12

The UPDRS-III score ranges from 0 to 108, with 0 indicating
absence of symptoms and 108 indicating maximal PD sever-
ity. Before surgery, UPDRS-III was performed in the 2 do-
paminergic treatment conditions: “off” dopamine, after an
interruption of at least 12 hours in antiparkinsonian medica-
tion, and “on” dopamine, after the administration of a single
suprathreshold dose of levodopa (50 mg more than the usual
effective dose taken in the morning before surgery). After
surgery, the UPDRS-III was performed in 4 treatment con-
ditions: (1) “off” dopamine/“on” STN-DBS, with the usual
STN-DBS settings; (2) “off” dopamine/“off” STN-DBS, after
stimulation had been switched off for at least 1.5 hours; (3)
“on” dopamine/“off” STN-DBS, with the same levodopa
dosage used for the preoperative assessment; and (4) “on”
dopamine/“on” STN-DBS, after stimulation had been
switched on with the usual STN-DBS settings.10,11 Evalua-
tions were performed the same day and in the same order for
all patients. We calculated 4 composite motor scores from
UPDRS-III: (1) akinesia (sum of the face item 19; hands
items 23, 24, 25; feet item 26; and global akinesia item 31,
range 0–40); (2) rigidity (items 22, range 0–20); (3) tremor
(items 20, 21, range 0–28); and (4) axial (speech item 18;
arising from a chair item 27; posture item 28; gait item 29; and
postural stability item 30, range 0–20).

We assessed cognitive status with the MDRS, ranging from
0 to 144, with higher values indicating higher cognitive status,
dementia being considered when the MDRS <130.13 We
assessed the severity of hallucinations using item 4 of UPDRS-
I (range 0–4).12

Stimulation parameters, dopaminergic medication, and levo-
dopa equivalent daily doses (LEDD) were recorded at every

Glossary
AUC = area under the receiver operating characteristic curve;HR = hazard ratio; IQR = interquartile range; LEDD = levodopa
equivalent daily dose;MDRS = Mattis Dementia Rating Scale; PD = Parkinson disease; STN-DBS = deep brain stimulation of
the subthalamic nucleus; UPDRS = Unified Parkinson’s Disease Rating Scale; YO = young-onset.
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visit. We measured the severity of levodopa-related compli-
cations with UPDRS-IV (range 0–44).

All surviving patients were followed annually in our center
during outpatient visits, except for patients lost to follow-up,
and a neurologist (M.-L.W.) verified the cause of death when
it occurred.

Statistical analysis
We used joint models for longitudinal and time-to-event
data14 to characterize symptom progression and to de-
termine how progression was associated with survival. A
separate joint model was fitted to the longitudinal and sur-
vival data for each symptom score, and each joint model
consisted of 2 linked submodels. The first submodel is
a linear mixed model capturing progression of a particular
symptom, using year since surgery as the time variable.
Scores were transformed using the square root to stabilize
and normalize residuals. We included by-patient random
intercepts and random slopes for time. The second sub-
model is a proportional hazard model that characterizes how
the longitudinally measured symptom (estimated using the
first submodel) predicts risk of death. We modeled the
baseline risk function using a Weibull distribution.

The longitudinal submodel for symptoms measured under
different treatment conditions (akinesia, rigidity, tremor, and
axial symptoms) included a factor to determine how dopa-
minergic medication and STN-DBS affected motor disability
(“off” dopamine/“off” STN-DBS, “on” dopamine/“off” STN-
DBS, “off” dopamine/“on” STN-DBS, “on” dopamine/“on”
STN-DBS). We tested for changes in treatment effect using
an interaction between the condition factor and the time
variable. We adjusted for the following preoperative charac-
teristics: sex, age at onset, disease duration, akinesia, rigidity,
tremor, and axial symptoms measured without dopaminergic
treatment (“off” dopamine) prior to surgery, and sensitivity to
dopaminergic medication (fractional change in a symptom
during the preoperative levodopa challenge and its interaction
with treatment condition).

