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Abstract
Background: Programmable shunts can be adjusted to optimize CSF diversion in patients with
hydrocephalus without the need for re-operation. Currently, all shunts incorporate radiopaque markers so
that their setting can be determined on skull X-ray images. The purpose of this study was to evaluate
whether the shunt setting could also be determined ex vivo and in vivo using the data from a standard head
CT scan since one is nearly always obtained when patients with VP shunts present with new symptoms that
could be due to shunt malfunction. 

Materials and Methods: Four commonly used programmable shunts were attached to a dried skull and

scanned using a variety of CT techniques. The shunts imaged were the CertasTM Plus (Codman, Raynham,

Massachusetts), Polaris® (Sophysa, Orsay, France), proGAV 2.0® (Braun, Bethlehem, Pennsylvania), and

Hakim® (Codman, Raynham, Massachusetts). Each shunt was scanned at two different valve settings using
multiple CT techniques: CTDIvol 75, 140kVp, 330mAs, CTDIvol60, 120kVp 390mAs, CTDIvol40, 80kVp with

430mAs, 140kVp with 215mAs. Image reconstruction with and without CT metal suppression software was
used for all scans, and the data was reconstructed into volume-rendered images. We enlisted ten observers
to review the volume-rendered images only. After a short set of training slides viewed by all observers, they
were asked to predict the shunt setting for each valve along with their level of confidence. One clinical case
of a patient with a programmable valve was evaluated on a CT scan.

Results: Using the volume-rendered images only, the two shunt settings of the Polaris shunt were correctly

predicted by all the observers and in nine of 10 settings for the CertasTM Plus valve. For the Hakim ®

shunt and the proGAV 2.0® shunt, setting prediction accuracy was 0% and 10%, respectively. In one clinical
case, the programmable valve setting could be determined from the CT scan data.

Conclusion: The valve setting of at least two currently available programmable shunts can be determined
using volume-rendered images generated from CT data. Reconstructions using metal suppression software
were rated as superior and may be necessary for some valve designs.

Categories: Radiology, Neurosurgery
Keywords: programmable shunts, metal artifacts, computed tomography, hydrocephalus, dual energy ct

Introduction
Hydrocephalus is a common brain disorder that can result in damage to the brain parenchyma and its
function [1]. It affects between 1% and 2% of the population [2]. Symptomatic patients are often treated with
ventriculoperitoneal shunt (VPS) placement, but these have up to a 30% failure rate within the first year [3],
so frequent follow-up, including radiographic evaluation, is routine. Currently, VPS may have either a fixed
or programmable valve at the junction of the ventricular and distal catheter. Devices using programmable
valves are more expensive than those with a single fixed setting but allow for non-invasive alteration of the
valve setting to titrate hydrocephalus management. Several studies have demonstrated the benefit of using
programmable valves since they can provide better neurological results in patients while remaining cost-
effective when compared to non-programmable valves [4]. A recent metanalysis indicated that
programmable valves can reduce the revision rate and the over- or under-drainage complication rate in
patients under 18 years of age [5].

The programmable valve adjustment on all current devices is performed transcutaneously using a magnet
placed on the skin overlying the valve. The valve setting can also be measured using a hand-held device, but
these are valve specific. Plain skull radiographs are commonly used to determine valve settings since they
allow the determination of the setting of any programmable valve without specialized equipment since
reference images are provided online by the manufacturers and in the literature [6]. Since valve adjustment
is performed using a hand-held magnet, the valve setting in some programmable valves can be inadvertently
altered by a strong magnetic field, for example, during an MRI scan or exposure to powerful magnets used
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in toys and some electronic devices [3]. There is one report of a suicide attempt after a patient intentionally
and successfully altered their valve with a handheld degaussing device [7]. While the latest designs of
programmable devices incorporate mechanical interlocks that provide some protection from inadvertent
valve changes, validation of settings after MRI is still recommended for all devices.

When a patient presents to the ER with symptoms suggesting shunt malfunction, routine imaging usually
includes plain x-ray imaging of the head and neck to evaluate for shunt tubing continuity and a CT scan to
evaluate the patient’s ventricular size. Radiographs are recommended to optimally demonstrate the
programmable valve setting that requires orienting the direction of the X-ray beam perpendicular to the
valve rather than using standard skull views. We are not aware of any efforts by manufacturers to
incorporate into their valve designs material choices that would allow their valve settings to be determined
from CT alone, but with newer valve designs and the wide availability of CT metal artifact suppression
techniques, we hypothesized that shunt valve setting may be readily determined via CT alone. 

Historically, metal-related artifacts that include beam hardening and photon starvation severely limit the
use of diagnostic CT for imaging any implanted metallic device [8,9]. Artifacts created by brain implants such
as aneurysm clips and endovascular coils may obscure both implants as well as nearby brain tissue [10]
because there is either insufficient or erroneous X-ray attenuation data that degrades the quality of image
reconstruction. While reports have indicated that titanium aneurysm clips can be made more visible by
modifying the CT technique used for image data acquisition [11] recently, many clinical CT scanners use
sophisticated image reconstruction software that provides effective metal artifact suppression [12,13]. We
hypothesized that CT imaging of a programmable valve, facilitated by a combination of modified CT
technique and metal suppression reconstruction software, would allow the determination of its setting. This
option may be of benefit, particularly when then the ventricular size has changed from prior scans, and
especially valuable when plain films are unavailable or suboptimal. We utilized a phantom for scanning four
commonly used programmable shunts to evaluate the feasibility of this approach and provide an in vivo
example.

Materials And Methods
Phantom model and study design
Major shunt manufacturers currently offering programable shunts were contacted and asked to provide
shunts and their adjustment hardware for this study. We were able to obtain four programmable shunt
valves: CertasTM Plus (Codman, Raynham, Massachusetts), Polaris® (Sophysa, Orsay, France), proGAV 2.0®
(Braun, Bethlehem, Pennsylvania), and Hakim® (Codman, Raynham, Massachusetts). The tools and
instructions for their adjustment and radiographic appearance of each of these programmable shunt valves
are readily available [6]. 

A dried human skull was used for our phantom in order to partially replicate the beam hardening that
contributes image artifacts on CT reconstructions. The phantom was scanned in the usual anatomic position
using a clinical scanner (Siemens-Erlangen 128 slices FLASH scanner, Germany) with the programmable
shunts taped to the outer table of the skull phantom (Figure 1).
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FIGURE 1: The phantom, scanned with two different shunts taped to the
left and right parietal bones of the skull
A dried human skull was used as the phantom and scanned with CertasTM Plus shunt taped to the parietal bone
to replicate the beam hardening that is expected to occur in patients from the skull immediately adjacent to the
shunt valve.

In the first part of the study, the phantom was scanned with two different shunts taped to the left and right
parietal bones of the skull. The phantom was then scanned using three different scanner technique settings:
(1) 140kVp that provided a relatively high dose (CTDIvol 75mGy), (2) our standard head CT scan technique
using kVp 120, and (3) dual-energy CT technique (Table 1). 

  CertasTM Plus Polaris® proGAV 2.0 ® Hakim®

Position
1

Scan
1

CTDIvol 75, 140kVp, 330

mAs

CTDIvol 75, 140kVp, 330

mAs

CTDIvol 75, 140kVp, 330

mAs

CTDIvol 75, 140kVp, 330

mAs

 
Scan
2

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

 
Scan
3

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

Position
2

Scan
4

CTDIvol 75, 140 kVp, 330

mAs

CTDIvol 75, 140 kVp, 330

mAs

CTDIvol 75, 140 kVp, 330

mAs

CTDIvol 75, 140 kVp, 330

mAs

 
Scan
5

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

CTDIvol 60, 120 kVp, 390

mAs

 
Scan
6

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140 kVp 215 mAs

CTDIvol 40 80 kVp 430 mAs

140kVp V 215 mAs

TABLE 1: CT scan parameters for various shunts for both shunt settings

Reconstructions with and without Siemens metal suppression iterative image reconstruction software
(iMAR) was used for all the scans. This was repeated so that eventually, all four shunts were imaged in the
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same way.

