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An SEIR type of compartmental model with nonlinear incidence and recovery rates was formulated to study the combined impacts
of psychological effect and available resources of public health system especially the number of hospital beds on the transmission
and control of A(H7N9) virus. Global stability of the disease-free and endemic equilibria is determined by the basic reproduction
number as a threshold parameter and is obtained by constructing Lyapunov function and second additive compound matrix. The
results obtained reveal that psychological effect and available resources do not change the stability of the steady states but can indeed
diminish the peak and the final sizes of the infected. Our studies have practical implications for the transmission and control of
A(H7N9) virus.

1. Introduction

Avian influenza A(H7N9) is a subtype of influenza viruses
that have been detected in birds and confirmed to be low
pathogenic among poultry in the past [1]. Human infec-
tions by this particular A(H7N9) virus had not previously
been reported until it was found in March, 2013 in China
(WHO). It appears that A(H7N9) virus has become a highly
pathogenic virus for human species who directly or indirectly
contacts poultry carrying virus [2, 3]. From September 1,
2016, to April 31, 2017, 643 cases of avian influenza A(H7N9)
laboratory-confirmed cases have been reported in Mainland
China, including 233 cases that have died (China CDC),
which imposes a serious threat to public health.

There are different types ofmodels to analyze the dynami-
cal behavior of avian influenza virus and assess useful control
measures. Iwami et al. [4] showed that when mutant avian
influenza had already occurred, reducing the contact rate
of susceptible with infectious humans may have a positive
effect on preventing the second outbreak. Liu and Fang
[5] formulated a two-host model to investigate the impact
of screening and culling of infected poultry. Liu et al. [6]
considered different growth laws of the avian population,

to present that the necessary and sufficient condition for
periodic solution existing is the Allee effect in avian popula-
tion. However, most of these models ignore the latent period
between infection and symptomonset in human populations,
which does exist on the basis of the reported infection cases.
Hence, we introduce the incubation period into our model
to further study the internal transmission mechanism of
A(H7N9) virus.

When a disease breaks out, people’s awareness of its
severity can generate a profound psychological impact on
the individuals’ behaviors to reduce unnecessary contact
with infections [7]. Wang et al. [8] found that 77% of
urban respondents in their investigation reported that they
visited live markets less often after influenza A(H7N9) cases
were first identified in China in March 2013. Wu et al. [9]
showed that, in the second wave of avian influenza A(H7N9),
greater worry among respondents led to changes in protective
behaviors such as less visit to live poultry markets and less
purchase of live poultry. To model the reduction in contacts
due to the psychological effect, various incidence rates were
formulated by researchers [10–13]. In this paper, we will
modify these functions to investigate the psychological effect
on the transmission of A(H7N9) virus.

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 7321694, 11 pages
https://doi.org/10.1155/2018/7321694

http://orcid.org/0000-0002-0897-2125
https://doi.org/10.1155/2018/7321694


2 Computational and Mathematical Methods in Medicine

In previous dynamicmodels of avian influenza A(H7N9),
one usually assumed the recovery rate as a constant, which
means that the treatments were always sufficient. But in fact,
hospital resources (such as doctors, drugs, hospital bed, and
isolation places) are limited to public, especially when a
disease breaks out [14]. According to reported cases by CDC,
human infections with A(H7N9) virus and common flu
virus have similarities in infected time and the early clinical
manifestations; therefore, some available hospital resources
have already been occupied. Hospital bed-population ratio,
the number of available hospital beds per 10,000 population,
is widely used by health planners as a method of estimating
resource availability to the public [15]. Abdelrazec et al. [16]
established a model for the transmission dynamics of dengue
fever, with the recovery rate function reflected by the hospital
bed-population ratio and the number of infections. They
found that both the oscillations and backward bifurcation
occur attributed to limited hospital resource capacity. And
that the basic reproduction ratio 𝑅0 is not enough to deter-
mine whether the disease eliminates or not. In this paper we
will introduce the recovery rate function to explore the
impact of available hospital resources in spreading A(H7N9)
virus.