In the survival submodel, we estimated the risk of death asso-
ciated with symptom severity by including the symptom se-
verity estimated by the longitudinal submodel at each time as
a predictor. We adjusted for the following preoperative char-
acteristics potentially associated with mortality: sex, year of
surgery, age at surgery, disease duration, preoperative measures
of akinesia, rigidity, tremor and axial severity, cognitive status,
and complications due to dopaminergic therapy. The survival
submodel yielded hazard ratios (HRs) for the preoperative
factors and an HR for the association between current symp-
tom severity and mortality. For the motor outcomes measured
under different treatment conditions, all 4 treatment conditions
were used in the survival submodel. For each visit, the predicted
score for all conditions was weighted by the same coefficient,
which assumes that incremental outcome changes are treated
identically for all treatment conditions.

We assessed model robustness several ways. We performed
a sensitivity analysis and calculated E-values to determine the
degree to which potential unmeasured confounding could ex-
plain away associations between symptom severity and death.15

The confounder associations are represented on risk ratio scale,
and the HRs for current outcome severity from the joint
models were converted to this scale using an approximation.16

The E-value represents one particular combination of con-
founder associations, and we visualized all potential combina-
tions that explain away our associations of interest by varying
the risk ratios for severity–confounder and death–confounder
associations from 1 through 10. We also examined the stability
of mortality associations to different combinations of adjusting
covariates in the survival submodel using a vibration of effects
analysis.17 Full survival submodels each included parameters
for 10 adjusting covariates (listed above) in addition to the
parameter for measuring the association between the current
level of an outcome and death. We fit a separate joint model for
each possible combination of k adjusting covariates, where k
varied from 1 to 10, yielding 1,024 unique models for each
outcome. For each unique model, we obtained an HR and p
value for the estimated association between the current level of
an outcome and death. We examined the distribution of the
joint values to visualize the instability of our results due to
model specification.

We used a competing risks analysis to examine how different
causes of death influenced our results. We stratified patients
into those who died from causes related to PD severity and
those who did not. We refit the joint models using a cause-
specific Cox regression for the survival submodel, yielding the
associations between symptom severity and death for each
patient strata.

We used averaged time-dependent area under the receiver
operating characteristic curve (AUC) to measure the ability of
our joint models to discriminate between patients who did
and did not die. We used bootstrapping (n = 500) at the
patient level to internally validate the models. We report
AUCs corrected for optimism due to finite sample size.18

We used R (R Core Team, version 3.3.3) for all analyses. We
tested significance of individual parameters using Wald tests
using cluster-robust standard errors. These standard errors
were obtained by resampling our dataset 1,000 times, with
resampling performed at the patient level.19 Joint models were
estimated for each bootstrap sample, and we calculated
standard errors and p values using cluster-robust variances
estimated from the distributions of bootstrapped coefficients.
We tested differences between parameters using likelihood
ratio tests. All tests were 2-sided, and we assessed test sig-
nificance at the 0.05 level.

Data availability statement
All relevant data are within the article. Requests for anonymized
data should be sent to B. Lau at the Brain and Spine Institute,
Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France.
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Results
Cohort description
Between February 1996 andDecember 2003, 143 patients with
PD (37% female, median age 57.0 years [interquartile range
(IQR) 51–63]) underwent bilateral STN-DBS surgery 13 years
(IQR 10–16) after PD onset. Median observation time from
surgery was 144 months (IQR 107–164.5) with a median total
disease duration of 24 years (IQR 19–28). Forty-one patients
died during the follow-up period. Ninety patients completed
the assessment at 10 years, 96 patients the assessment at 5
years, 108 the assessment at 2 years, and 142 the assessment at
1 year. Twelve patientsmissed the last assessment due to loss of
follow-up (table e-1, doi.org/10.5061/dryad.6n70v4b).

PD progression
With time, akinesia severity increased without treatment (p <
0.0001; figure 1; figure e-1, doi.org/10.5061/dryad.6n70v4b).