In the second part of the phantom study, the setting of each of the shunts was changed and confirmed using
the specific hand tools provided by the manufacturers. The shunts were then imaged utilizing the
aforementioned technique.

CT imaging, data acquisition and post-processing
CT scan for each shunt in two different positions included the following parameters:

1. CTDIvol 75, 140kVp, 330 mAs

2. CTDIvol 60, 120 kVp 390 mAs

3. CTDIvol 40, 80 kVp with 430 mAs, 140 kVp with 215 mAs

The shunt settings are detailed in Table 2. 

 CertasTM Plus Polaris® proGAV 2.0 ® Hakim®

Side Right Left Right Left

Position 1 4 2 15 6

Position 2 7 4 170 70

TABLE 2: Shunt parameter setting for each programable shunt on both scans

Post-processing was performed using Terarecon 3D software (Durham, NC). A standard 3D reconstruction
template that was available from the software menu was used to create volume-rendered images of the valve
as though viewing the valve from outside the skull and were saved as .jpg images for each device at each
setting (Figure 2).
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FIGURE 2: Volume reconstructions of the four shunts
(A) CertasTM Plus (Codman, Raynham, Massachusetts).  (B) Polaris® (Sophysa, Orsay, France). (C) Hakim®
(Codman, Raynham, Massachusetts). (D) proGAV 2.0® (Braun, Bethlehem, Pennsylvania). Note the difficulty in
detection of detail within the valves on volume rendered images (C) and (D). While the two lobes on the Certas
valve (A) and their angle relative to the reference indicator (long arrow) are evident, it is essential to recognize the
slight difference in the appearance of the two lobes. A small tab is present on only one lobe, and this is indicated
on the volume rendered by the short red arrow. Correct identification of each of the two lobes is critical for correct
setting prediction. The two lobes of the Polaris valve (B), on the other hand, are identical and only a limited range
of angles are available relative to the long axis of the valve. This arrangement is very likely why we found a high
degree of accuracy in determining the valve setting among our 10 observers.

Questionnaire study design
To validate our observations, we created an education set that included a short set of volume-rendered
images of the different valves so that the observers could learn what to look for when imaging programmable
valves with CT. Ten radiology residents at different training levels were asked to evaluate the phantom CT-
based volume rendered images. Following a short training set of images that indicate the key findings to
look for (approximately five minutes), a quiz was presented to each that included 16 questions and eight
images. Participants were asked to indicate the shunt settings of the four valves and to report their
confidence with regard to that prediction using a scale of 1-5, with five indicating total
confidence. Immediately after this test, the same subjects were asked to rate a set of volume-rendered
images to select the three best quality volume-rendered images, among eight presented, that they perceived
as providing the best demonstration of fine detail within only two of the valves, CertasTM Plus and Polaris®.
The volume-rendered images in that last section of the questionnaire were created using data from the CT
using 140kVp with and without iMAR, 120 kVp with and without iMAR, and dual-energy CT at both 80 kVp
and 140 kVp with and without iMAR, for a total of eight images. The participants were not allowed to ask
questions and did not receive any coaching during either part of their valve imaging evaluation.

In vivo scan
Data from a routine, clinically indicated, non-contrast head CT study of a patient with a programmable
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valve (CertasTM Plus) was used for this purpose. The patient was scanned with our standard imaging
technique: kVp 120, mAs 243, FOV 240, CTDI vol 58. volume-rendered images were created using thin
reconstructions (0.75mm) with and without iMAR. The shunt setting was predicted based on the volume-
rendered images and compared to the data from the medical record.

Statistical analysis
Descriptive data were entered and analyzed with an electronic spreadsheet using the MS Excel software
program (Microsoft Corporation, Redmond, WA). 

Results
For the Polaris® shunt, the setting was read correctly by 10/10 (100%) of the participants at both shunt
settings. Their average confident interval was 4.2 for both settings.

For the CertasTM Plus shunt, the setting was read correctly by 9/10 (90%) at one setting with a confidence of
4.0 and by 10/10 (100%) at the second setting with a confidence of 4.4.

For the Hakim® shunt, the setting was read correctly by 0/10 (0%) in the first setting with the confidence of
1.4 (range 1-5), and by 0/10 (0%) in the second setting with the confidence of 1.4.

For the proGAV 2.0® shunt, the setting was read correctly by 1/10 (10%) in the first setting with the
confidence of 1.7 and by 0/10 (0%) in the second setting with a confidence of 1.6 (Table 3).

 Correct read of shunt setting

 Setting 1 (CI*) Setting 2 (CI*)

Polaris® shunt 10/10 (4.2) 10/10 (4.2)

CertasTM Plus shunt 9/10 (4.0) 10/10 (4.4)

Hakim® shunt 0/10 (1.4) 0/10 (1.4)

proGAV 2.0® shunt 1/10 (1.7) 0/10 (1.6)

TABLE 3: Evaluation of shunt setting based on volume rendered images from phantom-CT scans
*CI: confidence interval (0-5)

In the subjects, evaluation of volume-rendered reconstructions of two of the valves, the three best rated
volume-rendered images of both the Polaris® valve and Certas Plus valve used CT data from scans acquired
with 140kVp processed with iMAR reconstruction, non-contrast CT at 120kVp with iMAR reconstruction,
and a dual energy non-contrast CT (140kVp) with iMAR.

In our single included patient, the setting of the CertasTM Plus was correctly predicted using CT data as
number four (Figure 3).
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FIGURE 3: CertasTM Plus volume rendered image reconstruction from
routine non-contrast head CT
The shunt setting is predicted compared with the manufacturing guide and was correctly predicted as four. The
lobes that come closest to the center marker is the one with the extra metal dot, assisting in reading the setting
correctly. The setting is compared with the manufacture guidelines in relation to the radiopaque marker (arrow).

The setting was determined using volume-rendered reconstructions of the thin slices (0.75mm), with a
minimal added benefit when the image reconstructions were processed using our metal suppression
software (iMAR).

Discussion
Using only 3D volume-rendered reformations of CT data, the participants were all successful in determining
the correct shunt setting for the Polaris® at both settings. Their performance was nearly as good for the
CertasTM Plus valve. None of the participants could determine either of the shunt settings for the
Hakim® and proGAV 2.0® valves. We believe this is due to the metal casing of those valves, as well as the
design of the internal structure of the valves we included in this study. The Polaris® valve on both
radiographs and CT has two discrete metal lobes that indicate the valve setting when compared with index
metal markers (Figure 2), making it easy to determine its setting. The CertasTM Plus valve is similar, but the
two settings appear very similar, in the same way, that 12:30 and 6:00 look similar on a clock face if the
hands of the clock are not visible so that differentiation of the difference in each metal lobe is critical
(Figure 4).
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FIGURE 4: CertasTM Plus valve manufacture guide for interpretation of
shunt setting on x-Ray

We were able to distinguish the difference in the two lobes both in vivo and in vitro, however, using standard
CT data. The volume-rendered images of the in vivo scan were very similar in quality to the volume-
rendered images from the phantom model, suggesting our phantom adequately provided a simulation of the
beam hardening artifacts from the skull and the shunt.

The volume-rendered images generated using images with metal suppression were preferred for the shunt
setting evaluation of both the Polaris® and CertasTM Plus valves. iMAR is a metal suppression software
product that is offered by Siemens. The iMAR algorithm uses a process of detection and segmentation of the
corrupted projection data as a result of the very high attenuation of metal and then modifies the corrupted
data by replacing it with calculated estimates of the predicted projection values. The current commercially-
available iMAR algorithm [14] uses this image-based metal segmentation method along with multiple
iterative processing to improve the quality of the data at each step. The added benefit of a projection-based
algorithm is that it can be applied retrospectively, allowing it to be applied to the CT scan data after
acquisition.