This paper is organized as follows. In Section 2, we
formulate the A(H7N9) transmission model incorporating
the combined impact of psychological effect and available
hospital resources. The dynamical behavior of the model is
investigated in Section 3, including the existence and global
stability of equilibria. In Section 4, we carry out numerical
simulations to verify the theoretical results, and the con-
clusions and discussions for further work are presented in
Section 5.

2. Model Formulation

Based on information reported, there is no evidence of sus-
tained human-to-human transmission, although there have
been two family clusters reported.Thus,we always assume the
transmission of A(H7N9) virus is not from person to person.
In our model, we divide the poultry into two subclasses:
susceptible (𝑆𝑝) and infectious (𝐼𝑝), respectively, and the
human population is divided into four subclasses: susceptible(𝑆ℎ), latent (𝐸ℎ), infectious (𝐼ℎ), and recovered (𝑅ℎ). Before
constructing the model, we make the following assumptions.

(i) Taking into account the factors such as poultry market
mobility, environment capacity, and the existing populations,
the susceptible poultry is subject to the logistic growth [6]

𝑟𝑝𝑆𝑝 (1 − 𝑆𝑝𝐾𝑝) , (1)

where 𝑟𝑝 and 𝐾𝑝 are the intrinsic growth rate and maximal
carrying capacity of the poultry.

(ii) Due to psychological effect, the infection force may
decrease when the number of infectious individuals
increases. Hence, we modify a nonlinear incidence rate
proposed by Liu et al. [17] to describe the transmission of the
virus from infected poultry to susceptible individuals, with
the following form:

𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ , (2)

where 𝛽ℎ is the transmission coefficient, 𝛽ℎ𝐼𝑝 measures the
infection force of the disease, 𝑎 is a nonnegative constant, and1/(1 + 𝑎𝐼ℎ) measures the inhibition due to the psychological
effect.

(iii) We assume that latent humans (𝐸ℎ) do not take
up the hospital bed resources during the latent period and,
meanwhile, consider the impact of hospital resources on the
recovery rate, first proposed by Shan and Zhu [18], which can
be expressed in the following formula:

𝜇 (𝑏, 𝐼ℎ) = 𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ , (3)

with

lim
𝑏→+∞

𝜇 (𝑏, 𝐼ℎ) = 𝜇1,
lim
𝐼ℎ→0

+
𝜇 (𝑏, 𝐼ℎ) = 𝜇1,

lim
𝐼ℎ→+∞

𝜇 (𝑏, 𝐼ℎ) = 𝜇0,
lim
𝑏→0+

𝜇 (𝑏, 𝐼ℎ) = 𝜇0,
(4)

where 𝜇1 is the maximum per capita recovery rate due
to the sufficient health care resources and few infectious
individuals, 𝜇0 is the minimum per capita recovery rate due
to the basic clinical resources, and 𝑏 is the hospital bed-
population ratio which is a nonnegative constant.

Due to the above assumptions, we can formulate the
system as follows:

𝑑𝑆𝑝𝑑𝑡 = 𝑟𝑝𝑆𝑝 (1 − 𝑆𝑝𝐾𝑝) − 𝛽𝑝𝑆𝑝𝐼𝑝,𝑑𝐼𝑝𝑑𝑡 = 𝛽𝑝𝑆𝑝𝐼𝑝 − (𝜇𝑝 + 𝛿𝑝) 𝐼𝑝,𝑑𝑆ℎ𝑑𝑡 = Λ − 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − 𝜇ℎ𝑆ℎ,𝑑𝐸ℎ𝑑𝑡 = 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ,𝑑𝐼ℎ𝑑𝑡 = 𝜔ℎ𝐸ℎ − (𝜇ℎ + 𝛿ℎ) 𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ,
𝑑𝑅ℎ𝑑𝑡 = (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ − 𝜇ℎ𝑅ℎ.

(5)

Detailed descriptions of system parameters and their
estimated values are listed in Table 1. The variable 𝑅ℎ can be
decoupled from the first four equations of system. Hence, we
can reduce system (5) to the following system:
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Table 1: Description of parameters.