Applied alone, dopaminergic medication and STN-DBS both
improved akinesia (p < 0.0001), with dopaminergic medication
being more effective than STN-DBS (p < 0.0001). Combined
treatment (“on” dopamine/“on” STN-DBS)wasmore effective
than either treatment alone (p < 0.0001 for both comparisons).
Treatment efficacy decreased over time, with STN-DBS alone
(“off” dopamine/“on” STN-DBS × time) losing efficacy more
slowly than dopaminergic medication alone (“on” dopamine/
“off” STN-DBS× time, p = 0.003) or combinedwith STN-DBS
(“on” dopamine/“on” STN-DBS × time, p = 0.002).

Rigidity also worsened with time (p = 0.0008; figure 1; figure e-1,
doi.org/10.5061/dryad.6n70v4b). Applied alone, dopaminergic
medication and STN-DBS both improved rigidity (p< 0.0001) to
a similar degree (p = 0.23 for comparison). Combined treatment
(“on” dopamine/“on” STN-DBS) was more effective than either
treatment alone (p < 0.0001 for both comparisons). Treatment
efficacy decreased over time, with dopaminergicmedication alone

Figure 1 Disease progression following deep brain stimulation of the subthalamic nucleus (STN-DBS) surgery

Each panel illustrates the progression of a particular symptom: (A) akinesia (range 0–40), (B) rigidity (range 0–20), (C) tremor (range 0–28), and (D) axial (range 0–20)
scores were constructed using subsets of the Unified Parkinson’s Disease Rating Scale (UPDRS) part III (see Methods), with higher scores indicating more severe
symptoms. The scores are provided in the different conditions of treatment: without levodopa treatment and without stimulation (“off” dopamine/“off” STN-DBS,
red); with levodopa treatment and without stimulation (“on” dopamine/“off” STN-DBS, green); without levodopa treatment and with stimulation (“off” dopamine/
“on” STN-DBS, blue); andwith levodopa treatment andwith stimulation (“on”dopamine/“on” STN-DBS, purple). (E) Hallucinations scorewasmeasuredwith the item
4ofUPDRS-I (range0–4). (F) Cognitive statuswas assessedusing theMattisDementia Rating Scale (range 0–144,with higher scores indicatingbetter cognition). Each
panel illustrates mean disability with corresponding 95% confidence intervals (CIs) (bootstrapped). The squares represent the mean patient-specific fit of the joint
linear model, while the lines represent the model prediction for a male patient with the median preoperative characteristics of our cohort.
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(“on” dopamine/“off” STN-DBS × time), losing efficacy more
quickly than STN-DBS alone (“off” dopamine/“on” STN-DBS ×
time, p = 0.032) but not when combined with STN-DBS (“on”
dopamine/“on” STN-DBS × time, p = 0.21).

Tremor severity significantly decreased with time (p = 0.0016;
figure 1; figure e-1, doi.org/10.5061/dryad.6n70v4b). Applied
alone, dopaminergic medication and STN-DBS both improved
tremor (p < 0.0001), with dopaminergic medication being

more effective than STN-DBS (p = 0.011). Combined treat-
ment (“on” dopamine/“on” STN-DBS) was more effective
than either treatment alone (p < 0.0003 for both comparisons).
Treatment efficacy decreased over time similarly for all treat-
ment conditions (p > 0.5 for all comparisons).

Axial symptoms worsened rapidly over time (p < 0.0001;
figure 1; figure e-1, doi.org/10.5061/dryad.6n70v4b). Ap-
plied alone, dopaminergic medication and STN-DBS both

Figure 2 Factors associated with the progression of the axial symptoms

(A)Coefficients for longitudinal submodelof the jointmodel foraxialdisability.Values inunitsaresquare-root transformedaxial scorepercovariateunit.Variables involving
time (time, disease duration, treatment × time) are scaled per decade. Solid symbols represent significant effects (p < 0.05). Horizontal lines represent ±1 cluster-robust
standarderroroneachparameterestimate. (B)Eachpanel illustrates theeffectofaspecificpreoperativecharacteristicusing thepredictionof the longitudinal submodelof
the jointmodel for axial symptoms. The solid lines represent theprediction for amalewith the75thpercentile value for each specific characteristic, while thedashed lines
represent theprediction foramalepatientwith the25thpercentile value foreachspecific characteristic. Ineachpanel, theotherpreoperative characteristics areheld fixed
at the median preoperative values of our cohort. Insets illustrate the distribution of the corresponding preoperative characteristic. DBS = deep brain stimulation.

