
ll
OPEN ACCESS
Protocol
Protocol for unbiased, consolidated variant
calling from whole exome sequencing data
Kleio-Maria Verrou,

Georgios A.

Pavlopoulos,

Panagiotis Moulos

kverrou@med.uoa.gr

(K.-M.V.)

moulos@fleming.gr

(P.M.)

Highlights

Protocol to enable

whole exome data

analysis in an

unbiased approach

A protocol for

unbiased analysis

using 3 variant callers

with different

underlying models

From raw data to

filtered,

consolidated, and

annotated DNA

variant calls
Whole Exome Sequencing (WES) is used for querying DNA variants using the protein coding

parts of genomes (exomes). However, WES analysis can be challenging because of the

complexity of the data. Here, we describe a consolidated protocol for unbiased WES analysis.

The protocol uses three variant callers (HaplotypeCaller, FreeBayes, and DeepVariant), which

have different underlying models. We provide detailed execution steps, as well as basic variant

filtering, annotation, visualization, and consolidation aspects.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
Verrou et al., STAR Protocols

3, 101418

June 17, 2022 ª 2022 The

Authors.

https://doi.org/10.1016/

j.xpro.2022.101418

mailto:kverrou@med.uoa.gr
mailto:moulos@fleming.gr
https://doi.org/10.1016/j.xpro.2022.101418
https://doi.org/10.1016/j.xpro.2022.101418
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101418&domain=pdf

Protocol

Protocol for unbiased, consolidated variant calling from
whole exome sequencing data

Kleio-Maria Verrou,1,3,* Georgios A. Pavlopoulos,1,2 and Panagiotis Moulos1,2,4,*

1Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens,
Athens, Greece

2Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center ‘Alexander Fleming’, Vari, Greece

3Technical contact

4Lead contact

*Correspondence: kverrou@med.uoa.gr (K.-M.V.), moulos@fleming.gr (P.M.)
https://doi.org/10.1016/j.xpro.2022.101418

SUMMARY

Whole Exome Sequencing (WES) is used for querying DNA variants using the pro-
tein coding parts of genomes (exomes). However, WES analysis can be chal-
lenging because of the complexity of the data. Here, we describe a consolidated
protocol for unbiased WES analysis. The protocol uses three variant callers
(HaplotypeCaller, FreeBayes, and DeepVariant), which have different underlying
models. We provide detailed execution steps, as well as basic variant filtering,
annotation, visualization, and consolidation aspects.

BEFORE YOU BEGIN

The consolidated variant and annotation calling process presented in this protocol uses three variant

callers, namely the HaplotypeCaller component of the Genome Analysis Toolkit 4.0 (DePristo et al.,

2011), FreeBayes (Garrison and Marth, 2012) and DeepVariant (Poplin et al., 2018). It also provides

instructions for general clinical variant annotation and addition of variant frequencies from major

population studies, as well as steps to properly intersect and/or unify the (filtered and annotated)

variant calls from each algorithm. In order to execute the protocol, apart from the basic software

tools, additional resources are required, which can be categorized in reference file downloads (refer-

ence genome, genomic coordinates of the kit used for WES, reference annotation databases) and

additional software tools for the pre- and post-processing of the input and output data respectively.

The protocol is applied on a number of human datasets of common interest. Generally, we follow

published and widely accepted best practices, with minor divergences. One example of divergence

is that while the GATK community suggests using their own tools for preparing reference genome-

aligned (BAM) files for variant calling, we use samtools which perform the pre-processing but are

significantly faster and in harmony with the rest of the variant callers. The following steps apart

from Data Collection can be performed once as they concern online data and software resources

that can be stored locally. In addition, all steps assume a basic familiarity with the Unix/Linux

command line, as all the commands are executed in the command line via a terminal.

Resources download

Timing: 6 h

In this section, the required non-software resources (reference genome, annotation files) are

retrieved. In the end of the section these resources should be in the proper places, ready for later

usage.

STAR Protocols 3, 101418, June 17, 2022 ª 2022 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:kverrou@med.uoa.gr
mailto:moulos@fleming.gr
https://doi.org/10.1016/j.xpro.2022.101418
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101418&domain=pdf
http://creativecommons.org/licenses/by/4.0/

1. Set the directory where the reference genome and genomic annotations will be placed for later

and general use.

2. Download the hs37d5 version of the human reference genome.

Note: For WES analysis, it is recommended to use the hs37d5 human genome version. It is an

extension of the hg19 (GRCh37) human reference genome which contains additional se-

quences that have been shown to reduce the number of false positive alignments as a result

of potential contaminations in WES (Li, 2014). The genome is composed of the integrated

reference sequence from the GRCh37 primary assembly, comprising chromosomal plus unlo-

calized and unplaced contigs, the rCRS mitochondrial sequence, the genome of Human

herpesvirus 4 type 1 (GenBank:NC_007605) and other concatenated decoy sequences.

More details are provided within the download link and the aforementioned article.

3. Retrieve the genomic coordinates of the exome capture kit from the manufacturer as a BED file

(in this case, the Agilent SureSelect All Exon v2.0 capture kit coordinates, which correspond to

the data we are using from the 1000 genomes project).

Note: The timing and easiness of this step depends on the manufacturer of the capture kit,

typically, instructions on how to retrieve it ship with the kit itself and should comprise no

more than 5 min including booklet or online search time.

4. Download the variant annotation database files.

a. Known variants and rs (dbSNP) accessions: dbSNP151.

RESOURCES_PATH=/home/user/resources

mkdir -p $ RESOURCES_PATH

CWD=‘pwd‘

cd $RESOURCES_PATH

mkdir hs37d5

cd hs37d5

wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_

reference_a

ssembly_sequence/hs37d5.fa.gz

gunzip hs37d5.fa.gz

CWD=‘pwd‘

cd $RESOURCES_PATH

mkdir panel

cd panel

wget –no-check-certificate https://figshare.com/ndownloader/files/33961505

mv 33961505 Agilent_SureSelect_All_Exon_V2.bed.gz

gunzip Agilent_SureSelect_All_Exon_V2.bed.gz

CWD=‘pwd‘

ll
OPEN ACCESS

2 STAR Protocols 3, 101418, June 17, 2022

Protocol

b. Further variant annotations along with variant impacts, computational pathogenicity scores,

conservation scores and additional clinical information: dbNSFP 2.9.3. The latter requires a

step of preprocessing for later variant annotation.

c. Variant frequencies across population files which are required in a clinical setting to assess

whether a variant has pathogenic potential according to its frequency in major population co-

horts (larger frequency, less pathogenic potential): gnomAD 2.1.1 and index.

The following script template can be used to perform steps 4a–4c:

Prerequisite software installation – quality control

Timing: 15 min

The goal of this section is to download and install software required for raw data quality control. The

following command line operations can be executed as provided in most Linux distributions. We are

using Ubuntu 20.04 LTS. In the end of each code snippet, we include a final command which exports

to the filesystem environment the command to the tool just installed. In this way, the tool usage

becomes available across all the next steps. The command has the format.

cd $RESOURCES_PATH

mkdir dbSNP

cd dbSNP

wget

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/00-

All.vcf.gz

gunzip 00-All.vcf.gz

mv 00-All.vcf dbSNP151.vcf

cd ..

mkdir dbNSFP

cd dbNSFP

wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv2.9.3.zip

unzip dbNSFPv2.9.3.zip

(head -n 1 dbNSFP2.9.3_variant.chr1 ; cat dbNSFP2.9.3_variant.chr* | grep

-v "^#") > dbNSFP2.9.3.txt

bgzip dbNSFP2.9.txt # 17’

tabix -s 1 -b 2 -e 2 dbNSFP2.9.txt.gz

cd ..

mkdir gnomAD

cd gnomAD

wget https://storage.googleapis.com/gcp-public-data–

gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz.tbi

wget https://storage.googleapis.com/gcp-public-data–

gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz

cd $CWD

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 3

Protocol

where [TOOL] is the software tool just installed. Furthermore, it should be noted that certain tools

and resources are versioned, meaning that the version of the file to be downloaded is subject to

change. Usually, this change is evident even for the relatively inexperienced users. In the end of

the section, the software required for quality control should be in the proper place for the execution

of the protocol.

5. Set the directory where the tools are installed in the user’s home directory. Note that some tools,

especially those dependent heavily on the Python language, may not follow this convention.

6. Download and install FastQC.

7. Download and install MultiQC. Existence of the Python package manager pip is assumed but it is

usually bundled with most current Linux systems.

8. Download and install cutadapt.

9. Download and install TrimGalore.

export [TOOL]_PATH=path_to_the_tool/tool

INSTALL_PATH=/home/user/tools

mkdir -p $INSTALL_PATH

CWD=‘pwd‘

LINK=https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.

11.9.zip

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

unzip $ARCHIVE

export FASTQC_PATH=$INSTALL_PATH/FastQC

rm $ARCHIVE

chmod +x $FASTQC_PATH/fastqc

cd $CWD

pip install multiqc

export MULTIQC_PATH=/home/user/.local/bin

pip install -–upgrade cutadapt

export CUTADAPT_PATH=/home/user/.local/bin

LINK=https://github.com/FelixKrueger/TrimGalore/archive/refs/tags/0.6.7.t

ar.gz

cd $INSTALL_PATH

wget $LINK -O TrimGalore_v0.6.7.tar.gz

ARCHIVE=TrimGalore_v0.6.7.tar.gz

ll
OPEN ACCESS

4 STAR Protocols 3, 101418, June 17, 2022

Protocol

Prerequisite software installation – genome alignment

Timing: 2 min

In this section, the software required for raw read data alignment to the reference genome is

retrieved and installed. At the end of the process, the software should be in the proper place for

the continuation of the protocol.

10. Download and install bwa.

Prerequisite software installation – variant calling

Timing: 10 min

In this section, the software required for variant calling is retrieved and installed. At the end of the

process, the software should be in the proper place for the continuation of the protocol.

11. Download and install GATK.

tar -xvf $ARCHIVE

export TRIMGALORE_PATH=$INSTALL_PATH/ TrimGalore-0.6.7

rm $ARCHIVE

cd $CWD

LINK=https://github.com/lh3/bwa/releases/download/v0.7.17/bwa-

0.7.17.tar.bz2

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

export BWA_PATH=$INSTALL_PATH/bwa-0.7.17

rm $ARCHIVE

cd $BWA_PATH

make

cd $CWD

LINK=https://github.com/broadinstitute/gatk/releases/download/4.2.4.1/gat

k-4.2.4.1.zip

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

unzip $ARCHIVE

export GATK_PATH=$INSTALL_PATH/gatk-4.2.4.1

rm $ARCHIVE

cd $CWD

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 5

Protocol

12. Download and install FreeBayes.

13. Download and install Docker to be able to run DeepVariant. The box below follows official in-

structions from here.

CRITICAL: This is the only protocol step where the aid of a system administrator or a

trained bioinformatician may be required for ensuring proper installation, as it requires

system-level access.