Parameter Description Value Reference𝑟𝑝 Intrinsic growth rate of poultry 5 × 10−3 [6]𝐾𝑝 Maximal carrying capacity of the poultry 50000 [6]𝛽𝑝 Transmission rate from infectious poultry to susceptible poultry - -𝜇𝑝 Natural death rate of poultry (chicken) 1/5–1/10 year−1 [21]𝛿𝑝 Disease induced death rate of poultry 4 × 10−4 [6]Λ New recruitment and newborn of human 30 [6]𝛽ℎ Transmission rate from infectious poultry to susceptible human 5 × 10−9 Assumed𝜇ℎ Natural death rate of human 1/70 year−1 Assumed𝛿ℎ Disease induced death rate of human 0.077 [27]𝜔ℎ Progression to latent rate of human 1/7 day−1 CDC𝜇0 Minimum recovery rate of human (0.067–0.100) [27]𝜇1 Maximum recovery rate of human (𝜇0, 10) [18]𝑏 Hospital bed-population ratio (0, 20) [18]𝑎 Psychological effect parameter - -

𝑑𝑆𝑝𝑑𝑡 = 𝑟𝑝𝑆𝑝 (1 − 𝑆𝑝𝐾𝑝) − 𝛽𝑝𝑆𝑝𝐼𝑝,𝑑𝐼𝑝𝑑𝑡 = 𝛽𝑝𝑆𝑝𝐼𝑝 − (𝜇𝑝 + 𝛿𝑝) 𝐼𝑝,𝑑𝑆ℎ𝑑𝑡 = Λ − 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − 𝜇ℎ𝑆ℎ,𝑑𝐸ℎ𝑑𝑡 = 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ,𝑑𝐼ℎ𝑑𝑡 = 𝜔ℎ𝐸ℎ − (𝜇ℎ + 𝛿ℎ) 𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ.

(6)

For system (6), we first show the following result.

Lemma 1. The set Γ ≐ {(𝑆𝑝, 𝐼𝑝, 𝑆ℎ, 𝐸ℎ, 𝐼ℎ) ∈ 𝑅5+ : 𝑆ℎ+𝐸ℎ+𝐼ℎ ≤Λ/𝜇ℎ} is a positively invariant and attracting region of system
(6).

Proof. For system (6) with nonnegative initial conditions, the
following holds: 𝑑𝑆𝑝𝑑𝑡 𝑆𝑝=0 = 0,𝑑𝐼𝑝𝑑𝑡 𝐼𝑝=0 = 0,𝑑𝑆ℎ𝑑𝑡 𝑆ℎ=0 = Λ > 0;

(7)

hence, the solutions of 𝑆𝑝, 𝐼𝑝, and 𝑆ℎ are nonnegative. Then
we get 𝑑𝐸ℎ𝑑𝑡 𝐸ℎ=0 = 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ ≥ 0,𝑑𝐼ℎ𝑑𝑡 𝐼ℎ=0 = 𝜔ℎ𝐸ℎ ≥ 0,

(8)

so all solutions of system (6) are nonnegative.

Let𝑁ℎ = 𝑆ℎ + 𝐼ℎ + 𝐸ℎ, and it follows that𝑑𝑁ℎ𝑑𝑡 = Λ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ
≤ Λ − 𝜇ℎ𝑁ℎ, (9)

which implies that

lim
𝑡→+∞

𝑁ℎ (𝑡) = Λ𝜇ℎ . (10)

Moreover, if𝑁ℎ(𝑡) > Λ/𝜇ℎ, we have𝑑𝑁ℎ𝑑𝑡 ≤ Λ − 𝜇ℎ𝑁ℎ < 0. (11)

Therefore, each solution of system (6) with nonnegative
initial conditions initiating from Γ will remain in Γ for 𝑡 >0.
3. Analysis of Equilibria

3.1. Existence of Equilibria. In this section, we study the
existence of equilibria of system (6) in Γ. By setting the right-
hand side of system (6) to zero, we obtain the following
equations:

𝑟𝑝𝑆𝑝 (1 − 𝑆𝑝𝐾𝑝) − 𝛽𝑝𝑆𝑝𝐼𝑝 = 0,𝛽𝑝𝑆𝑝𝐼𝑝 − (𝜇𝑝 + 𝛿𝑝) 𝐼𝑝 = 0,
Λ − 𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − 𝜇ℎ𝑆ℎ = 0,

𝛽ℎ𝑆ℎ 𝐼𝑝1 + 𝑎𝐼ℎ − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ = 0,
𝜔ℎ𝐸ℎ − (𝜇ℎ + 𝛿ℎ) 𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ = 0.