Neurology.org/N Neurology | Volume 92, Number 22 | May 28, 2019 e2563

https://doi.org/10.5061/dryad.6n70v4b
https://doi.org/10.5061/dryad.6n70v4b
http://neurology.org/n


improved axial symptoms (p < 0.0001), with dopaminergic
medication being more effective than STN-DBS (p < 0.0014).
Combined treatment (“on” dopamine/“on” STN-DBS) was
more effective than either treatment alone (p < 0.0001 for
both comparisons). Treatment efficacy decreased over time,
with combined treatment (“on” dopamine/“on” STN-DBS ×
time) losing efficacy faster than STN-DBS (“off” dopamine/
“on” STN-DBS × time, p = 0.0095) or dopaminergic medi-
cation alone (“on” dopamine/“off” STN-DBS × time, p =
0.11). In contrast to the other motor symptoms, axial scores
obtained under different treatments become indistinguishable
by 18 years for a male patient with median preoperative
characteristics, and converge most rapidly towards severity
measured without treatment, with ineffectiveness of com-
bined treatments for ameliorating axial symptoms predicted
20 years following surgery (figure 1).

In the case of akinesia, tremor, and axial symptoms, the se-
verity of each symptom before surgery was significantly as-
sociated with the postsurgical severity of that specific
symptom (akinesia p = 0.0019, rigidity p = 0.08, tremor p <
0.0001, axial p < 0.0001; figure 2; figure e-1, doi.org/10.5061/
dryad.6n70v4b). The degree to which dopaminergic treat-
ment ameliorated motor disability before surgery (dopa
sensitivity) was significantly associated with postsurgical se-
verity for all motor symptoms (akinesia p < 0.0001, rigidity
p = 0.025, tremor p = 0.0035, axial p < 0.0001; figure 2).

Cognitive status declined with time (p < 0.0001; figure 1;
figure e-1, doi.org/10.5061/dryad.6n70v4b), and higher
preoperative cognitive status reduced cognitive decline fol-
lowing surgery (p < 0.0001). The presence and severity of
hallucinations significantly increased with time (p < 0.0001;
figure 1; figure e-1, doi.org/10.5061/dryad.6n70v4b).

Finally, LEDD was reduced by 72%, 64%, 60%, and 62% 1, 2,
5, and 10 years after surgery relative to before surgery (table
e-2, doi.org/10.5061/dryad.6n70v4b).

Mortality
During the follow-up period, 41 (29%) patients died (table 1).
Twenty-five patients died due to PD progression with 12
patients unable to stand unassisted who were chronically
bedridden and institutionalized, 7 patients who died from
choking or aspiration pneumonia, and 3 patients who died
from intestinal occlusion. Sixteen patients died due to other
causes: cancer (n = 5), cardiovascular disease (n = 3), mood
disorders (n = 2; 1 patient committed suicide and 1 patient
had a car accident during a hypomanic episode potentially
related to STN-DBS), or sudden death of unknown cause
(n = 5). One patient died from severe orthostatic hypotension
with autopsy revealing multiple system atrophy. None of the
patients died from complications of the surgery. The median
time to death was 107 months (IQR 56–138.3) after surgery.

Axial disability during the follow-up period was strongly
associated with an increased risk of death (HR 4.30 [SE 1.50],

p = 0.012, figure 3). The joint model incorporating the
current level of axial symptom severity best predicted which
patients would die (83% accuracy), followed by the models
incorporating akinesia (75%), cognitive status (74%), rigidity
(72%), tremor (70%), and hallucinations (68%). Finally, age at
surgery was significantly associated with increased mortality for
all outcomes except axial disability (akinesia p = 0.034, rigidity

Table 1 Demographic and preoperative clinical
characteristics of living and deceased patients
with Parkinson disease with deep brain
stimulation of the subthalamic nucleus

All
patients
(n = 143)

Follow-up
obtained at
10 years (n = 90)