Dual-energy CT scanners acquire image data at two different X-ray energies (e.g., 80 and 140 kVp) at the
same anatomic location simultaneously or nearly simultaneously. With these two datasets, a virtual
monoenergetic extrapolation can be performed to create a monochromatic image at much higher virtual
energies than currently used for human imaging [15]. Virtual monochromatic images using these calculated
high X-rays [16,17] have been demonstrated to reduce the effects of photon starvation and beam hardening
but with the trade-off of less tissue contrast [6,18]. For this technique, the decision to use it must be made
before scanning. However, we did not have software available to create monoenergetic images, and this
remains an avenue for further investigation. We did find that when using data from the higher kVp tube of a
dual-energy scanner and processed with metal suppression, those volume-rendered images were selected
among the three best for the CertasTM Plus valve.

Programmable valves with overlapping metal parts, full metal covers, or those that depend on detection of
very fine structures we expect will be difficult to visualize on CT. For example, the proGAV 2.0 ® has a metal
covering, and the Hakim® valve parts are too small to appreciate at the resolution of standard CT (Figure 5).
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FIGURE 5: Manufacturer selections for materials and design of their
programmable shunts very likely influences the conspicuity of the valve
setting on the CT volume rendered images
(A) Hakim® (Codman, Raynham, Massachusetts). (B) proGAV 2.0® (Braun, Bethlehem, Pennsylvania).
(C) Polaris® (Sophysa, Orsay, France). (D) CertasTM Plus (Codman, Raynham, Massachusetts).

Valves using discrete metal parts with unique arrangements at different settings relative to the indicator
markers are more likely to be visible. We found that the CertasTM Plus and Polaris® shunts were most
favorable to image with CT among our test valves, most likely because both have non-metallic covers and
relatively large and separate metal components. The use of low attenuation metals such as titanium would
reduce the effects of photon starvation. However, due to the requirement that the valve’s settings be
adjustable with a magnet, ferrous components would seem necessary in all programmable valves. 

This study should not be considered an endorsement of any programmable valve. Many other considerations
go into the choice of a valve for a specific patient, and we have not demonstrated at this time that being able
to see the valve settings on CT has a substantial benefit in practice. Nevertheless, it does seem to be a
favorable feature for a programmable valve design since CT scans are so frequently acquired in patients with
hydrocephalus. For example, determination of the valve setting on any head CT scan would allow
distinguishing those cases with ventricle enlargement compared with prior CT due to the valve setting
adjustment from those cases with shunt malfunction. We believe this potential for imaging should be
considered by manufacturers in future design and modification of programmable valves.

There are several limitations to this study. We did not test every programmable shunt on the market. We
were only successful in obtaining test valves and setting equipment for the four shunts in use at our
institution. This may be due to the costs involved or concern about an unfavorable result, but the design of
the valve can be used to predict whether its setting might be visible on CT. But for the intent of this study to
demonstrate the feasibility of this approach using CT at standard clinical doses and determine optimal CT
technique, we believe the sample was sufficient. 

Second, we did not compare all reconstruction methods for the display of the CT data. As we indicated, we
were not able to create monoenergetic images from the dual-energy CT data. We did attempt to use
maximum intensity projection instead of volume-rendered reconstructions but found it much more time-
consuming to create optimal images and no more effective. Some imagers may find other and better
methods to display the data. We believe that for this approach to be effective in practice the ease of image
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generation and viewing are critical to clinical implementation. We demonstrated in this study that volume-
rendered images are readily interpreted by unsophisticated viewers and provided an intuitive correlation
with the manufacturer’s published images of valve settings on X-rays.

Conclusions
In conclusion, we have demonstrated that the valve setting of some programmable shunts can be
determined using CT at standard doses in a phantom, interpretation of the VR images can be readily taught
to clinical imagers, and this approach was effective in vivo using standard clinical head CT data. 
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