(12)



4 Computational and Mathematical Methods in Medicine

Therefore, the coordinates of equilibria are determined
by nonnegative solutions of equations (12). Simple cal-
culation yields that system (6) always has two equilibria𝐸01(0, 0, 𝑆ℎ, 0, 0) and 𝐸02(𝐾𝑝, 0, 𝑆ℎ, 0, 0), where 𝑆ℎ = Λ/𝜇ℎ for
all parameter values.We call 𝐸01 and𝐸02 disease-free equilib-
ria, which represent the state that there is no infection. Using
the method proposed by Diekmann et al. [19] and van den
Driessche and Watmough [20], the basic reproduction num-
ber 𝑅0 of system (6), which is the dominant eigenvalue of the
next-generation matrix, can be given by𝑅0
= 𝜌([[[[

𝛽𝑝𝐾𝑝 0 0𝛽ℎ Λ𝜇ℎ 0 00 0 0
]]]]
[[[
𝜇𝑝 + 𝛿𝑝 0 00 𝜇ℎ + 𝜔ℎ 00 −𝜔ℎ 𝜇ℎ + 𝛿ℎ + 𝜇1

]]]
−1)

= 𝛽𝑝𝐾𝑝𝜇𝑝 + 𝛿𝑝 ,
(13)

where 𝜌 is the spectral radius of a matrix.
Next, we discuss the endemic equilibrium denoted by𝐸∗(𝑆∗𝑝, 𝐼∗𝑝 , 𝑆∗ℎ , 𝐸∗ℎ , 𝐼∗ℎ ). From a straightforward calculation of

the first and second equations of (12), we have

𝑆∗𝑝 = 𝜇𝑝 + 𝛿𝑝𝛽𝑝 , (14)

𝐼∗𝑝 = 𝑟𝑝𝛽𝑝𝑅0 (𝑅0 − 1) . (15)

Obviously, if 𝑅0 > 1, 𝐼∗𝑝 is positive. From the last three
equations of (12), the coordinates of point 𝐸∗ must satisfy

𝑆ℎ = Λ − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ𝜇ℎ ,
𝐸ℎ = (𝜇ℎ + 𝛿ℎ + 𝜇0) 𝐼ℎ + 𝑏 ((𝜇1 − 𝜇0) / (𝑏 + 𝐼ℎ)) 𝐼ℎ𝜔ℎ . (16)

Substituting (16) into equation 𝑑𝐸ℎ/𝑑𝑡 = 0, after some
calculations we have the following equation of 𝐼ℎ:𝑓 (𝐼ℎ) = 𝑚3𝐼3ℎ + 𝑚2𝐼2ℎ + 𝑚1𝐼ℎ + 𝑚0, (17)

where

𝑚3 = −𝑎𝑑0 (𝜇ℎ + 𝜔ℎ)𝜔ℎ < 0,
𝑚2 = −𝑑0𝛽ℎ𝐼∗𝑝 (𝜇ℎ + 𝜔ℎ)𝜇ℎ𝜔ℎ − (𝑎𝑏𝑑1 + 𝑑0) (𝜇ℎ + 𝜔ℎ)𝜔ℎ< 0,
𝑚1 = Λ𝛽ℎ𝜇ℎ 𝐼∗𝑝 − 𝑏𝑑1𝛽ℎ𝐼∗𝑝 (𝜇ℎ + 𝜔ℎ)𝜇ℎ𝜔ℎ − 𝑏𝑑1 (𝜇ℎ + 𝜔ℎ)𝜔ℎ ,
𝑚0 = 𝑏𝛽ℎ𝐼∗𝑝 Λ𝜇ℎ > 0.

(18)

And 𝑑𝑖 = 𝜇ℎ + 𝛿ℎ + 𝜇𝑖, 𝑖 = 0, 1, and obviously𝑓 (0) = 𝑚0 > 0,𝑓 (+∞) < 0. (19)

IntermediateValueTheorem indicates that there exists at least
one positive root of (17). In the following, we consider all the
situations.

(i) Assuming there are three real roots, Vieta Theorem
indicates that 𝐼ℎ1𝐼ℎ2𝐼ℎ3 = −𝑚0𝑚3 > 0, (20)

𝐼ℎ1 + 𝐼ℎ2 + 𝐼ℎ3 = −𝑚2𝑚3 < 0. (21)

From (20) we can see that there are two cases; one is that all
three roots are positive and the other is one positive and two
negative roots. Equation (21) indicates that at least one root
should be negative; hence, in this case, equation (21) has a
unique positive root.

(ii) Otherwise, suppose that there are a pair of complex
roots and a positive real root, denoted by 𝑥 + 𝑦𝑖, 𝑥 − 𝑦𝑖, and𝑧, where 𝑥, 𝑦, 𝑧 are real numbers. We have𝑓1 = (𝐼ℎ − (𝑥 + 𝑦𝑖)) (𝐼ℎ − (𝑥 − 𝑦𝑖)) (𝐼ℎ − 𝑧)= 𝐼3ℎ − (2𝑥 + 𝑧) 𝐼2ℎ + (𝑥2 + 𝑦2 + 2𝑥𝑧) 𝐼ℎ− 𝑧 (𝑥2 + 𝑦2) . (22)

Comparing with (17), −𝑧(𝑥2 + 𝑦2) < 0 holds, which
contradicts with𝑚0 > 0.

In summary, we can conclude that (17) only has a unique
positive root denoted by 𝐼∗ℎ . Thus there is only one endemic
equilibrium 𝐸∗(𝑆∗𝑝, 𝐼∗𝑝 , 𝑆∗ℎ , 𝐸∗ℎ , 𝐼∗ℎ ) of system (6). The results
are listed in the following lemma.

Lemma 2. In system (6) two disease-free equilibria 𝐸01(0, 0,𝑆ℎ, 0, 0) and 𝐸02(𝐾𝑝, 0, 𝑆ℎ, 0, 0) exist, where 𝑆ℎ = Λ/𝜇ℎ if 𝑅0 <1 and a unique endemic equilibrium 𝐸∗(𝑆∗𝑝, 𝐼∗𝑝 , 𝑆∗ℎ , 𝐸∗ℎ , 𝐼∗ℎ ) if𝑅0 > 1.
3.2. The Dynamical Behavior of the Poultry-Only Subsystem.
In order to better discuss the full system, we first learn the
poultry-only subsystem in Ω = {(𝑆𝑝, 𝐼𝑝) ∈ 𝑅2+ : 𝑆𝑝 ≥ 0, 𝐼𝑝 ≥0}, 𝑑𝑆𝑝𝑑𝑡 = 𝑟𝑝𝑆𝑝 (1 − 𝑆𝑝𝐾𝑝) − 𝛽𝑝𝑆𝑝𝐼𝑝,𝑑𝐼𝑝𝑑𝑡 = 𝛽𝑝𝑆𝑝𝐼𝑝 − (𝜇𝑝 + 𝛿𝑝) 𝐼𝑝.

(23)

Clearly, the poultry-only subsystem (23) is independent of the
full system (6). From Lemma 2, we can directly obtain two
disease-free equilibria of (23), denoted by 𝑃01(0, 0) and𝑃02(𝐾𝑝, 0) and a unique endemic equilibrium, denoted by𝑃∗(𝑆∗𝑝, 𝐼∗𝑝 ) if 𝑅0 > 1.
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Linearizing the subsystem (23) at the equilibria 𝑃01, 𝑃02,
and 𝑃∗, respectively, we can obtain the Jacobianmatrices. For𝑃01, the characteristic equation always has a positive root 𝑟𝑝.
For 𝑃02, the characteristic equation has two negative roots𝜆1 = −𝑟𝑝, 𝜆2 = (𝜇𝑝 + 𝛿𝑝)(𝑅0 − 1) if 𝑅0 < 1. Otherwise it has
one positive root. If 𝑅0 > 1, 𝑃∗ exists and the characteristic
equation is 𝜆2 + 𝑟𝑝(𝑆∗𝑝/𝐾𝑝)𝜆 + 𝛽2𝑝𝑆∗𝑝𝐼∗𝑝 = 0. All roots of the
equation have negative real parts. Hence, we summarize the
results as follows.

Lemma 3. The disease-free equilibrium 𝑃01(0, 0) is always
unstable. Further, (i) if 𝑅0 < 1, the disease-free equilibrium𝑃02(𝐾𝑝, 0) is locally asymptotically stable and (ii) if 𝑅0 > 1, the
disease-free equilibrium𝑃02(𝐾𝑝, 0) is unstable and the endemic
equilibrium 𝑃∗(𝑆∗𝑝, 𝐼∗𝑝 ) exists and is locally asymptotically
stable.

The following theorem shows the global stability of the
equilibria.

Theorem 4. If 𝑅0 < 1, the disease-free equilibrium 𝑃02 is
globally asymptotically stable in 𝑅2+; if 𝑅0 > 1 the endemic
equilibrium 𝑃∗ is globally asymptotically stable in 𝑅2+.
Proof. If 𝑅0 < 1, construct Lyapunov function

𝑉1 = 𝐾𝑝 ( 𝑆𝑝𝐾𝑝 − ln
𝑆𝑝𝐾𝑝) + 𝐼𝑝. (24)

Calculate the derivative 𝑉1 along subsystem (23); it yields

𝑉1 (23) = 𝐾𝑝( 𝑆𝑝𝐾𝑝 − 𝑆

𝑝𝑆𝑝) + 𝐼𝑝

= 𝑟𝑝 (1 − 𝑆𝑝𝐾𝑝)𝑆𝑝 − 𝛽𝑝𝑆𝑝𝐼𝑝
− 𝑟𝑝 (1 − 𝑆𝑝𝐾𝑝)𝐾𝑝 + 𝛽𝑝𝐼𝑝𝐾𝑝 + 𝛽𝑝𝑆𝑝𝐼𝑝− (𝜇𝑝 + 𝛿𝑝) 𝐼𝑝

= − 𝑟𝑝𝐾𝑝 (𝑆𝑝 − 𝐾𝑝)2 + 𝐼𝑝 (𝜇𝑝 + 𝛿𝑝) (𝑅0 − 1)≤ 0.

(25)

The set 𝑉1 = 0 has a unique point 𝑃02. According to the
invariance principle of Lasalle, all solutions of subsystem (23)
approach the largest positively invariant subset of the set𝑉1 =0. Hence, if 𝑅0 < 1, 𝑃02 is globally asymptotically stable in 𝑅2+.

If 𝑅0 > 1, consider the Lyapunov function
𝑉2 = 𝑆∗𝑝 (𝑆𝑝𝑆∗𝑝 − ln

𝑆𝑝𝑆∗𝑝) + 𝐼∗𝑝 (𝐼𝑝𝐼∗𝑝 − ln
𝐼𝑝𝐼∗𝑝 ) (26)

in 𝑅2+. Calculate the derivative 𝑉2 along subsystem (23); it
satisfies

𝑉2 (23) = 𝑆∗𝑝 (𝑆𝑝𝑆∗𝑝 − 𝑆

𝑝𝑆𝑝) + 𝐼∗𝑝 (𝐼


𝑝𝐼∗𝑝 − 𝐼

𝑝𝐼𝑝)= 𝑟𝑝 (1 − 𝑆𝑝𝐾𝑝)𝑆𝑝 − 𝑟𝑝 (1 − 𝑆𝑝𝐾𝑝)𝑆∗𝑝− 𝑟𝑝 (1 − 𝑆∗𝑝𝐾𝑝)𝑆𝑝 + 𝑟𝑝 (1 − 𝑆∗𝑝𝐾𝑝)𝑆∗𝑝= − 𝑟𝑝𝐾𝑝 (𝑆∗𝑝 − 𝑆𝑝)2 ≤ 0.

(27)

The set 𝑉2 = 0 has a unique point 𝑃∗. According to the
invariance principle of Lasalle, all solutions of subsystem (23)
approach the largest positively invariant subset of the set𝑉2 =0. Hence, if 𝑅0 > 1, 𝑃∗ is globally asymptotically stable in𝑅2+.
3.3. The Dynamical Behavior of System (6). In this section,
we will discuss the dynamical behavior of system (6) and
study the local stability of equilibria 𝐸01, 𝐸02, and 𝐸∗. First,
we present the following results.

Lemma 5. The disease-free equilibrium 𝐸01(0, 0, 𝑆ℎ, 0, 0) is
always unstable. Further, (i) if 𝑅0 < 1, the disease-free equi-
librium 𝐸02(𝐾𝑝, 0, 𝑆ℎ, 0, 0) is locally asymptotically stable and
(ii) if 𝑅0 > 1, the disease-free equilibrium 𝐸02(𝐾𝑝, 0, 𝑆ℎ, 0, 0)
is unstable and the endemic equilibrium 𝐸∗(𝑆∗𝑝, 𝐼∗𝑝 , 𝑆∗ℎ , 𝐸∗ℎ , 𝐼∗ℎ )
exists and is locally asymptotically stable.

Proof. (i) The Jacobian matrix at 𝐸01 is
J (𝐸01)
=
[[[[[[[[[[[

𝑟𝑝 0 0 0 00 − (𝜇𝑝 + 𝛿𝑝) 0 0 00 −𝛽ℎ Λ𝜇ℎ −𝜇ℎ 0 0
0 𝛽ℎ Λ𝜇ℎ 0 − (𝜇ℎ + 𝜔ℎ) 00 0 0 𝜔ℎ −𝑑1

]]]]]]]]]]]
. (28)

Since the characteristic equation always has a positive root𝜆 = 𝑟𝑝, 𝐸01 is always unstable.
(ii) The Jacobian matrix at 𝐸02 is

J (𝐸02)

=
[[[[[[[[[[[[

−𝑟𝑝 −𝛽𝑝𝐾𝑝 0 0 00 𝛽𝑝𝐾𝑝 − (𝜇𝑝 + 𝛿𝑝) 0 0 00 −𝛽ℎ Λ𝜇ℎ −𝜇ℎ 0 0
0 𝛽ℎ Λ𝜇ℎ 0 − (𝜇ℎ + 𝜔ℎ) 00 0 0 𝜔ℎ −𝑑1

]]]]]]]]]]]]
. (29)

One root of the characteristic equation is 𝜆 = (𝜇𝑝 + 𝛿𝑝)(𝑅0 −1), and others are negative roots. Obviously if 𝑅0 < 1,
disease-free equilibrium 𝐸02 is locally asymptotically stable;
otherwise 𝐸02 is unstable.
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(iii) The Jacobian matrix at 𝐸∗ is

J (𝐸∗) =
[[[[[[[[[[[[[[[[[[

−𝑟𝑝 𝑆∗𝑝𝐾𝑝 −𝛽𝑝𝑆∗𝑝 0 0 0𝛽𝑝𝐼∗𝑝 0 0 0 0
0 −𝛽ℎ 𝑆∗ℎ1 + 𝑎𝐼∗

ℎ

−𝐼∗𝑝 𝛽ℎ1 + 𝑎𝐼∗
ℎ

− 𝜇ℎ 0 𝑎𝛽ℎ𝐼∗𝑝 𝑆∗ℎ(1 + 𝑎𝐼∗
ℎ
)20 𝛽ℎ 𝑆∗ℎ1 + 𝑎𝐼∗

ℎ

𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗
ℎ

− (𝜇ℎ + 𝜔ℎ) −𝑎𝛽ℎ𝐼∗𝑝 𝑆∗ℎ(1 + 𝑎𝐼∗
ℎ
)20 0 0 𝜔ℎ −𝑑0 − 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗
ℎ
)2

]]]]]]]]]]]]]]]]]]

. (30)

The characteristic equation reads

𝑤 (𝜆)
= (𝜆2 + 𝑟𝑝 𝑆∗𝑝𝐾𝑝 𝜆 + 𝛽2𝑝𝