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Abstract: Maintaining blood insulin levels is important for patients with diabetes because insulin
secretion capacity declines with the development of the disease. Calorie restriction (CR) is effective
for the improvement of glucose tolerance, but it is not clear whether CR can maintain insulin levels
in the late stage of diabetes. We examined the effect of CR on whole-body glucose tolerance and
fasting blood insulin concentrations in the late stage of diabetes. Male db/db mice were subjected
to either a standard laboratory diet ad libitum for 3 weeks (dbdb group) or 40% CR (dbdb+CR
group). CR significantly decreased body mass and epididymal fat weight. Glucose tolerance and
fasting glucose levels were significantly improved with 3-week CR. Fasting insulin concentrations
were decreased in the dbdb group but were maintained in the dbdb+CR group. CR significantly
reduced insulin-degrading enzyme (IDE) levels in the liver, and hepatic IDE levels were significantly
positively and negatively correlated with plasma glucose concentrations (area under the curve) after
glucose administration and after fasting insulin concentrations, respectively. Therefore, 3-week CR
maintained blood insulin levels and improved glucose tolerance with decreased hepatic IDE levels in
an animal model of late-stage diabetes.
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1. Introduction

Type 2 diabetes mellitus (T2DM) increases the risk of hypertension and cardiovas-
cular disease. The global epidemic of T2DM is a major public health problem. Disease
progression is known to be caused by excessive fat accumulation. In fact, 60–90% of
all patients with T2DM are obese (body mass index (BMI) ≥ 30 kg/m2)) or overweight
(BMI ≥ 25 kg/m2) [1]. The global epidemic of obesity can explain the dramatic elevation
in the incidence and prevalence of T2DM. Excessive fat accumulation induces insulin resis-
tance in peripheral tissue [2] and results in glucose intolerance [3,4]. In contrast, weight
loss by gastric bypass decreases BMI, which is used as an indicator of obesity, and increases
the whole-body glucose disposal rate [5]. Therefore, a decrease in fat accumulation can
prevent and reverse the development of T2DM.

Calorie restriction (CR) is an efficacious dietary intervention to abrogate the accumu-
lation of visceral fat. In fact, mild and/or moderate weight loss with a moderate decline in
calorie intake is recommended for patients with T2DM [6]. It has been reported that ~40%
CR reduces body fat volume and fasting blood glucose and insulin levels and improves
whole-body glucose tolerance in human [7,8] and animal experiments [9–11]. Fat reduction
is associated with the CR-induced improvement of metabolism, but glucose uptake in
peripheral tissue is also enhanced with CR. For example, CR leads to enhanced glucose
transport with an increase in the levels of glucose transporter 4 (GLUT-4), which is a
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major transporter of glucose in skeletal muscle cells and in the cell surface membranes of
insulin-stimulated muscle [12,13]. In addition, GLUT-4 levels in the adipose tissue have
been reported to be important for maintaining whole-body glucose homeostasis [14–16].
Therefore, CR is an effective dietary intervention to prevent and ameliorate glucose intoler-
ance due to its reduction in fat accumulation and improvement of glucose disposal and
uptake in skeletal muscles and adipose tissues. The effect of CR on peripheral tissue has
been studied, but the effect of CR on insulin levels, rather than on insulin action, has not
been completely elucidated.

The pathophysiology of T2DM involves not only insulin resistance in peripheral
tissue but also the impairment of insulin secretion capacity, particularly in the late stage of
diabetes. As a consequence of long-term insulin resistance, the reduction in the number
of functional β cells leads to a deficiency in insulin secretion [17–19]. Insulin secretory
capacity declines gradually with the progression of T2DM in human patients [17,20]. Most
T2DM patients eventually require insulin therapy. Therefore, in the late stage of the disease,
the maintenance of blood insulin levels is crucial in terms of therapy. As CR improves
insulin secretion capacity in rats with obesity induced by intake of a high-fat diet [21], it is
possible that CR prevents the reduction of blood insulin concentrations.

In the regulation of blood insulin levels, insulin-degrading enzyme (IDE) and car-
cinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which promotes
receptor-mediated insulin endocytosis and degradation in liver, also play a critical role [22].
IDE expression is altered by various nutritional and physiological factors, such as exercise
and dietary intervention [23,24]. Therefore, we hypothesized that CR maintains blood
insulin levels in the late stage of diabetes with an elevation in insulin secretion and/or
a reduction in IDE expression. To examine this hypothesis, we conducted this study to
examine the effect of CR on whole-body glucose tolerance and blood insulin levels with its
related proteins in the late stage of diabetes. We used mice with a mutation in the leptin
receptor gene (db/db), which leads to insulin resistance in the early stage of T2DM, and
deficiency of insulin secretion in the late stage of diabetes [25].

2. Materials and Methods
2.1. Animal Treatment

Nine-week-old male db/db mice were housed individually under a 12:12-h light:dark
cycle in a temperature-controlled room (23 ◦C). Mice were given a standard laboratory
diet (CE-2; CLEA Japan, Tokyo, Japan) and water ad libitum. The mice were acclimated
to the housing facility for 1 week. To examine the effects of CR on late-stage diabetes, we
started CR intervention from 10 weeks old, as the previous study showed a decrease in
blood insulin concentrations in db/db mice at 10–12 weeks [25].

After the acclimation period, the mice were divided into two groups that matched
their body weights, blood glucose concentrations, and food intake during the acclimation
period: one group continued to receive the standard diet ad libitum for the entire 21-day
experimental period (dbdb group; n = 5), and the second group received the standard
diet equal to 60% of the average amount of food eaten by the dbdb group during the
21-day experimental period to decrease their body weight (dbdb+CR group; n = 5). Misty
mice of the same age were obtained from Japan SLC and treated for the same period
(n = 5). All mice were allowed to drink water freely during the 21-day dietary intervention.
Body weight and the amount of food intake were recorded daily throughout the dietary
intervention, and fasting plasma glucose levels were measured weekly after 4-h fasting
(morning fasting, 06:00–10:00). The University of Electro-Communications Institutional
Animal Care and Use Committee approved all animal experiments in this study (No. 31).

2.2. Oral Glucose Tolerance Test

The day before the oral glucose tolerance test (OGTT), the dbdb and dbdb+CR groups
had access to food ad libitum until 22:00 (food was removed after 22:00). After fasting
for 12 h, oral administration of glucose (1 g/kg body weight) was performed using a



Nutrients 2021, 13, 1190 3 of 11

gavage needle with a ball tip. Blood was drawn from the tail vein and harvested in micro-
hematocrit capillary tubes containing heparin (Thermo Fisher Scientific, Waltham, MA,
USA) before and at 10, 30, 60, and 120 min after the glucose administration. After the
samples were centrifuged at 10,000 rpm for 5 min, the samples of plasma in the tubes were
stored at −80 ◦C until analysis.

2.3. Tissue Collection

At the end of the experimental intervention, the mice were sacrificed under anesthesia
using isoflurane without fasting. The tibial anterior (TA) muscle and liver were harvested
and weighed. Then, the epididymal fat was harvested and weighed. We focused on
epididymal fat because the weights are positively correlated with glucose concentrations
during glucose tolerance test [26]. Liver, muscle, and fat samples were frozen at −80 ◦C
until analysis.

Mice fasted for 4 h (morning fasting) before the blood glucose and insulin measure-
ments at 10 and 13 weeks. Blood samples were drawn from the tail vein and harvested into
micro-hematocrit capillary tubes covered with heparin (Thermo Fisher Scientific, Waltham,
MA, USA). Plasma samples were separated by centrifugation at 10,000 rpm for 5 min and
were stored at −80 ◦C until analysis.

2.4. Plasma Glucose and Insulin Concentrations

Concentrations of plasma glucose and insulin were measured using the Glucose C2
Test Wako Kit (Fujifilm Wako Pure Chemical Co., Osaka, Japan) and the Mouse Insulin
ELISA Kit (Mercodia AB, Uppsala, Sweden), respectively.

2.5. Tissue Homogenization

Frozen TA muscle, epididymal fat, and liver were homogenized in an ice-cold RIPA
lysis buffer (EMD Millipore, Temecula, CA) containing 0.25% deoxycholic acid, 50 mM Tris-
HCl, 150 mM NaCl, 1% NP-40, 1 mM EDTA (pH 7.4), phosphatase inhibitors (PhosSTOP;
Roche, Basel, Switzerland), and a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA). The homogenates were subjected to 3 freeze–thaw cycles to destroy intracellular
organelles and rotated continuously at 4 ◦C for 60 min to solubilize the protein. The homog-
enized tissue samples were centrifuged at 700× g for 5 min at 4 ◦C, and the supernatants
were harvested. Total protein content per tissue was quantified with a BCA Protein Assay
Kit (Pierce, Rockford, IL, USA).

2.6. Western Blotting

The samples were mixed with sample buffer (Thermo Fisher Scientific, Waltham,
MA, USA) and heated for 5 min in a heating block at 95 ◦C. Sample protein was loaded
onto gels in equal amounts, separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (7.5% or 10% resolving gels), and transferred to polyvinylidene difluoride
(PVDF) membranes at 200 mA for 90 min. The membranes were then blocked for 1 h
at room temperature in Tris-buffered saline with 0.1% Tween 20 (TBS-T; 137 mM NaCl,
20 mM Tris base, pH 7.6) containing 5% (w/v) nonfat powdered milk for 5 min at room
temperature in Bullet Blocking One solution (Nacalai Tesque, Kyoto, Japan). The mem-
branes were incubated overnight at 4 ◦C with the specific primary antibody diluted 1:1000
in TBS-T containing 5% bovine serum albumin. The primary antibodies used were anti-IDE
(sc-393887; Santa Cruz Biotechnology, Dallas, TX, USA), anti-CD66a (carcino-embryonic
antigen-related cell adhesion molecule 1 (CEACAM1); 14-0661-80; Invitrogen, Carlsbad,
CA, USA), and anti-GLUT-4 (ab33780; Abcam, Cambridge, UK). After incubation with
the specific antibody, the membranes were incubated for 1 h at room temperature with
secondary antibodies (anti-mouse IgG, NA931 or anti-rabbit IgG, NA9340; Cytiva, Marl-
borough, MA, USA) and diluted 1:5000 in TBS-T containing 1% nonfat powdered milk.
Bands were visualized by the Chemi-Lumi One Reagent (Nacalai Tesque, Kyoto, Japan) and
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quantified by Image Studio (LI-COR, Lincoln, NE, USA). Ponceau staining was performed
to verify equal loading of samples.

2.7. Glucose-Stimulated Insulin Secretion of Isolated Islets

Another set of db/db mice (each group n = 5) was subjected to CR as described above,
their islets were isolated, and glucose-stimulated insulin secretion was measured. As
described previously [27], the islets were isolated by a method for collagenase digestion of
the pancreas from euthanized mice. The mice were sacrificed after the dietary intervention,
and the common bile duct was cannulated using a needle (Natsume Seisakusho, Tokyo,
Japan). Then, Dulbecco’s modified Eagle’s medium (2–3 mL) containing 2 mg/mL colla-
genase IV (GIBCO, Carlsbad, CA, USA) was injected into the pancreas, and the pancreas
was removed from the surrounding tissues. The removed pancreas was incubated in the
solution for 35 min at 37 ◦C for tissue digestion. The digested tissue was washed twice
with RPMI-1640 medium. Five size-matched islets were incubated for 30 min in 300 uL
Krebs-Ringer buffer (15 mM HEPES pH 7.4, 2 mM CaCl2, 5 mM KCl, 1 mM MgCl2, 120 mM
NaCl, 24 mM NaHCO3, 0.1% bovine serum albumin, and 2.8 mM glucose). After the
incubation, the isolated islets were stimulated with high or low glucose, during which
the islets were incubated for 60 min with 16.7 mM high-glucose Krebs-Ringer buffer or
2.8 mM low-glucose Krebs-Ringer buffer, respectively. The insulin concentration in the
buffer containing the islets was measured using a Mouse Insulin ELISA Kit (Mercodia AB,
Uppsala, Sweden).

2.8. Statistical Analysis

Data are represented as the mean ± standard error of the mean (SEM). For the data of
the OGTT, a two-way analysis of variance (Prism ver.8 Software; GraphPad, San Diego, CA,
USA) was used to test the effects of time and CR in db/db mice. For the other experiments,
Student’s t-test was used to test statistical differences between the values obtained from
the dbdb and dbdb+CR groups. Pearson’s correlation coefficient was used for correlation
analysis. Statistical significance was set at a p-value of <0.05.

3. Results
3.1. Body Weight, Epididymal Fat Weight, and Total Food Intake

Changes in body weight during the 3-week dietary intervention are shown in Figure 1.
During the intervention period, daily CR in the dbdb+CR group for 3 weeks induced
a substantial decrease in body weight. The final body weight was approximately 14%
lower in the dbdb+CR group than in the dbdb group (p < 0.01; Table 1). Total food intake
during the 3-week experimental period was ~40% lower in the dbdb+CR group than in
the dbdb group (p < 0.001; Table 1). Liver weight and epididymal fat weight were also
lower in the dbdb+CR group than in the dbdb group (liver weight: p < 0.01; epididymal fat
weight: p < 0.05; Table 1).

Nutrients 2021, 13, x FOR PEER REVIEW 5 of 13 
 

Figure 1. Changes in the body weight of rats during a 21-day dietary intervention. dbdb, ad libitum-
fed control group; dbdb+CR, daily calorie restriction group. Data of misty mice were used as refer-
ence values (dotted lines). Data are the mean ± SEM (n = 5). * p < 0.05, § p < 0.01 compared with the 
dbdb group. 

Table 1. Body weight, total food intake, liver weight, epididymal fat weight, and concentrations of 
plasma glucose and insulin in mice. 

Data are the mean ± SEM, n = 5. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the dbdb 
group. The mice fasted for 4 h for measurement of blood glucose and insulin concentration. dbdb, 
ad libitum-fed control group; dbdb+CR, daily calorie restriction group. 

3.2. Fasting Plasma Glucose and Insulin Concentrations 
At the completion of the 21-day dietary intervention, fasting plasma glucose concen-

trations were lower in the dbdb+CR group than in the dbdb group (p < 0.05; Table 1). 
Although there was no significant difference in fasting plasma insulin concentrations be-
tween both groups (Table 1), there was a significant difference in the change in fasting 
blood glucose and insulin concentrations between the two groups (both p < 0.05; Table 1). 

3.3. OGTT 

 dbdb dbdb+CR Misty 
Initial body weight (g) 39.1 ± 0.7 39.2 ± 0.7 20.0 ± 0.3 
Final body weight (g) 39.0 ± 0.7 33.4 ± 0.9 ** 21.2 ± 0.2 
Total food intake (g) 107 ± 4 64 ± 1*** 72 ± 1 

Liver weight (g) 2.1 ± 0.1 1.9 ± 0.1 ** 1.3 ± 0.1 
Epidydimal fat weight (g) 1.7 ± 0.1 1.5 ± 0.1 * 0.3 ± 0.1 

Plasma glucose concentration 
(10 weeks) (mg/dL) 

672 ± 18 644 ± 67 167 ± 7 

Plasma glucose concentration 
(13 weeks) (mg/dL) 

759 ± 34 599 ± 24 * 199 ± 6 

ΔPlasma glucose concentration 
(13 vs.10 weeks) (mg/dL) 

87 ± 28 −45 ± 36 * 32 ± 7 

Plasma insulin concentration 
(10 weeks) (µg/L) 8.2 ± 1.7 9.5 ± 2.5 0.5 ± 0.1 

Plasma insulin concentration 
(13 weeks) (µg/L) 

4.4 ± 0.6 11.6 ± 4.0 0.3 ± 0.1 

ΔPlasma insulin concentration 
(13 vs. 10 weeks) (µg/L) 

−3.7 ± 1.8 2.1 ± 1.7 * −0.2 ± 0.1 

Figure 1. Changes in the body weight of rats during a 21-day dietary intervention. dbdb, ad
libitum-fed control group; dbdb+CR, daily calorie restriction group. Data of misty mice were used as
reference values (dotted lines). Data are the mean ± SEM (n = 5). * p < 0.05, § p < 0.01 compared with
the dbdb group.
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Table 1. Body weight, total food intake, liver weight, epididymal fat weight, and concentrations of
plasma glucose and insulin in mice.

dbdb dbdb+CR Misty

Initial body weight (g) 39.1 ± 0.7 39.2 ± 0.7 20.0 ± 0.3
Final body weight (g) 39.0 ± 0.7 33.4 ± 0.9 ** 21.2 ± 0.2
Total food intake (g) 107 ± 4 64 ± 1*** 72 ± 1

Liver weight (g) 2.1 ± 0.1 1.9 ± 0.1 ** 1.3 ± 0.1
Epidydimal fat weight (g) 1.7 ± 0.1 1.5 ± 0.1 * 0.3 ± 0.1

Plasma glucose concentration (10 weeks) (mg/dL) 672 ± 18 644 ± 67 167 ± 7
Plasma glucose concentration (13 weeks) (mg/dL) 759 ± 34 599 ± 24 * 199 ± 6

∆Plasma glucose concentration (13 vs.10 weeks) (mg/dL) 87 ± 28 −45 ± 36 * 32 ± 7
Plasma insulin concentration (10 weeks) (µg/L) 8.2 ± 1.7 9.5 ± 2.5 0.5 ± 0.1
Plasma insulin concentration (13 weeks) (µg/L) 4.4 ± 0.6 11.6 ± 4.0 0.3 ± 0.1

∆Plasma insulin concentration (13 vs. 10 weeks) (µg/L) −3.7 ± 1.8 2.1 ± 1.7 * −0.2 ± 0.1
Data are the mean ± SEM, n = 5. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the dbdb group. The mice
fasted for 4 h for measurement of blood glucose and insulin concentration. dbdb, ad libitum-fed control group;
dbdb+CR, daily calorie restriction group.

3.2. Fasting Plasma Glucose and Insulin Concentrations

At the completion of the 21-day dietary intervention, fasting plasma glucose con-
centrations were lower in the dbdb+CR group than in the dbdb group (p < 0.05; Table 1).
Although there was no significant difference in fasting plasma insulin concentrations be-
tween both groups (Table 1), there was a significant difference in the change in fasting
blood glucose and insulin concentrations between the two groups (both p < 0.05; Table 1).

3.3. OGTT

To test the effects of CR on whole-body glucose tolerance, we conducted an OGTT.
The mice in the dbdb group became more hyperglycemic than those of the dbdb+CR
group in response to glucose administration (Figure 2). The elevation in plasma glucose
concentrations was lower in the dbdb+CR group than in the dbdb group at 10 and 120 min
after glucose injection (10 min: p < 0.05; 120 min: p < 0.05; Figure 2). Plasma insulin
concentrations did not significantly differ between the two groups.
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3.4. GLUT-4 Protein Levels in TA Muscle and Epididymal Adipose Tissue

GLUT-4 protein levels in epididymal adipose tissue, but not TA muscle, were signifi-
cantly higher in the dbdb+CR group than in the dbdb group (p < 0.05; Figure 3).
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Figure 3. Effects of calorie restriction on GLUT-4 levels in db/db mice. GLUT-4 protein levels in
mouse TA (tibialis anterior) muscle (A) and epididymal adipose tissue (B). dbdb, ad libitum-fed
control group; dbdb+CR, daily calorie restriction group. Data of misty mice were used as reference
values (dotted lines). Data are the mean ± SEM (n = 5). * p < 0.05 compared with the dbdb group.

3.5. Glucose-Stimulated Insulin Secretion in Isolated Islets

After the 3-week intervention period, pancreatic islets isolated from the mice in both
groups were used for the measurement of glucose-stimulated insulin secretion. Insulin
secretion in response to low-glucose treatment (baseline, 2.8 mM glucose) was lower in the
dbdb+CR group than in the dbdb group (p < 0.05; Figure 4). Insulin secretion in response
to high-glucose stimulation (16.7 mM glucose) did not differ between groups.
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3.6. IDE Protein Levels in TA Muscle and Liver and CEACAM1 Protein Levels in Liver

We explored the mechanism by which fasting insulin concentrations were maintained
with the CR intervention. While there were no significant differences in IDE protein
expression in the TA muscle and CEACAM1 levels in the liver between the two groups,
the hepatic IDE protein levels were lower in the dbdb+CR group than in the dbdb group
(p < 0.05; Figure 5). Hepatic IDE protein levels were positively correlated with fasting
glucose concentrations (r = 0.655, p < 0.05; Figure 6). Hepatic IDE levels were negatively
correlated with concentrations of plasma insulin (r = 0.718, p < 0.05; Figure 6). In addition,
hepatic IDE protein levels were significantly correlated with the plasma glucose area under
the curve (AUC) during the OGTT (r = 0.654, p < 0.05; Figure 6).
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Figure 5. Effects of calorie restriction on insulin-degrading enzyme (IDE) and carcino-embryonic
antigen-related cell adhesion molecule 1 (CEACAM1) levels in db/db mice. IDE protein levels in
mouse tibialis anterior muscle (A) and liver (B) and CEACAM1 protein levels in liver (C). dbdb, ad
libitum-fed control group; dbdb+CR, daily calorie restriction group. Data of misty mice were used
as reference values (dotted lines). Data are the mean ± SEM (n = 5). * p < 0.05 compared with the
dbdb group.
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Figure 6. Correlations between hepatic insulin-degrading enzyme (IDE) levels and fasting glucose (A) or fasting insulin
(B) concentrations or glucose area under the curve (AUC) during the oral glucose tolerance test (OGTT) (C). dbdb, ad
libitum-fed control group; dbdb+CR, daily calorie restriction group.

4. Discussion

Our study was conducted to examine the effects of 3-week CR on glucose tolerance
and fasting insulin concentrations in the late stage of diabetes. We discovered that 3-week
CR in db/db mice improved glucose tolerance, with a decline in epididymal adipose
tissue and an increase in fat GLUT-4 levels, and maintained fasting insulin concentrations,
accompanied by decreased IDE levels in the liver.

Three-week CR improved glucose tolerance, such as lowered plasma glucose concen-
trations during the OGTT (Figure 2A). The CR-induced improvement of glucose tolerance
in db/db mice was consistent with the results of previous studies that investigated the
effects of CR on glycemic improvement and glucose metabolism [10,11,21]. As insulin
concentrations during the OGTT did not differ between the two groups (Figure 2A), we
estimated that the reason for the improvement in the OGTT was also the reason for the
increase in glucose uptake in peripheral tissue. However, there was no significant change
in GLUT-4 levels, a major glucose transporter in skeletal muscle cells [28], with 3-week CR
(Figure 3A). We did not measure the parameters of insulin sensitivity of skeletal muscle, but
previous studies reported that CR increased GLUT-4 levels in the cell surface membranes
of insulin-stimulated muscle [12] without a change in total GLUT-4 protein expression [13].
It is likely that insulin sensitivity was improved by 3-week CR without changes in total
GLUT-4 levels. The GLUT-4 protein in adipose tissue is also associated with whole-body
insulin resistance [15,29]. Interestingly, CR significantly up-regulated GLUT-4 protein
levels in adipose tissue (Figure 3B). This increase in GLUT-4 content in epididymal adipose
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tissue would contribute, in part, to the improvement of whole-body glucose tolerance,
because previous studies reported that diabetes decreases adipose GLUT-4 expression and
impairs glucose tolerance [29] and revealed that quantitative alterations of adipose GLUT-4
levels alter whole-body glucose tolerance, such as skeletal muscle insulin resistance in
transgenic mice [14,15,30]. Furthermore, since adipose tissue accounts for ~10% of the
insulin-stimulated whole-body glucose uptake [16], an increase in GLUT-4 protein levels af-
ter the CR intervention would contribute, in part, to the improvement of insulin-stimulated
glucose uptake into the adipose tissue. In addition, CR induced an approximately 10%
reduction in epidydimal fat weight in the present study (Table 1). Since excessive fat accu-
mulation aggravates insulin sensitivity in peripheral tissue [3,4], the CR-induced reduction
in adipose tissue weight may also be implicated in the improvement of insulin sensitivity
in skeletal muscle and adipose tissue. Therefore, these data suggest that the CR-induced
improvement of glucose tolerance during the OGTT was associated with an increase in
adipose GLUT-4 levels and a reduction in epididymal adipose tissue weight.

Fasting insulin concentrations decreased from 10 to 13 weeks of age in the dbdb group,
but they were maintained in the dbdb+CR group (Table 1), indicating that CR can inhibit
the reduction of fasting blood insulin concentrations shown in the late stage of diabetes.
To clarify whether this maintenance of fasting plasma insulin concentrations was due to
alternations in insulin secretion and/or degradation, we measured insulin secretion rates
in extracted islets and the levels of IDE protein. Insulin secretion in response to low-glucose
stimulation, but not high-glucose, was significantly lower in the dbdb+CR group than in
the dbdb group (Figure 4). This result is comparable with the results of a previous study in
which insulin secretion in response to low-glucose stimulation (2.8 mM) was reduced after 3-
week CR [21]. Therefore, we consider that insulin degradation, rather than insulin secretion,
may have played a role in the maintenance of fasting blood insulin concentrations in the
CR group in this study. In fact, 3-week CR significantly decreased IDE expression levels in
the liver but did not change hepatic CEACAM1 or muscle IDE expression levels (Figure 5).
Furthermore, there was a significant negative correlation between IDE expression in the
liver and fasting insulin concentrations in the blood (Figure 6B). This relationship suggests
that the reduction in IDE expression contributes to the inhibition of insulin deficiency in
the late stage of diabetes. This is supported by previous studies in which short-term IDE
knockout can increase fasting insulin levels [31,32]. Taken together, these results suggest
that short-term CR in the late stage of diabetes, with decreases in blood insulin levels, can
help to maintain blood insulin levels, potentially by reducing IDE levels.

Insulin sensitivity in peripheral tissue and insulin secretion from β cells in the pancreas
are considered important for glucose disposal [33]. Our study provides the novel finding
that a decrease in IDE can improve glucose disposal in the late stage of diabetes. This is
because a significant positive correlation was shown between IDE levels in the liver and
fasting glucose concentrations or glucose AUC during an OGTT (Figure 6C). However,
previous studies reported that IDE levels had a positive effect on glucose tolerance [34,35].
For example, whole-body and liver-specific knockout of IDE impairs fasting glucose levels
and glucose tolerance [32,36,37]. An exercise-induced increase in IDE expression was
shown to reduce glycemia and improve insulin sensitivity in mice [24]. We consider that
the differences in the results between previous studies and ours are because we used a
late-stage model of diabetes, while previous studies used healthy animals. The resulting
decrease in IDE levels in the present study may represent a specific effect of CR in late-stage
diabetes. In fact, there was no positive relationship between IDE levels and fasting glucose
concentrations or glucose AUC during the OGTT when correlations were analyzed in this
study, including for the healthy controls. A previous study also found that the effects of a
dipeptidyl peptidase-IV inhibitor on plasma insulin concentrations were different between
late- and early-stage models of diabetes [38]. In end-stage diabetes, in which blood insulin
concentrations are lowered, the adaptation to CR or other pharmacological and nutritional
interventions is partially different from that observed in healthy subjects. Therefore, as the
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practical significance of this study, the CR-induced reduction in IDE expression would be a
useful therapeutic intervention for patients in the late stage of diabetes.

This study has several limitations. It is not clear whether insulin concentration is main-
tained in late-stage human patients when their hepatic IDE protein levels are decreased.
Furthermore, we need to examine sex differences in effects of CR in late-stage of the disease
because we used only male mice and there are differences between male and female mice in
health and longevity benefits with CR [39]. In this study, Mice performed 12 h fasting and
4 h fasting before the measurements of blood glucose and insulin concentrations. Fasting
itself may induce CR effects but they would be little because 3-day CR (40% CR) did not
alter glucose tolerance but 10-day CR induced improvement of glucose tolerance [10]. We
need to clarify these issues in the future study.

In conclusion, short-term CR in an animal model of late-stage diabetes increased
adipose tissue GLUT-4 levels and reduced epididymal adipose tissue weight, leading to an
improvement in whole-body glucose tolerance. The CR-induced improvement in blood
glucose concentrations was associated with the maintenance of fasting blood insulin levels
and decreased IDE expression in the liver.
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