Prerequisite software installation – variant annotation

Timing: 2 min

LINK=https://github.com/freebayes/freebayes/releases/download/v1.3.6/free

bayes-1.3.6-linux-amd64-static.gz

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

mkdir freebayes-1.3.6

mv $ARCHIVE ./freebayes-1.3.6/

cd freebayes-1.3.6

gunzip $ARCHIVE

chmod +x freebayes-1.3.6-linux-amd64-static

mv freebayes-1.3.6-linux-amd64-static freebayes

export FREEBAYES_PATH=$INSTALL_PATH/freebayes-1.3.6

cd $CWD

sudo apt remove docker docker-engine docker.io containerd runc

sudo apt update

sudo apt install -y ca-certificates curl gnupg lsb-release

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg –

dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

echo "deb [arch=$(dpkg –print-architecture) signed-

by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" |

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

sudo apt install docker-ce docker-ce-cli containerd.io

sudo usermod -aG docker ${USER}

BIN_VERSION="1.3.0"

sudo docker pull google/deepvariant:"${BIN_VERSION}"

ll
OPEN ACCESS

6 STAR Protocols 3, 101418, June 17, 2022

Protocol

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04

14. Download and install SnpEff and SnpSift (in the same package).

Prerequisite software installation – generic file control and manipulation

Timing: 30 min

15. Download and install samtools.

16. Download and install bcftools.

LINK=https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

unzip $ARCHIVE

export SNPEFF_PATH=$INSTALL_PATH/snpEff

rm $ARCHIVE

cd $SNPEFF_PATH

chmod +x snpEff.jar SnpSift.jar

cd $CWD

LINK=https://github.com/samtools/samtools/releases/download/1.14/samtools

-1.14.tar.bz2

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

export SAMTOOLS_PATH=$INSTALL_PATH/samtools-1.14

rm $ARCHIVE

cd $SAMTOOLS_PATH

make

cd $CWD

LINK=https://github.com/samtools/bcftools/releases/download/1.14/bcftools

-1.14.tar.bz2

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

export BCFTOOLS_PATH=$INSTALL_PATH/bcftools-1.14

rm $ARCHIVE

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 7

Protocol

17. Download and install htslib.

18. Download and install bedtools.

19. Download the genomic file manipulation tool library from UCSC.

cd $BCFTOOLS_PATH

make

cd $CWD

LINK=https://github.com/samtools/htslib/releases/download/1.14/htslib-

1.14.tar.bz2

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

export HTSLIB_PATH=$INSTALL_PATH/htslib-1.14

rm $ARCHIVE

cd $HTSLIB_PATH

make

cd $CWD

LINK=https://github.com/arq5x/bedtools2/releases/download/v2.30.0/bedtool

s-2.30.0.tar.gz

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

rm $ARCHIVE

export BEDTOOLS_PATH=$INSTALL_PATH/bedtools2/bin

cd BEDTOOLS_PATH/..

make

cd $CWD

cd $INSTALL_PATH

mkdir ucsc_tools

cd ucsc_tools

rsync -aP hgdownload.soe.ucsc.edu::genome/admin/exe/linux.x86_64/ ./

export UCSCTOOLS_PATH=$INSTALL_PATH/ucsc_tools

cd $CWD

ll
OPEN ACCESS

8 STAR Protocols 3, 101418, June 17, 2022

Protocol

20. Download and install vcflib.

21. Download GLNexus (required for DeepVariant).

Data collection

Timing: 1.5 h

In this section, the raw data for the demonstration of the protocol are retrieved. At the end of the

process, the data should be in the proper place for the continuation of the protocol. We demon-

strate the protocol using six random male-female balanced samples from the British in England

and Scotland (GBR) population in the 1000 genomes project. The samples are also listed in the

key resources table.

22. Set the directory where the raw data will be placed.

LINK=https://github.com/vcflib/vcflib/releases/download/v1.0.1/vcflib-

1.0.1-src.tar.gz

cd $INSTALL_PATH

wget $LINK

ARCHIVE=‘basename $LINK‘

tar -xvf $ARCHIVE

rm $ARCHIVE

mv vcflib-1.0.1-src vcflib-1.0.1

export VCFLIB_PATH=$INSTALL_PATH/vcflib-1.0.1/bin

cd VCFLIB_PATH/..

make

cd $CWD

cd $INSTALL_PATH

mkdir GLnexus

cd GLnexus

wget https://github.com/dnanexus-rnd/GLnexus/releases/download/v1.4.1/glnexus_cli

chmod +x glnexus_cli

cd ..

export GLNEXUS_PATH=$INSTALL_PATH/GLnexus

cd $CWD

HOME_PATH=/home/user/analysis

FASTQ_PATH=$HOME_PATH/fastq

mkdir -p $ FASTQ_PATH

cd $CWD

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 9

Protocol

23. Download the raw WES data.

cd $FASTQ_PATH

HG00119

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099967/SRR099967_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099967/SRR099967_2.fastq.gz

mv SRR099967_1.fastq.gz HG00119_1.fastq.gz

mv SRR099967_2.fastq.gz HG00119_2.fastq.gz

HG00133

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099969/SRR099969_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099969/SRR099969_2.fastq.gz

mv SRR099969_1.fastq.gz HG00133_1.fastq.gz

mv SRR099969_2.fastq.gz HG00133_2.fastq.gz

HG00145

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099957/SRR099957_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099957/SRR099957_2.fastq.gz

mv SRR099957_1.fastq.gz HG00145_1.fastq.gz

mv SRR099957_2.fastq.gz HG00145_2.fastq.gz

HG00239

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099958/SRR099958_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099958/SRR099958_2.fastq.gz

mv SRR099958_1.fastq.gz HG00239_1.fastq.gz

mv SRR099958_2.fastq.gz HG00239_2.fastq.gz

HG00258

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099954/SRR099954_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099954/SRR099954_2.fastq.gz

mv SRR099954_1.fastq.gz HG00258_1.fastq.gz

mv SRR099954_2.fastq.gz HG00258_2.fastq.gz

ll
OPEN ACCESS

10 STAR Protocols 3, 101418, June 17, 2022

Protocol

KEY RESOURCES TABLE

HG00265

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099968/SRR099968_1.fastq.gz

wget

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR099/SRR099968/SRR099968_2.fastq.gz

mv SRR099968_1.fastq.gz HG00265_1.fastq.gz

mv SRR099968_1.fastq.gz HG00265_2.fastq.gz

cd $CWD

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HG00119 (Male) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099967

HG00133 (Female) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099969

HG00145 (Male) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099957

HG00239 (Female) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099958

HG00258 (Female) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099954

HG00265 (Male) 1000 genomes GBR https://www.ncbi.nlm.nih.gov/sra/SRR099968

SureSelect AllExon 2.0 Agilent https://doi.org/10.6084/m9.figshare.19115102

Human genome hs37d5 1000 genomes consortium ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz

dbSNP 151 NCBI, (Sherry et al., 1999) ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_
GRCh37p13/VCF/00-All.vcf.gz

dbNSFP (Liu et al., 2016) ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv2.9.3.zip

gnomAD gnomAD consortium, (Karczewski
et al., 2020)

https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/
exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz

Software and algorithms

FastQC https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

https://github.com/s-andrews/FastQC

MultiQC (Ewels et al., 2016) https://multiqc.info/

Cutadapt (Martin, 2011) https://cutadapt.readthedocs.io/

Trim Galore! https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/

https://github.com/FelixKrueger/TrimGalore

bwa (Li and Durbin, 2009) https://github.com/lh3/bwa

GATK (DePristo et al., 2011) https://github.com/broadinstitute/gatk

FreeBayes (Garrison and Marth, 2012) https://github.com/freebayes/freebayes

DeepVariant (Poplin et al., 2018) https://github.com/google/deepvariant

SnpEff (Cingolani et al., 2012) https://pcingola.github.io/SnpEff/

samtools (Danecek et al., 2021) http://www.htslib.org/

bcftools (Danecek et al., 2021) http://www.htslib.org/

htslib (Bonfield et al., 2021) http://www.htslib.org/

BEDTools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/

UCSC tools (Kuhn et al., 2013) http://hgdownload.soe.ucsc.edu/admin/exe/

vcflib (Garrison and Marth, 2012) https://github.com/vcflib/vcflib

GLnexus (Lin et al., 2018) https://github.com/dnanexus-rnd/GLnexus

R (Ihaka and Gentleman, 1996) https://www.r-project.org/

Other

Recommended hardware:
- 16 physical core system
- 128 GB of RAM
- Ubuntu 18.04 operating system

N/A N/A

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 11

Protocol

https://www.ncbi.nlm.nih.gov/sra/SRR099967
https://www.ncbi.nlm.nih.gov/sra/SRR099969
https://www.ncbi.nlm.nih.gov/sra/SRR099957
https://www.ncbi.nlm.nih.gov/sra/SRR099958
https://www.ncbi.nlm.nih.gov/sra/SRR099954
https://www.ncbi.nlm.nih.gov/sra/SRR099968
https://doi.org/10.6084/m9.figshare.19115102
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/00-All.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/00-All.vcf.gz
http://ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv2.9.3.zip
https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/s-andrews/FastQC
https://multiqc.info/
https://cutadapt.readthedocs.io/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/FelixKrueger/TrimGalore
https://github.com/lh3/bwa
https://github.com/broadinstitute/gatk
https://github.com/freebayes/freebayes
https://github.com/google/deepvariant
https://pcingola.github.io/SnpEff/
http://www.htslib.org/
http://www.htslib.org/
http://www.htslib.org/
https://bedtools.readthedocs.io/
http://hgdownload.soe.ucsc.edu/admin/exe/
https://github.com/vcflib/vcflib
https://github.com/dnanexus-rnd/GLnexus
https://www.r-project.org/

MATERIALS AND EQUIPMENT

Hardware: while setting up the computational protocol, the steps were performed in a 64 physical

core system with 512 GB of RAM and Ubuntu 20.04 LTS. We used 32 cores where parallelization was

available. Generally, the process can be completed with adequate performance in a system with 16

cores and 128 GB of RAM. If less RAM is available, parallelization can be avoided partly by restricting

the number of jobs executed asynchronously in the background (remove the ‘&’ character where it is

found in several commands).

STEP-BY-STEP METHOD DETAILS

In all the subsequent steps, the paths to the required software tools are the same as the ‘‘exported’’

paths in the respective command boxes under the ‘‘before you begin’’ section.

Quality control and filtering

Timing: 2 h 15 min

Quality control of the generated data is a crucial step in every Next Generation Sequencing protocol, let

alone in thecaseofprocesses relatedalso to theclinic, suchasexomesequencingandvariant calling.Qual-

ity control in exomes becomes evenmore critical, as in the case of detecting variants on a large scale, it is

not straightforward to distinguish between sequencing errors and actual variations in the human genome.

Therefore, quality control procedures are often lenient and total quality assessment is a combination of

various factors. In this sectionweoutlinea typicalpre-alignmentqualitycontrol procedure forwholeexome

sequencing data. In the end, quality controlled FASTQ files ready for alignment will be acquired.

1. Quality control with FastQC and MultiQC.

a. Pre-alignment QC using FastQC to determine if any raw data corrective actions need to be

taken. Default FastQC reports are not interactive and not aggregated.

b. Use MultiQC to create a more user-friendly and complete report.

The following bash script can be used as a template:

#!/bin/bash

HOME_PATH=/home/user/analysis

FASTQ_PATH=$HOME_PATH/fastq

FASTQ_PATTERN=*.fastq.gz

FASTQC_COMMAND=$FASTQC_PATH/fastqc

MULTIQC_COMMAND=$MULTIQC_PATH/multiqc

FASTQC_OUTPUT=$HOME_PATH/fastqc

CORES=8

if [! -d $FASTQC_OUTPUT]

then

mkdir -p $FASTQC_OUTPUT

fi

$FASTQC_COMMAND –outdir $FASTQC_OUTPUT –threads $CORES

$FASTQ_PATH/$FASTQ_PATTERN

$MULTIQC_COMMAND $FASTQC_OUTPUT -o $FASTQC_OUTPUT

ll
OPEN ACCESS

12 STAR Protocols 3, 101418, June 17, 2022

Protocol

The results of MultiQC can be viewed by opening the file $FASTQC_OUTPUT/multiqc_report.html

in a web browser.

Note: From the results of FastQC and MultiQC, a lot of useful information may be revealed.

Some examples include the presence of adapters, the presence of bias in the 30/50 end of

reads, poor quality in the 30/50 end of reads, poor quality for certain samples and sequence

over-representation other than the one expected from adapter contamination. After a first

round of inspection, we may have to improve the quality of the overall dataset prior to

continuing with other actions regarding alignment to the reference genome and the subse-

quent variant calling. Trim Galore is a good option for this as it automates many processes,

including standard adapter automated removal and maintaining paired-end read integrity.

In the case of the data presented in this protocol, the quality of the dataset is acceptable

and none of the above points apply. No further further action is needed. Therefore, the

following section is not required. It is only mentioned here for reference purposes and proto-

col completeness.

2. Adapter and poor-quality base trimming (optional). A template bash script to wrap Trim Galore

follows. With comments, below the main command, a stricter alternative filtering approach:

#!/bin/bash

HOME_PATH=/PATH/TO/ANALYSIS/DIRECTORY

FASTQ_PATH=$HOME_PATH/fastq

TRIMGALORE_COMMAND=$TRIMGALORE_PATH/trim_galore

CUTADAPT_COMMAND=$CUTADAPT_PATH/cutadapt

TRIMGALORE_OUTPUT=$HOME_PATH/fastq_qual

CORES=4

if [! -d $TRIMGALORE_OUTPUT]

then

mkdir -p $TRIMGALORE_OUTPUT

fi

for FILE in $FASTQ_PATH/*_1.fastq.gz

do

BASE=‘basename $FILE | sed s/_1\.fastq\.gz//‘

echo "Processing $BASE"

mkdir -p $TRIMGALORE_OUTPUT

F1=$FASTQ_PATH/$BASE"_1.fastq.gz"

F2=$FASTQ_PATH/$BASE"_2.fastq.gz"

$TRIMGALORE_COMMAND \

–quality 30 \

–length 50 \

–output_dir $TRIMGALORE_OUTPUT/$BASE \

–path_to_cutadapt $CUTADAPT_COMMAND \

–cores 4 \

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 13

Protocol

For paired-end reads, TrimGalore! produces four outputs and specifically, mate 1 reads passingQC,

mate 2 reads passing QC (and matched to mate 1), mate 1 failed reads (optional, not chosen above),

mate 2 failed reads (optional, not chosen above).

3. Inspection of the outcome.

Trim Galore also runs FastQC again. From its output we may be able to see that:

a. The problematic points identified above are remedied and brought to acceptable states and

error rates.

b. The number of filtered reads remains at acceptable amounts.

Alignment to the reference genome and alignment statistics

Timing: 4 h 30 min

This section describes the process of aligning the FASTQ pairs to the reference genome and collect-

ing alignment statistics for quality control purposes. In the end of the step, BAM files and a report of

read alignment statistics are generated.

4. Index the reference genome.

This step is needed only once and does not have to be repeated for the application of the protocol to

new data, unless the index and/or reference genomes are deleted by the user. When this process is

completed, we need to create an additional file called hs37d5.dict expected by GATK tools for

variant calling and other processing. We use samtools for this.

–paired \

–fastqc \

–trim-n $F1 $F2

mv $TRIMGALORE_OUTPUT/$BASE"_1_val_1.fq.gz" \

$TRIMGALORE_OUTPUT/$BASE"_1.fastq.gz"

mv $TRIMGALORE_OUTPUT/$BASE"_2_val_2.fq.gz" \

$TRIMGALORE_OUTPUT/$BASE"_2.fastq.gz"

mv $TRIMGALORE_OUTPUT/$BASE"_1_val_1_fastqc.html" \

$TRIMGALORE_OUTPUT/$BASE"_1_fastqc.html"

mv $TRIMGALORE_OUTPUT/$BASE"_1_val_1_fastqc.zip" \

$TRIMGALORE_OUTPUT/$BASE"_1_fastqc.zip"

mv $TRIMGALORE_OUTPUT/$BASE"_2_val_2_fastqc.html" \

$TRIMGALORE_OUTPUT/$BASE"_2_fastqc.html"

mv $TRIMGALORE_OUTPUT/$BASE"_2_val_2_fastqc.zip" \

$TRIMGALORE_OUTPUT/$BASE"_2_fastqc.zip"

done

cd $RESOURCES_PATH/hs37d5

$BWA_PATH/bwa index hs37d5.fa

$SAMTOOLS_PATH/samtools faidx hs37d5.fa

ll
OPEN ACCESS

14 STAR Protocols 3, 101418, June 17, 2022

Protocol

5. Alignment to the reference genome.

After the index building is finished, the alignment process can be initiated for each FASTQ file.

CRITICAL: The downstream variant calling analysis requires read group information. Read

groups are added to each alignment resulting in a BAM file in order to separate different

individuals as well as samples resulting from different lanes and libraries. Read groups are

required as variant callers pool samples to estimate the models behind variant discovery.

Read groups (the RG tag) can be added during alignment with bwa using the -R option. The

following shell script can be used to accomplish the alignment and read group addition

procedure. Furthermore, as BAM files need further processing, the file extension of the

aligned files is .uns.

Preparation of BAM files

Timing: 3 h

$SAMTOOLS_PATH/samtools dict hs37d5.fa > hs37d5.dict

cd $CWD

#!/bin/bash

HOME_PATH=/home/user/analysis

Change the path below with the quality-controlled data directory

if trimming performed (see commented line below)

FASTQ_PATH=$HOME_PATH/fastq

#FASTQ_PATH=$HOME_PATH/fastq_qual

BAM_PATH=$HOME_PATH/bam

THREADS=24

BWA_INDEX=$RESOURCES_PATH/hs37d5/hs37d5.fa

if [-d $BAM_PATH]

then

mkdir -p $BAM_PATH

fi

for FILE in ‘ls $FASTQ_PATH/*_1.fastq.gz‘

do

BASE=‘basename $FILE | sed s/_1\.fastq\.gz//‘

F1=$FASTQ_PATH/$BASE"_1.fastq.gz"

F2=$FASTQ_PATH/$BASE"_2.fastq.gz"

RG="@RG\tID:"$BASE"\tSM:"$BASE"\tLB:WES\tPL:ILLUMINA"

$BWA_PATH/bwa mem -t $THREADS -R $RG $BWA_INDEX $F1 $F2 | \

$SAMTOOLS_PATH/samtools view -bS -o $BAM_PATH/$BASE".uns" -

done

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 15

Protocol

In this section we describe the steps taken to prepare the BAM files for the subsequent variant calling

and discovery. The output of this part comprises BAM files suitable for the subsequent variant call-

ing. The vast majority of variant callers require these preparation steps and the major steps taken (in

slightly different flavors according to the tools used to make them so) are the following:

6. Merging of BAM files from different lanes. This is an optional step according to the instrument

and sequencing protocol used (the files used in this protocol do not require this step).

7. Then, if the sequencing is paired-end:

a. Sort the reads in the BAM file according to their names so that pairs are placed one below the

other.

b. Fix mates so that they both have the same sets of attributes for the subsequent preprocessing.

c. Re-sort the reads according to their genomic coordinates this time.

d. Mark the duplicate reads as variant callers take this information into account.

8. If the sequencing is single-end:

a. Sort the reads according to their genomic coordinates.

b. Mark the duplicate reads as variant callers take this information into account.

In our case, we have paired-end sequencing, so we are following the first set of steps above.

9. Sort the reads in the BAM file according to their names so that pairs are placed one below the

other and fix read-mates so that they both have the same sets of attributes for the subsequent

preprocessing.

10. Re-sort the reads according to their genomic coordinates and mark the duplicate reads as

variant callers take this information into account.

#!/bin/bash

BAM_PATH=$HOME_PATH/bam

CORES=16

for FILE in ‘ls $BAM_PATH/*.uns‘

do

SAMPLE=‘basename $FILE | sed s/\.uns//‘

echo "Processing $SAMPLE"

$SAMTOOLS_PATH/samtools sort -n -@ $CORES -m 4G \

$BAM_PATH/$SAMPLE".uns" | \

$SAMTOOLS_PATH/samtools fixmate -m -

$BAM_PATH/$SAMPLE"_fixmate.bam"

done

rm $BAM_PATH/*.uns

#!/bin/bash

BAM_PATH=$HOME_PATH/bam

CORES=16

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

ll
OPEN ACCESS

16 STAR Protocols 3, 101418, June 17, 2022

Protocol

Collection of alignment statistics

Timing: 3 h 15 min

In this section, several statistics related the quality control of the alignment process are collected. At

the end of the process, a text file with statistics should be produced.

11. Collect alignment statistics for quality control.

a. Total sequenced reads.

b. Aligned reads.

c. Uniquely aligned reads (q>20).

d. Chimeric reads (for paired-end sequencing).

e. Reads overlapping targets.

f. Total sequenced bases.

g. Aligned bases.

h. Uniquely aligned bases.

i. Bases overlapping targets.

Furthermore, for paired-end sequencing, we collect:

j. Total sequenced read pairs.

k. Properly aligned read pairs.

l. Properly paired uniquely aligned reads.

The following shell script template can be used for this purpose:

echo "Processing $SAMPLE"

$SAMTOOLS_PATH/samtools sort -@ $CORES -m 4G \

$BAM_PATH/$SAMPLE"_fixmate.bam" | \

$SAMTOOLS_PATH/samtools markdup - $BAM_PATH/$SAMPLE".bam"

echo "Indexing $SAMPLE"

$SAMTOOLS_PATH/samtools index $BAM_PATH/$SAMPLE".bam"

done

#!/bin/bash

CAPTURE_KIT=$HOME_PATH/resources/panel/Agilent_SureSelect_All_Exon_V2.bed

BAM_PATH=$HOME_PATH/bam

REPORT=$HOME_PATH/reports/finalbamstats.txt

mkdir $HOME_PATH/reports

printf "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s\t%s\t%s\t%s\n" "name" \

"total reads" "total reads pairs" "aligned reads" \

"properly paired aligned pairs" "uniquely aligned reads (q>20)" \

"properly paired uniquely aligned reads" "chimeric reads" \

"reads overlapping targets" "total bases" "aligned bases" \

"uniquely aligned bases" "bases overlapping targets" > $REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 17

Protocol

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing $SAMPLE"

BAM=$BAM_PATH/$SAMPLE".bam"

printf "%s\t" $SAMPLE >> $REPORT

echo " total reads"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -F2048 $BAM‘ >> $REPORT

echo " total read pairs"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -F2048 $BAM | awk ’{print $1/2}’‘ \

>> $REPORT

echo " aligned reads"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -F2052 $BAM‘ >> $REPORT

echo " properly paired aligned pairs"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -f66 -F2048 $BAM‘ \

>> $REPORT

echo " uniquely aligned reads (q>20)"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -F2052 -q20 $BAM‘ >> \

$REPORT

echo " properly paired uniquely aligned reads"

printf "%d\t" ‘$SAMTOOLS_PATH/samtools view -c -f66 -F2048 -q20 $BAM‘ \

>> $REPORT

echo " chimeric reads"

printf "%d\t" ‘

$SAMTOOLS_PATH/samtools flagstat $BAM | \

perl -e ’my @in;’ \

-e ’while(<>) { chomp $_; push(@in,$_); }’ \

-e ’my @tmp = split("\\\+",pop(@in));’ \

-e ’$tmp[0] =� s/\s+$//;’ \

-e ’print STDOUT $tmp[0];’

‘ >> $REPORT

echo " reads overlapping targets"

printf "%d\t" ‘

$BEDTOOLS_PATH/bedtools intersect -a $CAPTURE_KIT -b $BAM -c | \

awk ’BEGIN {tot=0}{tot+=$4} END {print tot}’

‘ >> $REPORT

echo " total bases"

printf "%d\t" ‘

$SAMTOOLS_PATH/samtools view $BAM | cut -f10 | \

ll
OPEN ACCESS

18 STAR Protocols 3, 101418, June 17, 2022

Protocol

Note: This section describes the steps taken to collect some useful alignment statistics and

prepare the BAM files for the subsequent variant calling and discovery. The former may further

help identify poor quality samples that should not be used for variant calling. While such sam-

ples may have passed the QC process applied on raw data, it is possible that they may present

low alignment rates or low coverage over the target areas (exome capture kit), as for example

a result of possible contamination.

Signal visualization

Timing: 30 min

Another level of quality control aswell as supporting evidence for discovered variants is the actual inspec-

tion of the sequencing signal or coverage (i.e., the histogram created by the short reads pileup in a spe-

cific locus). This can be accomplished by uploading, opening or linking signal files created from BAM

files, to a genome browser such as the UCSCGenome Browser or the IGV (Robinson et al., 2011). Signal

tracks in BigWig format can be created using the following shell script as a template. In this case, we note

the addition of the ‘‘chr’’ short string before the chromosome names. This is required for viewing in the

UCSCGenomeBrowser. For other browsers such as IGV, this additiondepends on the referencegenome

loaded. The latter can be controlled in IGV but not in the UCSCGenomeBrowser. The output of this part

is BigWig files suitable for visualization in a genome browser.

awk ’BEGIN {tr=0}{tr+=length($0)} END {print tr}’

‘ >> $REPORT

echo " aligned bases"

printf "%d\t" ‘

$SAMTOOLS_PATH/samtools view -F2052 $BAM | cut -f10 | \

awk ’BEGIN {tr=0}{tr+=length($0)} END {print tr}’

‘ >> $REPORT

echo " uniquely aligned bases"

printf "%d\t" ‘

$SAMTOOLS_PATH/samtools view -F2052 -q20 $BAM | cut -f10 | \

awk ’BEGIN {tr=0}{tr+=length($0)} END {print tr}’

‘ >> $REPORT

echo " bases overlapping targets"

printf "%d\n" ‘

$BEDTOOLS_PATH/bedtools coverage -a $CAPTURE_KIT -b $BAM -d | \

awk ’BEGIN {tr=0} {tr+=$5} END {print tr}’

‘ >> $REPORT

done

#!/bin/bash

BAM_PATH=$HOME_PATH/bam

TRACKS_PATH=$HOME_PATH/tracks

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 19

Protocol

The produced BigWig files must then either be put in a directory served by a web browser such as

Apache in order to be viewed by a web-based genome browser (such as UCSC) or be opened

directly in a local genome browser such as IGV.

Variant calling with GATK HaplotypeCaller

Timing: 6 h

This section describes the variant calling procedure using GATK HaplotypeCaller and its output is a

VCF file with filtered variants after the application of basic filters. Each caller accepts the BAM files as

main inputs but in order to be as efficient as possible, different pre-calling procedures are required.

Examples of such procedures are:

Example 1: The GATKHaplotypeCaller requires a procedure called Base Quality Score Recalibration

(BQSR) in order for its underlying model to work as best as possible.

GENOME_SIZE=$BEDTOOLS_PATH/../genomes/human.hg19.genome

if [-d $TRACKS_PATH]

then

mkdir -p $TRACKS_PATH

fi

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing $SAMPLE"

$BEDTOOLS_PATH/bedtools genomecov -bg \

-ibam $BAM_PATH/$SAMPLE/$SAMPLE".bam" | \

grep -vP ’chrU|rand|hap|loc|cox|GL|NC|hs37d5’ | \

awk ’{print "chr"$1"\t"$2"\t"$3"\t"$4}’ | \

sed s/chrMT/chrM/g | \

sort -k1,1 -k2g,2 > $TRACKS_PATH/$SAMPLE".bedGraph" &

done

wait

for FILE in ‘ls $TRACKS_PATH/*.bedGraph‘

do

echo "Processing $FILE"

SAMPLE=‘basename $FILE | sed s/\.bedGraph//‘

$UCSCTOOLS_PATH/bedGraphToBigWig $FILE $GENOME_SIZE

$TRACKS_PATH/$SAMPLE".bigWig" &

done

wait

rm $TRACKS_PATH/*.bedGraph

ll
OPEN ACCESS

20 STAR Protocols 3, 101418, June 17, 2022

Protocol

Example 2: For parallel execution, HaplotypeCaller and FreeBayes require the splitting of the cap-

ture kit target genomic intervals so that the algorithm operates on different intervals in parallel. How-

ever, the capture kit should be split using different strategies for each caller.

Example 3: DeepVariant on the other hand does the splitting of the capture kit regions

automatically.

In addition, there is nowadays some debate on whether BQSR is needed prior to variant calling or

not, as this process was initially developed for older sequencers that produced poorer results

than modern ones. We choose to apply BQSR for protocol completeness purposes. More info on

the debate can be found in the official GATK community forums and other bioinformatics commu-

nities such as Biostars.

The calling process with GATK HaplotypeCaller has several steps and substeps. Below we outline

the process and provide template scripts.

12. Base Quality Score Recalibration and application on BAM files.

a. Split the capture kit to as many intervals as the cores we wish to use.

b. Calculate separate BQSR reports.

c. Gather these reports to a joint model.

d. Apply the model to existing BAM files.

e. Keep the original BAM files as they are required unchanged by the other variant callers.

The following shell script template can be used for BQSR:

#!/bin/bash

BAM_PATH=$HOME_PATH/bam

CAPTURE_KIT=$RESOURCES_PATH/panel/Agilent_SureSelect_All_Exon_V2.bed

INTERVAL_LIST_PATH=$HOME_PATH/resources/interval_scatter

BWA_INDEX=$RESOURCES_PATH/hs37d5/hs37d5.fa

DBSNP=$RESOURCES_PATH/dbSNP151.vcf

GNOMAD=$RESOURCES_PATH/gnomad.exomes.r2.1.1.sites.vcf.bgz

CORES=16

PADDING=50

Process dbSNP

$HTSLIB_PATH/bgzip $DBSNP

$HTSLIB_PATH/tabix $DBSNP’’.gz’’

DBSNP=$RESOURCES_PATH/dbSNP151.vcf.gz

mkdir -p $HOME_PATH/reports

META_REPORT=$HOME_PATH/reports/bsqr_current.log

echo "=== Splitting intervals" > $META_REPORT

if [-d $INTERVAL_LIST_PATH]

then

echo " Cleaning previous intervals" >> $META_REPORT

rm -r $INTERVAL_LIST_PATH

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 21

Protocol

fi

mkdir -p $INTERVAL_LIST_PATH

Firstly split exome intervals for parallel BSQR

$GATK_PATH/gatk SplitIntervals \

--reference $BWA_INDEX \

--intervals $CAPTURE_KIT \

--interval-padding $PADDING \

--scatter-count $CORES \

--output $INTERVAL_LIST_PATH \

--QUIET

echo "=== Calculating BQSR tables" >> $META_REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing $SAMPLE" >> $META_REPORT

BAM=$BAM_PATH/$SAMPLE/$SAMPLE".bam"

mkdir -p $BAM_PATH/$SAMPLE

BQSR_PART_OUT=$BAM_PATH/$SAMPLE/bqsr_parts

if [-d $BQSR_PART_OUT]

then

echo " Cleaning previous tables" >> $META_REPORT

rm -r $BQSR_PART_OUT

fi

mkdir -p $BQSR_PART_OUT

Calculate BQSR over intervals

for INTERVAL in ‘readlink -f $INTERVAL_LIST_PATH/*‘

do

BQSR_NAME=‘basename $INTERVAL | sed s/\-scattered\.interval_list//‘

echo " Processing $BQSR_NAME" >> $META_REPORT

$GATK_PATH/gatk BaseRecalibrator \

--input $BAM \

--reference $BWA_INDEX \

--output $BQSR_PART_OUT/$BQSR_NAME".tab" \

--known-sites $DBSNP \

--known-sites $GNOMAD \

--intervals $INTERVAL \

--interval-padding $PADDING \

--QUIET &

ll
OPEN ACCESS

22 STAR Protocols 3, 101418, June 17, 2022

Protocol

done

Wait for individuals to complete before moving to the next thread

wait

done

echo "=== Gathering BQSR reports" >> $META_REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing reports for $SAMPLE" >> $META_REPORT

BQSR_PART_OUT=$BAM_PATH/$SAMPLE/bqsr_parts

for TAB in ‘readlink -f $BQSR_PART_OUT/*‘

do

echo "--input $TAB" >> $BAM_PATH/$SAMPLE/gather_bqsr.arg

done

Gather reports

$GATK_PATH/gatk GatherBQSRReports \

--arguments_file $BAM_PATH/$SAMPLE/gather_bqsr.arg \

--output $BAM_PATH/$SAMPLE/bqsr.tab \

--QUIET &

done

Wait for BQSR tables to be merged for each sample

wait

echo "=== Applying BQSR to BAM files" >> $META_REPORT

for FILE in ‘ls $BAM_PATH‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing BAM file $SAMPLE" >> $META_REPORT

BAM=$BAM_PATH/$SAMPLE/$SAMPLE".bam"

BQSR_TABLE=$BAM_PATH/$SAMPLE/bqsr.tab

Apply BQSR to BAM files

$GATK_PATH/gatk ApplyBQSR \

--input $BAM \

--reference $BWA_INDEX \

--bqsr-recal-file $BQSR_TABLE \

--output $BAM_PATH/$SAMPLE/$SAMPLE"_bqsr.bam" \

--QUIET &

done

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 23

Protocol

Note: BQSR is a relatively lengthy process and can be executed in parallel if we split the cap-

ture kit genomic regions. The GATK toolkit has tools for this. The main inputs for BQSR in

exome sequencing are, the exome capture kit, the reference genome and a list of known

variant locations (e.g., dbSNP, gnomAD) used to provide the algorithm with a list of ground

truth sites used to recalibrate scores.

After the BQSR process, we are ready to proceed with variant calling for each sample separately.

Although there are many alternatives to run exome analysis with HaplotypeCaller in an efficient

way (e.g., parallelization of capture intervals or running each sample on the background or even us-

ing GNU parallel), we propose the following sub-protocol (‘‘intervals’’ are the capture kit genomic

intervals created during the BQSR process).

13. Base Quality Score Recalibration and application on BAM files.

a. For each sample.

i. For each genomic interval use GATKHaplotypeCaller to create a gVCF callset file. The files

for each interval are written in a sample-specific directory.

b. For each sample.

i. Loop through created gVCFs and create a list file.

ii. Merge gVCFs by placing one below the other and create one unique gVCF file.

iii. For each sample, sort the consolidated gVCF using GATK SortVcf.

c. Create a list file for input to GATK GenotypeGVCFs.

d. Call GATK GenotypeGVCFs to create the final callset in VCF format.

e. Using bcftools.

f. Apply the GATK best hard filtering practices for SNPs and create a filtered SNP VCF.

i. Apply the GATK best hard filtering practices for INDELs and create a filtered INDEL VCF

while at the same time normalizing the INDELs.

ii. With the SNP and INDEL filtered VCFs, use GATK MergeVcfs to merge the separate

filtered VCF files.

g. Cleanup.

CRITICAL: At this point and with respect to step 2e above, it should be noted that the best

filtering practices suggested by the GATK community comprise only basic variant filters in

order to reduce noise. As with the rest of the variant callers, more elaborate filtering should

follow, which is not generic as these filters but it is application dependent. For example, a

user investigating rare disease should look for damaging variants (e.g., frameshift,

splicing, missense) after variant annotation while a user interested in conducting a popula-

tion study with many samples should focus on filtering variants with low frequencies as

those would not characterize a population cohort. Finally, under different clinical settings,

a user would possibly combine various filters, for example restrict damaging variants to

certain virtual gene panels of interest.

The suggested hard filters by the GATK community for multiple samples are:

For SNPs: QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5, ReadPosRankSum < -8.0.

For Indels: QD < 2.0, ReadPosRankSum < -20.0, InbreedingCoeff < -0.8, FS > 200.0, SOR > 10.0.

Wait for new BAM files to be created before reporting finished

wait

echo "=== Finished!" >> $META_REPORT

ll
OPEN ACCESS

24 STAR Protocols 3, 101418, June 17, 2022

Protocol

Summaries for all steps (including background processes) are recorded in a ‘‘report’’ file for general

supervision. The following shell script template can be used to run the above steps:

#!/bin/bash

export VCF_PATH=$HOME_PATH/vcf

BAM_PATH=$HOME_PATH/bam

INTERVAL_LIST_PATH=$RESOURCES_PATH/panel/interval_scatter

BWA_INDEX=$RESOURCES_PATH/hs37d5/hs37d5.fa

CORES=16

PADDING=50

META_REPORT=$HOME_PATH/reports/haca_current.log

echo "=== Calling variants" > $META_REPORT

for SAMPLE in ‘ls $BAM_PATH‘

do

echo "Processing $SAMPLE" >> $META_REPORT

BAM=$BAM_PATH/$SAMPLE/$SAMPLE"_bqsr.bam"

GVCF_PART_OUT=$BAM_PATH/$SAMPLE/gvcf_parts

if [-d $GVCF_PART_OUT]

then

echo " Cleaning previous gVCFs" >> $META_REPORT

rm -r $GVCF_PART_OUT

fi

mkdir -p $GVCF_PART_OUT

Call variants over intervals

for INTERVAL in ‘readlink -f $INTERVAL_LIST_PATH/*‘

do

GVCF_NAME=‘basename $INTERVAL | sed s/\-scattered\.interval_list//‘

echo " Processing $GVCF_NAME" >> $META_REPORT

$GATK_PATH/gatk HaplotypeCaller \

--input $BAM \

--reference $BWA_INDEX \

--intervals $INTERVAL \

--interval-padding $PADDING \

--output $GVCF_PART_OUT/$GVCF_NAME".g.vcf" \

--emit-ref-confidence GVCF \

--create-output-variant-index false \

--QUIET &

done

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 25

Protocol

Wait for individuals to complete before moving to the next thread

wait

done

Then GVCFs must be consolidated

echo "=== Merging gVCFs" >> $META_REPORT

for SAMPLE in ‘ls $BAM_PATH‘

do

echo "Processing interval gVCFs for $SAMPLE"

GVCF_PART_OUT=$BAM_PATH/$SAMPLE/gvcf_parts

if [-f $BAM_PATH/$SAMPLE/interval_gvcfs.txt]

then

echo " Cleaning previous gVCFs input file" >> $META_REPORT

rm $BAM_PATH/$SAMPLE/interval_gvcfs.txt

fi

for GVCF in ‘readlink -f $GVCF_PART_OUT/*.g.vcf‘

do

echo "$GVCF" >> $BAM_PATH/$SAMPLE/interval_gvcfs.txt

done

Get the gVCF header and strip the GATK command

GVFH=‘readlink -f $GVCF_PART_OUT/*.g.vcf | head -1‘

grep "^#" $GVFH | grep -v "^##GATKCommand" > $BAM_PATH/$SAMPLE/gvcf.header

Cat the gVCFs

for GVCF in ‘readlink -f $GVCF_PART_OUT/*.g.vcf‘

do

echo " Concatenating $GVCF"

#echo " Concatenating $GVCF" >> $META_REPORT

grep -v "^#" $GVCF >> $BAM_PATH/$SAMPLE/gvcf.tmp

done

Place the header

echo " Creating final gVCF"

#echo " Creating final gVCF" >> $META_REPORT

cat $BAM_PATH/$SAMPLE/gvcf.header $BAM_PATH/$SAMPLE/gvcf.tmp > \

$BAM_PATH/$SAMPLE/$SAMPLE".u.g.vcf"

rm $BAM_PATH/$SAMPLE/gvcf.tmp $BAM_PATH/$SAMPLE/gvcf.header

done

Sort gVCFs

echo "=== Sorting gVCFs" >> $META_REPORT

for SAMPLE in ‘ls $BAM_PATH‘

ll
OPEN ACCESS

26 STAR Protocols 3, 101418, June 17, 2022

Protocol

do

echo "Sorting gVCF for $SAMPLE" >> $META_REPORT

$GATK_PATH/gatk SortVcf \

--INPUT $BAM_PATH/$SAMPLE/$SAMPLE".u.g.vcf" \

--OUTPUT $BAM_PATH/$SAMPLE/$SAMPLE".g.vcf.gz" \

--QUIET &

done

Wait for sorting to finish before cleaning unsorted

wait

Some cleanup

echo "=== Deleting unsorted gVCFs" >> $META_REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Deleting unsorted gVCF for $SAMPLE" >> $META_REPORT

rm $BAM_PATH/$SAMPLE/$SAMPLE".u.g.vcf"

echo "Compression gVCF parts for $SAMPLE" >> $META_REPORT

pigz $BAM_PATH/$SAMPLE/gvcf_parts/*

echo "Compression BQSR reports for $SAMPLE" >> $META_REPORT

pigz $BAM_PATH/$SAMPLE/bqsr_parts/*

done

Gather VCFs

echo "=== Combining sorted population gVCFs" >> $META_REPORT

if [! -d $VCF_PATH]

then

mkdir $VCF_PATH

fi

Delete the .arg file as it will get multiple entries

if [-f $VCF_PATH/combine_gvcf.arg]

then

rm $VCF_PATH/combine_gvcf.arg

fi

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

GVCF=‘readlink -f $BAM_PATH/$SAMPLE/$SAMPLE".g.vcf.gz"‘

echo "--variant $GVCF" >> $VCF_PATH/combine_gvcf.arg

done

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 27

Protocol

Combine gVCFs

$GATK_PATH/gatk CombineGVCFs \

--reference $BWA_INDEX \

--arguments_file $VCF_PATH/combine_gvcf.arg \

--output $VCF_PATH/haplotypecaller_full.g.vcf.gz

Genotype VCFs

echo "=== Genotyping gVCFs" >> $META_REPORT

$GATK_PATH/gatk GenotypeGVCFs \

--reference $BWA_INDEX \

--variant $VCF_PATH/haplotypecaller_full.g.vcf.gz \

--output $VCF_PATH/haplotypecaller_full.vcf.gz

Apply basic GATK hard filters

echo "=== Applying GATK hard filters" >> $META_REPORT

$BCFTOOLS_PATH/bcftools view \

--include ’QUAL>20 & INFO/QD>2 & INFO/MQ>40 & INFO/FS<60 & INFO/SOR<3

& INFO/MQRankSum>-12.5 & INFO/ReadPosRankSum>-8 & TYPE="snp"’ \

--output-type z \

--output-file $VCF_PATH/haplotypecaller_filtered_snp.vcf.gz \

$VCF_PATH/haplotypecaller_full.vcf.gz &

The normalization step is potentially not required but it is harmless

$BCFTOOLS_PATH/bcftools view \

--include ’QUAL>20 & INFO/QD>2 & INFO/ReadPosRankSum>-20 & INFO/InbreedingCoeff>-0.8 &

INFO/FS<200 & INFO/SOR<10 & TYPE�"indel"’ \

$VCF_PATH/haplotypecaller_full.vcf.gz | \

$BCFTOOLS_PATH/bcftools norm \

--fasta-ref $BWA_INDEX \

--output-type z \

--output $VCF_PATH/haplotypecaller_filtered_norm_indel.vcf.gz &

wait

echo "=== Merging GATK filtered SNPs and INDELs" >> $META_REPORT

$GATK_PATH/gatk MergeVcfs \

--INPUT $VCF_PATH/haplotypecaller_filtered_snp.vcf.gz \

--INPUT $VCF_PATH/haplotypecaller_filtered_norm_indel.vcf.gz \

--OUTPUT $VCF_PATH/haplotypecaller_filtered_norm.vcf.gz \

--QUIET

rm $VCF_PATH/haplotypecaller_filtered_snp.vcf.gz \

$VCF_PATH/haplotypecaller_filtered_norm_indel.vcf.gz

ll
OPEN ACCESS

28 STAR Protocols 3, 101418, June 17, 2022

Protocol

Variant calling with FreeBayes

Timing: 5 h

This section presents the variant calling and filtering steps with FreeBayes. Its output is a VCF file with

filtered (basic filters) variants called with FreeBayes.

In comparison with GATK HaplotypeCaller, the model behind FreeBayes does not require BQSR

(therefore it is faster), requires all samples processed altogether and at once in the same command

(using read groups and the RG tag to distinguish them) and does not operate directly on

HaplotypeCaller genomic intervals. These have to be recalculated and reformatted to the BED

format for FreeBayes parallelization.

Although there are many alternatives to run exome analysis with FreeBayes in an efficient way (e.g.,

parallelization of exome kit capture intervals or running each sample on the background or even us-

ing GNU parallel), we propose the following protocol (‘‘intervals’’ are the capture kit genomic inter-

vals recreated with GATK SplitIntervals for FreeBayes):

14. Rerun GATK SplitIntervals to create FreeBayes specific intervals for parallelization.

15. Create a list file with the individual interval filenames.

16. Create a list file with the individual BAM filenames.

17. For each interval, run FreeBayes jointly for all samples to create a VCF file for that interval.

18. Merge the produced multi-sample VCFs for each interval into one multi-sample VCF file using

vcflib.

19. Using bcftools and R, determine upper quality (QUAL) and depth (DP) cutoffs based on the

respective distributions (assuming initial QUAL>20).

20. Using bcftools apply the filters of (6).

21. Using vcflib decompose the complex variants.

22. Using bcftools normalize INDELs and produce the final VCF.

23. Cleanup the computation environment.

Summaries for all steps (including background processes) are recorded in a ‘‘report’’ file for general

supervision. The following shell script template can be used to run the above protocol:

#echo "=== Finished!"

echo "=== Finished!" >> $META_REPORT

#!/bin/bash

export VCF_PATH=$HOME_PATH/vcf

BAM_PATH=$HOME_PATH/bam

CAPTURE_KIT=$RESOURCES_PATH/panel/Agilent_SureSelect_All_Exon_V2.bed

INTERVAL_LIST_PATH=$RESOURCES_PATH/resources/interval_scatter_bed

BWA_INDEX=$RESOURCES_PATH/hs37d5/hs37d5.fa

CORES=32

PADDING=50

META_REPORT=$HOME_PATH/reports/freebayes_current.log

echo "=== Splitting intervals" > $META_REPORT

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 29

Protocol

if [-d $INTERVAL_LIST_PATH]

then

echo " Cleaning previous intervals" >> $META_REPORT

rm -r $INTERVAL_LIST_PATH

fi

mkdir -p $INTERVAL_LIST_PATH

Firstly split exome intervals for parallel freebayes

$GATK_PATH/gatk SplitIntervals \

--reference $BWA_INDEX \

--intervals $CAPTURE_KIT \

--interval-padding $PADDING \

--scatter-count $CORES \

--extension .pre \

--output $INTERVAL_LIST_PATH \

--QUIET

echo "=== Converting intervals" >> $META_REPORT

for INTERVAL in ‘ls $INTERVAL_LIST_PATH‘

do

BED=‘basename $INTERVAL | sed s/\.pre//‘

INTERVAL_FILE=$INTERVAL_LIST_PATH/$INTERVAL

grep -vP "^@" $INTERVAL_FILE | awk ’{print $1"\t"$2"\t"$3}’ > \

$INTERVAL_LIST_PATH/$BED".bed" &

done

Wait and clear intermediate intervals

wait

rm $INTERVAL_LIST_PATH/*.pre

Prepare BAM file list for freebayes

echo "=== Preparing BAM file list" >> $META_REPORT

BAMLIST=/media/raid/tmp/tmp/medex/scripts/bamlist.txt

if [-f $BAMLIST]

then

rm $BAMLIST

fi

for FILE in ‘ls $BAM_PATH/*_fixmate\.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

BAM=$BAM_PATH/$SAMPLE/$SAMPLE".bam"

echo "$BAM" >> $BAMLIST

ll
OPEN ACCESS

30 STAR Protocols 3, 101418, June 17, 2022

Protocol

done

echo "=== Calling variants with FreeBayes" >> $META_REPORT

if [-d $VCF_PATH/fb_parts]

then

rm -r $VCF_PATH/fb_parts

fi

mkdir -p $VCF_PATH/fb_parts

for TARGET in ‘ls $INTERVAL_LIST_PATH‘

do

NAME=‘basename $TARGET | sed s/\.bed//‘

echo "Processing interval list $NAME" >> $META_REPORT

INTERVAL=$INTERVAL_LIST_PATH/$TARGET

$FREEBAYES_PATH/freebayes \

--fasta-reference $BWA_INDEX \

--bam-list $BAMLIST \

--targets $INTERVAL \

--vcf $VCF_PATH/fb_parts/$NAME".vcf" &

done

Wait before gathering the results

wait

echo "=== Merging VCFs" >> $META_REPORT

cat $VCF_PATH/*.vcf | \

$VCFLIB_PATH/scripts/vcffirstheader | \

$VCFLIB_PATH/bin/vcfstreamsort -w 1000 | \

$VCFLIB_PATH/bin/vcfuniq > \

$VCF_PATH/all_samples_freebayes.vcf

echo "=== Compressing and indexing final VCF" >> $META_REPORT

$HTSLIB_PATH/bgzip $VCF_PATH/freebayes_full.vcf

$HTSLIB_PATH/tabix $VCF_PATH/freebayes_full.vcf.gz

Basic filtering before decomposing and normalization

Determine a quality and depth cutoff pre-filter based on 99th percentile of

the respective distributions

echo "=== Determining QUAL and DP hard pre-filters" >> $META_REPORT

$BCFTOOLS_PATH/bcftools query \

--include ’QUAL>20’ \

--format ’%QUAL\n’ $VCF_PATH/freebayes_full.vcf.gz > quals.tmp &

$BCFTOOLS_PATH/bcftools query \

--include ’QUAL>20’ \

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 31

Protocol

Variant calling with DeepVariant

Timing: 1 h

The model behind DeepVariant is similar to FreeBayes regarding BQSR, therefore not needing it.

DeepVariant requires the RG tag (read groups) and splits the capture kit in BED format. The splitting

is done internally, so no manual split required from the user for parallelization based on the capture

kit genomic intervals. The output of this part is a VCF file with filtered variants called with

DeepVariant. Based on DeepVariant authors, we propose the following protocol:

24. For each sample run DeepVariant and create a gVCF and a VCF file.

25. Create a list file with gVCF outputs of DeepVariant for input to DNA Nexus GLnexus.

26. Run GLnexus on the DeepVariant gVCFs to consolidate the gVCFs into one final population

VCF file.

--format ’%INFO/DP\n’ $VCF_PATH/freebayes_full.vcf.gz | \

awk -F "," ’{print $1}’ > $VCF_PATH/dps.tmp &

wait

Rscript -e ’

vp <- Sys.getenv("VCF_PATH")

dps <- as.numeric(readLines(file.path(vp,"dps.tmp")));

quals <- as.numeric(readLines(file.path(vp,"quals.tmp")));

qudp <- unname(round(quantile(dps,0.99)));

ququ <- unname(quantile(quals,0.99));

write(qudp,file.path(vp,"dpt.tmp"));

write(ququ,file.path(vp,"qut.tmp"));

’

QUALUP=‘cat $VCF_PATH/qut.tmp‘

DPUP=‘cat $VCF_PATH/dpt.tmp‘

rm $VCF_PATH/qut.tmp $VCF_PATH/dpt.tmp $VCF_PATH/dps.tmp $VCF_PATH/quals.tmp

Apply the filters, decompose complex variants and normalize

echo "=== Applying filters and normalizing" >> $META_REPORT

$BCFTOOLS_PATH/bcftools view \

--include ’QUAL>20 & INFO/DP>10 & QUAL<’$QUALUP’ & INFO/DP<’$DPUP’ &

(QUAL/(INFO/DP))>2’ $VCF_PATH/freebayes_full.vcf.gz | \

$VCFLIB_PATH/bin/vcfallelicprimitives -kg | \

$BCFTOOLS_PATH/bcftools norm \

--fasta-ref $BWA_INDEX \

--output-type z \

--output $VCF_PATH/freebayes_filtered_norm.vcf.gz

$HTSLIB_PATH/tabix $VCF_PATH/freebayes_filtered_norm.vcf.gz

echo "=== Finished!" >> $META_REPORT

ll
OPEN ACCESS

32 STAR Protocols 3, 101418, June 17, 2022

Protocol

27. Using bcftools filter the variants with QUAL<20 and normalize.

The DeepVariant pipeline is pretty well-defined and quite automated, leaving few steps for the user

which essentially come down to variant filtering (which again is not complex). Summaries for all steps

(including background processes) are recorded in a ‘‘report’’ file for general supervision. The

following shell script template can be used to run the above protocol:

#!/bin/bash

export VCF_PATH=$HOME_PATH/vcf

BAM_PATH=$HOME_PATH/bam

CAPTURE_KIT_DIR=$RESOURCES_PATH/resources/panel

CAPTURE_KIT=$RESOURCES_PATH/panel/Agilent_SureSelect_All_Exon_V2.bed

DV_VERSION=0.9.0

BWA_INDEX_DIR=$RESOURCES_PATH/hs37d5

BWA_INDEX=$RESOURCES_PATH/hs37d5/hs37d5.fa

CORES=32

META_REPORT=$HOME_PATH/reports/deepvariant_current.log

echo "=== Calling variants" > $META_REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

echo "Processing $SAMPLE" >> $META_REPORT

BAM=$BAM_PATH/$SAMPLE".bam"

docker run \

-v "$BAM_PATH":"/data" \

-v "$BWA_INDEX_DIR":"/reference" \

-v "$CAPTURE_KIT_DIR":"/capture_kit" \

google/deepvariant:$DV_VERSION \

/opt/deepvariant/bin/run_deepvariant \

--model_type=WES \

--ref="/reference/hs37d5.fa" \

--reads="/data/$SAMPLE.bam" \

--regions="/capture_kit/Agilent_SureSelect_All_Exon_V2.bed" \

--output_vcf="/data/$SAMPLE/$SAMPLE’_DV.vcf’" \

--output_gvcf="/data/$SAMPLE/$SAMPLE’_DV.g.vcf’" \

--num_shards=$CORES

done

echo "=== Creating list of gVCF files" >> $META_REPORT

for FILE in ‘ls $BAM_PATH/*_fixmate.bam‘

do

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 33

Protocol

Variant annotation

Timing: 9 h 30 min

In this section the output of each variant caller is annotated with additional elements such as variant

impacts and frequencies of known variants in major population studies. The output of this part is one

annotated VCF file for each variant caller.

28. Using SnpEff and SnpSift, annotate the findings with basic information including:

a. Genomic location (gene, exon, etc.).

b. Impact prediction based on the Sequence Ontology and the Sequence Variant

Nomenclature.

c. Known variant IDs from dbSNP.

d. Various pathogenicity prediction scores and other SNP metrics from dbNSFP.

e. Population study variant frequencies from gnomAD.

CRITICAL: It is assumed that the required resources for SnpEff and SnpSift are in place (see

also the ‘‘before you begin’’ section). Prior to using SnpEff and SnpSift, a SnpEff database

for our genome of interest must be downloaded (see script below).

The following shell script template can be used for annotation of the final (filtered) outputs from each

variant caller:

SAMPLE=‘basename $FILE | sed s/_fixmate\.bam//‘

GVCF=‘readlink -f $BAM_PATH/$SAMPLE/$SAMPLE"_DV.g.vcf"‘

echo "$GVCF" >> $VCF_PATH/deepvariant_gvcf_list.txt

done

echo "=== Gathering gVCFs" >> $META_REPORT

rm -r GLnexus.DB

$GLNEXUS_PATH/glnexus_cli \

--config DeepVariantWES \

--bed $CAPTURE_KIT \

--list $VCF_PATH/deepvariant_gvcf_list.txt \

--threads $CORES | \

$BCFTOOLS_PATH/bcftools view --include ’QUAL>=20’ - | \

$BCFTOOLS_PATH/bcftools norm \

--fasta-ref $BWA_INDEX \

--output-type z \

--output $VCF_PATH/deepvariant_filtered_norm.vcf.gz

$HTSLIB_PATH/tabix $VCF_PATH/deepvariant_filtered_norm.vcf.gz

echo "=== Finished!" >> $META_REPORT

#!/bin/bash

export VCF_PATH=$HOME_PATH/vcf

DBSNP_FILE=$RESOURCES_PATH/dbSNP/dbSNP151.vcf.gz

ll
OPEN ACCESS

34 STAR Protocols 3, 101418, June 17, 2022

Protocol

http://www.sequenceontology.org/
https://varnomen.hgvs.org/
https://varnomen.hgvs.org/

DBNSFP_FILE=$RESOURCES_PATH/dbNSFP/dbNSFP2.9.3.txt.gz

GNOMAD_FILE=$RESOURCES_PATH/gnomAD/gnomad.exomes.r2.1.1.sites.vcf.bgz

if [! -d $SNPEFF_PATH/data]

then

java -jar $SNPEFF_PATH/snpEff.jar download GRCh37.75

fi

Haplotype Caller

Variant effect annotation

java -Xmx4096m -jar $SNPEFF_PATH/snpEff.jar ann \

-v -noLog -noStats -noLof GRCh37.75 \

$VCF_PATH/haplotypecaller_filtered_norm.vcf.gz >

$VCF_PATH/haplotypecaller_filtered_norm_eff.vcf

$HTSLIB_PATH/bgzip $VCF_PATH/haplotypecaller_filtered_norm_eff.vcf

$HTSLIB_PATH/tabix $VCF_PATH/haplotypecaller_filtered_norm_eff.vcf.gz

Annotation with dbSNP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v -id $DBSNP_FILE \

$VCF_PATH/haplotypecaller_filtered_norm_eff.vcf.gz >

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf

$HTSLIB_PATH/bgzip

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf.gz

$HTSLIB_PATH/tabix $VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf.gz

Annotation with dbNSFP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar dbnsfp \

-v -m -db $DBNSFP_FILE \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf.gz >

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf

$HTSLIB_PATH/bgzip $VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf

$HTSLIB_PATH/tabix

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

Annotation with gnomAD

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v $GNOMAD_FILE \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz >

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf

$HTSLIB_PATH/bgzip

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 35

Protocol

$HTSLIB_PATH/tabix $VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp_gnomad.

vcf.gz

FreeBayes

Variant effect annotation

java -Xmx4096m -jar $SNPEFF_PATH/snpEff.jar ann \

-v -noLog -noStats -noLof GRCh37.75 \

$VCF_PATH/freebayes_filtered_norm.vcf.gz > $VCF_PATH/freebayes_filtered_norm_eff.vcf

$HTSLIB_PATH/bgzip $VCF_PATH/freebayes_filtered_norm_eff.vcf

$HTSLIB_PATH/tabix \

$VCF_PATH/freebayes_filtered_norm_eff.vcf.gz

Annotation with dbSNP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v -id $DBSNP_FILE \

$VCF_PATH/freebayes_filtered_norm_eff.vcf.gz > $VCF_PATH/freebayes_filtered_norm_eff_

dbsnp.vcf

$HTSLIB_PATH/bgzip\

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp.vcf.gz

$HTSLIB_PATH/tabix \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp.vcf.gz

Annotation with dbNSFP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar dbnsfp \

-v -m -db $DBNSFP_FILE \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp.vcf.gz >

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf

$HTSLIB_PATH/bgzip\

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf \

$HTSLIB_PATH/tabix \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

Annotation with gnomAD

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v $GNOMAD_FILE \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz >

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf

$HTSLIB_PATH/bgzip\

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf

$HTSLIB_PATH/tabix \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf.gz

Deep Variant

ll
OPEN ACCESS

36 STAR Protocols 3, 101418, June 17, 2022

Protocol

Variant effect annotation

java -Xmx4096m -jar $SNPEFF_PATH/snpEff.jar ann \

-v -noLog -noStats -noLof GRCh37.75 \

$VCF_PATH/deepvariant_filtered_norm.vcf.gz >

$VCF_PATH/deepvariant_filtered_norm_eff.vcf.gz

$HTSLIB_PATH/bgzip \

$VCF_PATH/deepvariant_filtered_norm_eff.vcf

$HTSLIB_PATH/tabix \

$VCF_PATH/deepvariant_filtered_norm_eff.vcf.gz

Annotation with dbSNP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v -id $DBSNP_FILE \

$VCF_PATH/deepvariant_filtered_norm_eff.vcf.gz >

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf

$HTSLIB_PATH/bgzip\

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf

$HTSLIB_PATH/tabix \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf.gz

Annotation with dbNSFP

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar dbnsfp \

-v -m -db $DBNSFP_FILE \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf.gz >

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf

$HTSLIB_PATH/bgzip\

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

$HTSLIB_PATH/tabix \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

Annotation with gnomAD

java -Xmx4096m -jar $SNPEFF_PATH/SnpSift.jar annotate \

-v $GNOMAD_FILE \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz >

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf.gz

$HTSLIB_PATH/bgzip\

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf

$HTSLIB_PATH/tabix \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp_gnomad.vcf.gz

Remove intermediate files

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 37

Protocol

Variant callset consolidation

Timing: 20 min

In this section, we consolidate the variant calls from the three different callers. The output consists of

several VCF files with unique and combined annotated variants for each caller as well as common

variants between all callers and between pairs of callers. The output also contains the genotypes re-

turned by each caller.

29. Consolidate variant calls using bcftools.

rm $VCF_PATH/haplotypecaller_filtered_norm_eff.vcf.gz \

$VCF_PATH/haplotypecaller_filtered_norm_eff.vcf.gz.tbi \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf.gz \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp.vcf.gz.tbi \

$VCF_PATH/freebayes_filtered_norm_eff.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff.vcf.gz.tbi \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp.vcf.gz.tbi \

$VCF_PATH/deepvariant_filtered_norm_eff.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff.vcf.gz.tbi \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp.vcf.gz.tbi

#!/bin/bash

export VCF_PATH=$HOME_PATH/vcf

1

$BCFTOOLS_PATH/bcftools isec \

–prefix 1 \

--output-type z \

--nfiles �100 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA1=‘cat ./1/sites.txt | wc -l‘

echo $AREA1

2

$BCFTOOLS_PATH/bcftools isec \

--prefix 2 \

ll
OPEN ACCESS

38 STAR Protocols 3, 101418, June 17, 2022

Protocol

--output-type z \

--nfiles �010 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA2=‘cat ./2/sites.txt | wc -l‘

echo $AREA2

3

$BCFTOOLS_PATH/bcftools isec \

--prefix 3 \

--output-type z \

--nfiles �001 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA3=‘cat ./3/sites.txt | wc -l‘

echo $AREA3

4

$BCFTOOLS_PATH/bcftools isec \

--prefix 4 \

--output-type z \

--nfiles �110 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA4=‘cat ./4/sites.txt | wc -l‘

echo $AREA4

5

$BCFTOOLS_PATH/bcftools isec \

--prefix 5 \

--output-type z \

--nfiles �011 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 39

Protocol

Note: A challenging issue when using variant callers is how to summarize and consolidate

different DNA variant callsets from different callers into one summarized result. Major chal-

lenges for consolidation include the decision on which of the reported variant call metrics re-

ported in VCF file(s) from each caller will be included in the final callset (e.g., which QUAL,

which DP etc.) and the level at which the variants from different callers should be considered

identical or nearly identical. Regarding the latter, two common questions are should they be

considered identical if they share the same genomic coordinates or start position, or, should

they be considered identical if they share both positions and alleles?

Fortunately, bcftools offer functions to experiment with the many options that exist to consolidate

the callsets. We have chosen to intersect the callsets and consider the overlapping variants identical

if they share both genomic position and alleles. We perform the various intersections using bcftools

and for each intersection we perform three operations in order to retain all the metrics for each caller

but on the intersected (shared) variants. From the produced callsets, the most interesting one

to begin the exploration should be the #7 which corresponds to the common variants between all

the three callers we have used.

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA5=‘cat ./5/sites.txt | wc -l‘

echo $AREA5

6

$BCFTOOLS_PATH/bcftools isec \

--prefix 6 \

--output-type z \

--nfiles �101 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA6=‘cat ./6/sites.txt | wc -l‘

echo $AREA6

7

$BCFTOOLS_PATH/bcftools isec \

--prefix 7 \

--output-type z \

--nfiles �111 \

--collapse none \

$VCF_PATH/haplotypecaller_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/freebayes_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz \

$VCF_PATH/deepvariant_filtered_norm_eff_dbsnp_dbnsfp.vcf.gz

AREA7=‘cat ./7/sites.txt | wc -l‘

echo $AREA7

ll
OPEN ACCESS

40 STAR Protocols 3, 101418, June 17, 2022

Protocol

Visualization and further post-processing

Timing: 1 h

As with most high-throughput techniques, the final processed data cannot be fully denoised, and

some false positives and artifacts are always to be expected. One popular way of further assessing

the quality of the produced data is visualization. In this section we describe how the variant callsets

can be visualized in two ways. Firstly, by simultaneous loading and visualization of the results (VCF

files) and raw data (BAM files) in a genome browser such as IGV and secondly, with a Venn diagram to

qualitatively visualize overlaps between callsets. In addition, we briefly discuss the need for addi-

tional filtering steps according to the application of the WES experiment, for example clinical set-

tings or population studies.

This protocol step comprises two substeps:

30. Generation of a Venn diagram to depict common and unique variants across the three callsets.

A 3-way Venn diagram contains seven areas (Figure 1A). Each area is numbered according to

the number in the comment section directly above each $BCFTOOLS_PATH/bcftools isecin

the commands presented in step 7. For example, the number of variants in area 1, is given by the

$BCFTOOLS_PATH/bcftools isec command below the line containing #1. By using the outcome

of echoing variable X in the same command-line set, the user can fill the numbers required for the

completion of the Venn diagram (Figure 1B).

31. Visualization of the callsets in the IGV genome browser.

At the end of parts ‘‘preparation of BAM files’’, ‘‘signal visualization’’, ‘‘variant calling with GATKHap-

lotypeCaller’’, ‘‘variant calling with FreeBayes’’, ‘‘variant calling with DeepVariant’’ the following files

were produced respectively:

a. At the end of part ‘‘preparation of BAM files’’, read alignment files in BAM format.

b. At the end of step ‘‘signal visualization’’, WES signal visualization files in BigWig format.

c. At the end of step ‘‘variant calling with GATK HaplotypeCaller’’, a filtered VCF file with GATK

Haplotype Caller results.

d. At the end of step ‘‘variant calling with FreeBayes’’, a filtered VCF file with FreeBayes results.

Figure 1. Venn diagram visualization of the three callsets

(A) Numbering of the Venn overlapping and unique areas which correspond to specific callsets created with bcftools.

(B) The same Venn diagram where the areas depicted in (A) have been filled with the actual number of variants

resulting from the application of the protocol to the data presented in the article, accompanied by the shell variable

names presented in the code in part ‘‘variant callset consolidation’’ and step 29.

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 41

Protocol

e. At the end of step ‘‘variant calling with DeepVariant’’, a filtered VCF file with DeepVariant re-

sults.

These files can be loaded in the IGV genome browser for visualization of the results with the

following steps.

32. Download and install the IGV genome browser.

33. Open the IGV genome browser.

34. From the Genomes menu select Load Genome From Server.

35. Select Human (1 kg, b37 + decoy) or Human (b37) and click OK.

36. From the File menu select Load from File.

37. Select one or more from the BAM files created at the end of the part ‘‘preparation of BAM files’’.

38. From the File menu select Load from File.

39. Select one or more from the BigWig files created at the end of the part ‘‘signal visualization’’.

40. From the File menu select Load from File.

41. Select the three variant callsets generated at the end of the parts ‘‘variant calling with GATK

HaplotypeCaller’’, ‘‘variant calling with FreeBayes’’ and ‘‘variant calling with DeepVariant’’.

Following the steps (32)–(41), the user should be able to visualize variant callsets and supporting in-

formation such as overall signal and reads supporting each variant call. The user can navigate

through the callsets using the respective IGV controls (zoom in and out, navigate to specific areas

by chromosomal coordinates etc.).

EXPECTED OUTCOMES

WES comprises a well-defined and much promising NGS technique which has been successfully de-

ployed during the past few years with many applications in research and the clinic. The output of

WES is typically a (long) list of DNA variations detected given an input DNA sample such as from

a patient, when compared to a reference genome. As with every major high-throughput technique,

the output is prone to noise and potential errors which require special handling in order to be filtered

out and reduce false positives. The proposed protocol may aid achieve this through careful data

filtering and preparation followed by variant calling with three established variant callers and subse-

quent (clinical) annotation and consolidation of the results.

Regarding the actual potential reduction in false positives, an estimation can be provided based on

recent studies where multiple variant callers are evaluated (Barbitoff et al., 2022; Lin et al., 2018) and

combined (Zhao et al., 2020). In (Zhao et al., 2020), the authors benchmarked GATK, the Illumina

DRAGEN-based caller and DeepVariant using human genome data and it was shown that the

average F1-score for SNP detection across 4 datasets is 0.990 for GATK without Variant Quality

Score Recalibration and 0.969 for GATK with Variant Quality Score Recalibration. Furthermore, in

the same study it was shown that the combination of GATK with DeepVariant leads to higher F1-

scores. The average F1-score for the combined methodology returned was 0.993 on average, sug-

gesting that the combination of methods is expected to lead to more accurate SNP calling results. In

addition, in (Lin et al., 2018), the comparison of GATK with DeepVariant, when applied on the anal-

ysis of trios, showed that DeepVariant made fewer calls, but with a lower false positive rate. In addi-

tion, in (Barbitoff et al., 2022), the F1-scores calculated for the three methods when applied on

Whole Exome Sequencing were 0.996 for DeepVariant, 0.985 for GATK and 0.987 for FreeBayes.

Based on these results and the aforementioned results regarding algorithm combination, we expect

the overall F1-score to be >0.996. Last but not least, in our experience GATK tends to return more

variants than the other twomethodologies (Figure 1B) even after the application of the best-practice

filters, suggesting a potential higher rate of false discoveries.

The proposed protocol produces outputs at various processing steps and at various levels. Specif-

ically, the main outputs are quality controlled raw data in FASTQ format, alignments to the reference

ll
OPEN ACCESS

42 STAR Protocols 3, 101418, June 17, 2022

Protocol

https://software.broadinstitute.org/software/igv/download

genome in BAM format, variant callsets from each caller in VCF format and annotated and consol-

idated variant callsets in VCF format.

LIMITATIONS

Despite the detailed description of the protocol steps, installation of prerequisite software and

script templates that can be almost used out of the box by the user, there are cases where the input

of a computer expert or a trained bioinformatician may be needed. Such cases could include the

installation of tools requiring system-level access such as Docker, or the navigation among GATK

available tools and commands. In addition, the described protocol assumes a Linux-based system

and some basic skills in using the command line. Although the latter skills are not extensive and

the protocol steps are very detailed, some users may find it difficult to follow. Another limitation,

and also the reason for which command-line skills are required, is the fact that most of the required

tools are well-behaved mostly in Linux environments. Executing them on other operating systems

(such as Windows) is not prohibitive but require substantial skills and software prerequisites as

most of them would require to be re-compiled from source code. On the other hand, most of

them are available out of the box for Linux environments. Additional limitations may have to do

with available computational power and storage resources. While most tools are flexible and

running them with a few or even one core is possible -albeit much slower- the required annotation

resources require available storage. However, most laboratories engaged in WES should have stor-

age resources available. Finally, although the usage of multiple variant callers depending on

different underlying statistical models may reduce related introduced biases and thus reduce false

positives, visualization of the end-result is also required to derive final conclusions especially in clin-

ical settings. Such visualization is possible through dedicated genome browsers such as the IGV,

which operate on local systems and can load simultaneously WES signal (BigWig files), read align-

ment files (BAM files) and the called variants (VCF files). In this way, the analyst can verify – for

some representative cases at least – the validity of the presence of a variant in all three callsets

and if there are false calls based on aligned reads support. All this information is available within IGV.

TROUBLESHOOTING

Problem 1

The hardware I have at my disposal to run the protocol is not adequate to guarantee performance.

Potential solution

Generally, the vast majority of the tools used in the protocol can run in single core, lower-end sys-

tems such as a medium to high-end laptop. The user should try and drastically reduce the number

of cores to use (denoted by the ‘‘CORES’’ environmental variable where applicable) and also reduce

the number of compute jobs executed in the background, that is remove ampersands (& symbol)

at the end of certain commands throughout the template scripts. The protocol will be completed

but the timings will increase at rates 50%–1000%.

Problem 2

The protocol describes the variant calling procedure with paired-end sequencing data. I want to

execute the protocol with single-end sequencing data.

Potential solution

The only steps slightly changing are the ones regarding basic quality control, alignment to the refer-

ence genome and the BAM file preprocessing which becomes shorter. We provide additional tem-

plate scripts for this process in the GitHub repository accompanying this article.

Problem 3

I cannot find the coordinate files for the exome capture kit or I am not sure about the kit used in my

experiment.

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 43

Protocol

Potential solution

In this unlikely event, the user may use a list of all the reference genome exons from a public resource

such as RefSeq or Ensembl. Some biases are expected. The user must make sure that the down-

loaded exon coordinates correspond to the same reference genome version used in the alignment

process (e.g., hg19).

Problem 4

Variant calling with DeepVariant crashes.

Potential solution

Try to change the following lines in bold.

with

docker run \

-v "$BAM_PATH":"/data" \

-v "$BWA_INDEX_DIR":"/reference" \

-v "$CAPTURE_KIT_DIR":"/capture_kit" \

google/deepvariant:$DV_VERSION \

/opt/deepvariant/bin/run_deepvariant \

--model_type=WES \

--ref="/reference/hs37d5.fa" \

--reads="/data/$SAMPLE.bam" \

--regions="/capture_kit/Agilent_SureSelect_All_Exon_V2.bed" \

--output_vcf="/data/$SAMPLE/$SAMPLE’_DV.vcf’" \

--output_gvcf="/data/$SAMPLE/$SAMPLE’_DV.g.vcf’" \

--num_shards=$CORES

docker run \

-v "$BAM_PATH":"/data" \

-v "$BWA_INDEX_DIR":"/reference" \

-v "$CAPTURE_KIT_DIR":"/capture_kit" \

google/deepvariant:$DV_VERSION \

/opt/deepvariant/bin/run_deepvariant \

--model_type=WES \

--ref="/reference/hs37d5.fa" \

--reads="/data/$SAMPLE.bam" \

--regions="/capture_kit/Agilent_SureSelect_All_Exon_V2.bed" \

--output_vcf=/data/$SAMPLE/$SAMPLE’_DV.vcf’ \

--output_gvcf=/data/$SAMPLE/$SAMPLE’_DV.g.vcf’ \

--num_shards=$CORES

ll
OPEN ACCESS

44 STAR Protocols 3, 101418, June 17, 2022

Protocol

Problem 5

Some tools require administrative access, or as a user I have limitations in installing tools, or I have

not enough allocated space.

Potential solution

All of the tools and commands in this protocol do not assume administrative access, except from the

installation of Docker, which however is bundled with most modern Linux systems. In the unlikely

event of limited user access, advice from a system administrator should be sought. The same applied

to additional space requirements.

Problem 6

No variants are left after the filters applied to the FreeBayes result.

Potential solution

It is possible according to the particularities of each dataset that such a case may arrive. In this un-

likely event, the filtering thresholds should be lowered. The user should change the following lines

from the code in step 7.

with the following:

It is possible that the user may have to experiment with the quantile values, for example even set

from 0.90 to 0.75.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the lead contact, Panagiotis Moulos (moulos@fleming.gr).

Rscript -e ’

vp <- Sys.getenv("VCF_PATH")

dps <- as.numeric(readLines(file.path(vp,"dps.tmp")));

quals <- as.numeric(readLines(file.path(vp,"quals.tmp")));

qudp <- unname(round(quantile(dps,0.99)));

ququ <- unname(quantile(quals,0.99));

write(qudp,file.path(vp,"dpt.tmp"));

write(ququ,file.path(vp,"qut.tmp"));

’

Rscript -e ’

vp <- Sys.getenv("VCF_PATH")

dps <- as.numeric(readLines(file.path(vp,"dps.tmp")));

quals <- as.numeric(readLines(file.path(vp,"quals.tmp")));

qudp <- unname(round(quantile(dps,0.90)));

ququ <- unname(quantile(quals,0.90));

write(qudp,file.path(vp,"dpt.tmp"));

write(ququ,file.path(vp,"qut.tmp"));

’

ll
OPEN ACCESS

STAR Protocols 3, 101418, June 17, 2022 45

Protocol

mailto:moulos@fleming.gr

Materials availability

This study did not generate new unique reagents.

Data and code availability

This protocol did not generate any new datasets. The sample data analyzed in this protocol can be

found at SRA and using the links in the data retrieval box in the respective section as well as the key

resources table. The code templates outlined through the article are available at https://github.

com/moulos-lab/star_protocols_wes3x (https://doi.org/10.5281/zenodo.6491376).

ACKNOWLEDGMENTS

This work was made possible with the support of the project ‘‘The Greek Research Infrastructure for

Personalised Medicine (pMED-GR)’’ (MIS 5002802), which is implemented under the Action ‘‘Rein-

forcement of the Research and Innovation Infrastructure’’ funded by the Operational Programme

‘‘Competitiveness, Entrepreneurship and Innovation’’ (NSRF 2014-2020) and co-financed by Greece

and the European Union (European Regional Development Fund).

AUTHOR CONTRIBUTIONS

P.M. conceived the idea, drafted the protocol and related code, drafted the manuscript, and super-

vised the protocol implementation and testing. K.M. and G.A.P. implemented and tested the pro-

tocol and drafted the manuscript. All authors have reviewed the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Barbitoff, Y.A., Abasov, R., Tvorogova, V.E., Glotov,
A.S., and Predeus, A.V. (2022). Systematic
benchmark of state-of-the-art variant calling
pipelines identifies major factors affecting accuracy
of coding sequence variant discovery. BMC
Genom. 23, 155. https://doi.org/10.1186/s12864-
022-08365-3.

Bonfield, J.K., Marshall, J., Danecek, P., Li, H., Ohan,
V.,Whitwham, A., Keane, T., andDavies, R.M. (2021).
HTSlib: C library for reading/writing high-
throughput sequencing data. GigaScience 10,
giab007. https://doi.org/10.1093/gigascience/
giab007.

Cingolani, P., Platts, A., Wang, L.L., Coon, M.,
Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden,
D.M. (2012). A program for annotating and
predicting the effects of single nucleotide
polymorphisms, SnpEff. Fly 6, 80–92. https://doi.
org/10.4161/fly.19695.

Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J.,
Ohan, V., Pollard, M.O., Whitwham, A., Keane, T.,
McCarthy, S.A., Davies, R.M., and Li, H. (2021).
Twelve years of SAMtools and BCFtools.
GigaScience 10, giab008. https://doi.org/10.1093/
gigascience/giab008.

DePristo, M.A., Banks, E., Poplin, R., Garimella,
K.V., Maguire, J.R., Hartl, C., Philippakis, A.A.,
del Angel, G., Rivas, M.A., Hanna, M., et al.
(2011). A framework for variation discovery and
genotyping using next-generation DNA
sequencing data. Nat. Genet. 43, 491–498.
https://doi.org/10.1038/ng.806.

Ewels, P., Magnusson, M., Lundin, S., and Käller, M.
(2016). MultiQC: summarize analysis results for
multiple tools and samples in a single report.

Bioinformatics 32, 3047–3048. https://doi.org/10.
1093/bioinformatics/btw354.

Garrison, E., and Marth, G. (2012). Haplotype-
based variant detection from short-read
sequencing. Preprint at arXiv. 1207.3907 [q-Bio].

Ihaka, R., and Gentleman, R. (1996). R: a language
for data analysis and graphics. J. Comput. Graph.
Stat. 5, 299–314. https://doi.org/10.2307/1390807.

Karczewski, K.J., Francioli, L.C., Tiao, G.,
Cummings, B.B., Alföldi, J., Wang, Q., Collins, R.L.,
Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al.
(2020). The mutational constraint spectrum
quantified from variation in 141,456 humans.
Nature 581, 434–443. https://doi.org/10.1038/
s41586-020-2308-7.

Kuhn, R.M., Haussler, D., and Kent, W.J. (2013). The
UCSC genome browser and associated tools. Brief.
Bioinform. 14, 144–161. https://doi.org/10.1093/
bib/bbs038.

Li, H. (2014). Toward better understanding of
artifacts in variant calling from high-coverage
samples. Bioinformatics 30, 2843–2851. https://doi.
org/10.1093/bioinformatics/btu356.

Li, H., and Durbin, R. (2009). Fast and accurate short
read alignment with Burrows–Wheeler transform.
Bioinformatics 25, 1754–1760. https://doi.org/10.
1093/bioinformatics/btp324.

Lin, M.F., Rodeh, O., Penn, J., Bai, X., Reid, J.G.,
Krasheninina, O., and Salerno, W.J. (2018).
GLnexus: joint variant calling for large cohort
sequencing. Preprint at bioRxiv. https://doi.org/10.
1101/343970.

Liu, X., Wu, C., Li, C., and Boerwinkle, E. (2016).
dbNSFP v3.0: a one-stop database of functional
predictions and annotations for human
nonsynonymous and splice-site SNVs. Hum. Mutat.
37, 235–241. https://doi.org/10.1002/humu.22932.

Martin, M. (2011). Cutadapt removes adapter
sequences from high-throughput sequencing
reads. EMBnet. J. 17, 10–12. https://doi.org/10.
14806/ej.17.1.200.

Poplin, R., Chang, P.-C., Alexander, D., Schwartz,
S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J.,
Nguyen, N., Afshar, P.T., et al. (2018). A universal
SNP and small-indel variant caller using deep
neural networks. Nat. Biotechnol. 36, 983–987.
https://doi.org/10.1038/nbt.4235.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a
flexible suite of utilities for comparing genomic
features. Bioinformatics 26, 841–842. https://doi.
org/10.1093/bioinformatics/btq033.

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W.,
Guttman, M., Lander, E.S., Getz, G., and Mesirov,
J.P. (2011). Integrative genomics viewer. Nat.
Biotechnol. 29, 24–26. https://doi.org/10.1038/nbt.
1754.

Sherry, S.T., Ward, M., and Sirotkin, K. (1999).
dbSNP—database for single nucleotide
polymorphisms and other classes of minor genetic
variation. GenomeRes. 9, 677–679. https://doi.org/
10.1101/gr.9.8.677.

Zhao, S., Agafonov, O., Azab, A., Stokowy, T., and
Hovig, E. (2020). Accuracy and efficiency of
germline variant calling pipelines for human
genome data. Sci. Rep. 10, 20222. https://doi.org/
10.1038/s41598-020-77218-4.

ll
OPEN ACCESS

46 STAR Protocols 3, 101418, June 17, 2022

Protocol

https://github.com/moulos-lab/star_protocols_wes3x
https://github.com/moulos-lab/star_protocols_wes3x
https://doi.org/10.5281/zenodo.6491376
https://doi.org/10.1186/s12864-022-08365-3
https://doi.org/10.1186/s12864-022-08365-3
https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.4161/fly.19695
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1038/ng.806
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
http://refhub.elsevier.com/S2666-1667(22)00298-2/sref7
http://refhub.elsevier.com/S2666-1667(22)00298-2/sref7
http://refhub.elsevier.com/S2666-1667(22)00298-2/sref7
https://doi.org/10.2307/1390807
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1093/bib/bbs038
https://doi.org/10.1093/bib/bbs038
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/343970
https://doi.org/10.1101/343970
https://doi.org/10.1002/humu.22932
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/nbt.4235
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1101/gr.9.8.677
https://doi.org/10.1101/gr.9.8.677
https://doi.org/10.1038/s41598-020-77218-4
https://doi.org/10.1038/s41598-020-77218-4

	XPRO101418_proof_v3i2.pdf
	Protocol for unbiased, consolidated variant calling from whole exome sequencing data
	Before you begin
	Resources download
	Prerequisite software installation – quality control
	Prerequisite software installation – genome alignment
	Prerequisite software installation – variant calling
	Prerequisite software installation – variant annotation
	Prerequisite software installation – generic file control and manipulation
	Data collection

	Key resources table
	Materials and equipment
	Step-by-step method details
	Quality control and filtering
	Alignment to the reference genome and alignment statistics
	Preparation of BAM files
	Collection of alignment statistics
	Signal visualization
	Variant calling with GATK HaplotypeCaller
	Variant calling with FreeBayes
	Variant calling with DeepVariant
	Variant annotation
	Variant callset consolidation
	Visualization and further post-processing

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution
	Problem 6
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