Deceased
(n = 41)

Sex, M/F 0.63 0.60 0.59

Age at onset, y 43.0 (8.4) 42.5 (8.6) 44.7 (7.0)

Age at surgery, y 56.3 (8.4) 55.9 (8.6) 59.3 (7.7)

Disease duration, y 13.4 (5.5) 13.4 (5.7) 14.6 (5.4)

Motor disability
(UPDRS-III,/108)

“Off” dopamine 43.8 (15.8) 43.5 (16.1) 48.5 (15.0)

“On” dopamine 10.5 (8.9) 10.5 (9.8) 13.8 (9.4)

Akinesia (/40)

“Off” dopamine 20.3 (7.8) 19.9 (8.2) 21.9 (7.0)

“On” dopamine 5.0 (4.7) 5.1 (5.2) 6.1 (5.5)

Rigidity (/20)

“Off” dopamine 9.0 (4.4) 8.9 (4.1) 9.6 (4.8)

“On” dopamine 1.9 (2.6) 1.9 (2.8) 2.4 (2.6)

Tremor (/28)

“Off” dopamine 5.3 (5.3) 5.8 (5.7) 5.2 (4.9)

“On” dopamine 0.6 (1.2) 0.6 (1.3) 0.7 (1.3)

Axial symptoms (/20)

“Off” dopamine 9.3 (4.3) 8.9 (4.3) 12.2 (3.7)

“On” dopamine 3.1 (2.7) 2.9 (2.8) 4.7 (3.0)

Cognitive status
(MDRS/144)

138.1 (6.3) 138.4 (6.6) 136.5 (9.1)

Hallucinations
(UPDRS I/16)

0.3 (0.6) 0.3 (0.6) 0.3 (0.6)

Levodopa-related
complications
(UPDRS IV/44)

10.7 (3.3) 10.6 (3.3) 11.6 (2.8)

Levodopa equivalent
daily dosage, mg/d

1,327 (603) 1,281 (504) 1,623 (828)

Abbreviations: MDRS = Mattis Dementia Rating Scale; UPDRS = Unified
Parkinson’s Disease Rating Scale.
Data are mean (SD). Higher scores for UPDRS subscores indicate higher
severity of symptoms; lower score for MDRS indicates lower cognitive
status.
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p = 0.019, tremor p = 0.02, axial p = 0.186, hallucinations p =
0.012, cognitive status p = 0.037).

The association between axial disability and mortality was
unlikely to be explained away by potential unmeasured con-
founders (figure 4), robust to the inclusion of different
combinations of adjusting covariates (figure e-2, doi.org/10.
5061/dryad.6n70v4b), and significant and of similar magni-
tude for each of the 4 treatment conditions (table e-3, doi.org/
10.5061/dryad.6n70v4b). Axial disability was the only motor
outcome with a significant association with mortality when all
motor outcomes were fit simultaneously in a multivariate joint
model (table e-4, doi.org/10.5061/dryad.6n70v4b).

The joint model for axial symptoms accurately captures the
pattern of survival in our cohort (figure 5A). At an individual
level, patients with lower initial severity and faster progression
of axial motor symptoms, or higher initial severity and slower
progression, both led to a level of axial disability associated
with mortality (figure 5B). Modeling 2 causes of mortality
(PD and non-PD) as competing risks indicated that axial
disability was more strongly associated with risk of death from
PD (HR [PD] 3.88 [SE 2.34] vs HR [non-PD] 1.33 [SE
1.87]), although this difference was not significant (p = 0.44).

Finally, we used the joint model for axial symptoms to predict
survival for individual patients. We generated these predictions

Figure 3 The influence of preoperative characteristics and disease progression on mortality

Eachpanel illustrates the hazard ratios (HRs) from the survival component of the joint linearmixedmodel. The last parameter (current outcome) in eachpanel
corresponds to the HR summarizing the association between the current value of each symptom onmortality. Solid symbols represent significant effects (p <
0.05). Horizontal lines represent ±1 cluster-robust standard error on each parameter estimate. Cognitive status was modeled as the observed score
subtracted from the maximum score (144), such that positive HRs represent increased risk of death like the other outcomes.
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by simulating disease progression based on the data up to the
last available follow-up (figure 5, C–G). Predictions can be
generated after any postsurgical follow-up (figure 6), and could
be used by clinicians to dynamically assess risk of death at any
point in time as more data become available.

Discussion
We studied the largest cohort to date of patients with PD
followed for such a long duration, with a median longitudinal
follow-up lasting 12 years after STN-DBS surgery. We used
a joint modeling approach to characterize symptom pro-
gression and relate the current level of symptom severity to
risk of death. We found that axial motor symptoms became
least responsive to treatment by dopaminergic medication,
STN-DBS, or their combination, and that axial symptom se-
verity was strongly associated with mortality.

In our patients, all motor symptoms worsened with time in all
treatment conditions (with or without medication or STN-
DBS), except for tremor, which significantly improved.
Tremor amelioration or nonaggravation has been described in
small cohort studies with 12–20 patients with PD followed for
more than 7 years after STN-DBS,2,3,7,20 with nearly complete
relief on dopaminergic medication.2,3 Rigidity is also reported

to not significantly worsen with time in 3 of these studies as
well as in one additional study of 26 patients with a follow-up
period of 11 years.4 Lack of aggravation of tremor or rigidity
could result from STN-DBS chronically modifying neuronal
circuit function, with in particular reduction of abnormal os-
cillatory activity,21 or acting neuroprotectively on remaining
dopaminergic neurons.22 However, the continuous pro-
gression of akinesia and axial motor symptoms in our cohort
and in other studies argues against an influence of STN-DBS
on disease progression.22,23 Indeed, we observed a progressive
worsening of both akinesia and axial motor symptoms, and
our model predicts that dopaminergic medication and STN-
DBS become ineffective for ameliorating axial symptoms
around 20 years after STN-DBS. This agrees with prior
studies of small cohorts of patients with PD more than 10
years after STN-DBS.3,4 In 18 patients with PD examined 10
years after STN-DBS, blinded assessment revealed no sig-
nificant change in akinesia and axial motor signs with STN-
DBS alone or combined with dopaminergic medication3 with
an aggravation of 87% and 102% of akinesia and axial signs,
respectively, when compared to scores before surgery under
dopaminergic treatment. In 26 patients with PD examined 11
years after STN-DBS, akinesia worsened by 71% and axial
signs by 38%, respectively, with 17 out of 26 patients who
presented falls and 18 out of 26 freezing of gait.4 Finally, PD
symptoms (akinesia and axial symptoms) progressed similarly
in 2 retrospective studies comparing patients with PD with
STN-DBS (16 and 12 patients, respectively, in the 2 studies)
to patients who declined surgery (14 and 12 patients) during
a 6- to 9-year follow-up period.7,20

We identified 4 preoperative characteristics associated with
higher axial symptom severity after surgery: male sex, higher
age at the time of surgery, lower dopa sensitivity, and higher
axial symptom severity before surgery, with the last having
the largest influence on axial symptom severity after surgery.
Higher age at disease onset has previously been shown to be
associated with a faster progression rate of axial symptoms and
falls in nonoperated patients with PD.24 The progression of
axial symptoms together with the diminishing efficacy of do-
paminergic treatment and STN-DBS implicates dysfunction of
additional nondopaminergic systems in the occurrence of re-
fractory axial symptoms including gait and balance disorders.
Consistent with this, neural changes have been reported in
patients with PD with predominant axial symptoms including
falls and freezing of gait, in particular degeneration of neurons
within the mesencephalic locomotor region with altered ana-
tomical and functional connectivity with the basal ganglia, the
cerebellum, or frontoparietal cortical areas.25–28

Forty-one patients (29%) died during the median follow-up
period of 12 years, with an annual mortality rate of 2.2% and
a median total disease duration of 24 years. These results are
in line with reports of 30% and 29% mortality in 2 cohorts
of 795 and 413 patients with PD, respectively, followed
for 10 years after STN-DBS. In comparison, the mortality
rate in nonoperated patients with PD is higher, with

Figure 4 The effect of potential unmeasured confounding
for each outcome–survival association

The curves, and all the points to the right of each curve, define joint
relationships—combination of severity–confounder and death–confounder
associations—that explain away the estimated effect for each outcome. The
points represent the E-values, the joint relationship where the confounder
associations are equal. The confounder associations are represented on risk
ratio scale.Mild unmeasured confounding could explain away the estimated
associations between tremor severity and cognitive decline with death.
Moderate, yet plausible, unmeasured confounding could explain away the
estimated associations between rigidity severity, akinesia severity, and the
presence and severity of hallucinations with death. By contrast, quite strong
unmeasured confounding is required to explain away the estimated asso-
ciation between current axial symptom severity with death.
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a 54%–81% rate over a follow-up period of 12–20 years.29–31

Three retrospective studies report that the mortality rate is
higher in nonoperated (41, 23 and 611 patients, re-
spectively) compared to operated patients with PD (106, 24,
and 611 patients, respectively), with a follow-up period of
1–8 years.7,8,32 These data suggest that STN-DBS patients
with PD survive longer. Strict selection of patients with PD
for STN-DBS with younger age, absence of cognitive deficit,
and a levodopa-responsive form of the disease10 represent
demographic and clinical factors that could contribute to this
favorable outcome with STN-DBS. Indeed, 73 out of our
143 patients with PD (51%) had a young-onset (YO) form
of PD with an onset before age 45. Indeed, patients with YO
PD have a better response to the dopaminergic treatment
and STN-DBS33 and are at lower risk for developing de-
mentia.34 This, along with higher preoperative cognitive
status, could explain the low rate of dementia observed in
our cohort, with only 39 out of 90 patients (43%) diagnosed
with dementia at the last follow-up visit relative to the rate of
80% reported in nonoperated patients with PD after 20 years
of disease progression.35 STN-DBS may also prolong sur-
vival through a long-lasting benefit on parkinsonian

disability with decreased swallowing disorders and aspiration
pneumonia,8 and reduced dopaminergic medication with
subsequently less related motor and cognitive complica-
tions.7 Finally, STN-DBS patients with PD could have
benefitted from better care due to surgery and device im-
plantation that required more intense follow-up in an expert
PD center.

Themain cause of death in our cohort was disease progression
(n = 25) with aspiration pneumonia in 7 patients. This is
consistent with other mortality reports in patients with PD
with DBS,7,8,32 but also in nonoperated patients with PD.31

Our joint models indicated that the level of axial symptom
severity in the follow-up period was the main significant risk
factor for death. This is consistent with the identification of
postural instability gait disorders phenotype31 and recurrent
falls as independent risk factors for death in nonoperated
patients with PD.36We note, however, that themajority of our
patients did not die directly from falling. This suggests that
while axial symptoms may increase the risk of falling, these
symptoms may be directly or indirectly related to death in
other ways. For example, institutionalization24 and being

Figure 5 Patient-specific mortality predictions

(A) Kaplan-Meier survival estimate with prediction from the survival component of the joint model linking axial symptom severity and mortality. Crosses
represent censoring due to death or dropout. (B) Distribution ofmodel random-effects representing predictions for axial severity at surgery and rate of axial
progression for each patient. The size of each point is proportional to preoperative axial disability measured without medication (“off” dopamine). (C–G)
Dynamic mortality predictions for individual patients (marked with black circles in B). The points correspond to the axial disability measured for each
levodopa and stimulation condition. For each patient, mortality prediction was generated via empirical Bayes starting from the time of the last visit (indicated
with the dashed vertical line). (C) A patient with axial disability at surgery and rate of axial progression near the population average (centered near 0 in B), and
is alive 15 years after surgery. (D, E) Two patients who died from causes related to Parkinson disease. (F) A patient who died suddenly (likely cardiac arrest). (G)
A patient with rapid progression of axial symptom severity who was alive at the latest follow-up. CI = confidence interval.
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chronically bedridden may lead to specific medical compli-
cations, such as pulmonary embolism or infection.

While our results are consistent with the unique status of axial
symptom severity in predicting mortality, the HRs for associa-
tions between akinesia and rigidity andmortality are greater than
1. We do not believe that this necessarily indicates that the
severity of akinesia and rigidity symptoms is substantively asso-
ciated with mortality, even if more data are added. Indeed, pre-
operative axial symptom severity was the only symptom
associated with increased mortality for every outcome model
except axial symptoms (figure 3; figure e-2, doi.org/10.5061/
dryad.6n70v4b). By contrast, preoperative axial symptom se-
verity is not significant in themodel incorporating axial symptom
progression, and controlling for preoperative axial symptom se-
verity decreased both themagnitude and significance ofmortality
associations with akinesia and rigidity. These results indicate that
current level of axial symptom severity is relevant for predicting
mortality. Moreover, the associations between akinesia and ri-
gidity symptom severity and mortality are substantially smaller
than between axial symptom severity and mortality, with an HR
(4.3) that is unlikely to be explained away by unmeasured con-
founders (figure 4). Finally, fitting a multivariate joint model that
simultaneously models the progression of akinesia, rigidity,
tremor, and axial symptoms revealed that only the current level
of axial symptom severity was significantly associated with
mortality (table e-4, doi.org/10.5061/dryad.6n70v4b).

There are several limitations to consider in interpretating the
results of our study. The cause of death was not clearly
identified, since no autopsy was performed, in 15 of the 25
patients who died of PD progression. However, in other large

cohort studies, PD progression is also reported as the main
cause of death without indication of a more precise cause of
death.37 More specific information on cause of death may
provide clearer insight into the mechanisms linking axial
symptom severity and death. The fact that STN-DBS and
dopamine treatments were assessed in the same order at each
visit may have influenced the effect of each treatment condi-
tion on motor outcome measures. We measured PD motor
disability progression using the UPDRS-III, which is a semi-
quantitative scale. This scale has been rigorously validated in
large trials to assess the effects of STN-DBS,38 and changes in
this scale have been shown to reflect the patient’s perception
of change in disease status.12 Although the subscores were
well-fit by the longitudinal submodel of our joint models, the
subscores were constructed from a relatively limited number
of items. While our results indicate that axial symptoms are
the most relevant predictor of death, clinical scales more fo-
cused on gait and balance disorders, such as the Gait and
Balance Scale,39 or data from wearable devices may provide
clearer insight into the link between axial symptoms and cause
of death. Finally, while we internally validated our data using
bootstrapped prediction scores, external validation using data
from other cohorts will be important for confirming our
results. Examining larger samples over longer periods will also
be important for confirming the predictive status of current
axial symptom severity in patients with slowly progressing
axial symptoms, and may reveal that other motor symptoms
become significant and predictive at later stages of PD.

We showed that it is possible to predict the risk of death in
individual STN-DBS patients with PD using the current level
of axial symptom severity. Our data have important implications

Figure 6 Dynamic predictions of risk of death in 2 individual patients

The separate panels in each row represent mortality predictions using all postsurgical axial severity scores up to a particular examination for 2 patients. The
points correspond to the axial disability measured for each dopaminergic medication and (STN-DBS) condition. Mortality predictions were generated via
empirical Bayes starting from the time of the last visit (indicated with the dashed vertical line). Each column illustrates themortality prediction assuming that
data were available to a particular examination. (A) A patient with slow progression of axial symptom severity. (B) A patient with faster progression of axial
symptom severity. CI = confidence interval; DBS = deep brain stimulation.
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for clinicians, providing a metric by which they could adapt
treatments and rehabilitation programs to anticipate PD pro-
gression and care of these patients with a good understanding of
the long-term effects of STN-DBS. Our study also gives useful
information for designing and elaborating interventional trials
aimed at modifying the course of the disease or mortality, in
particular, trials aiming to improve axial symptoms and falls with
drug treatment,40 optimization of stimulation parameters,41 or
physical training.42,43 Finally, our data may provide clinical in-
sight for new imaging approaches used to measure disease
progression, such as nigrosome and neuromelanin imaging44 or
for basal ganglia neuronal activity recordings.45
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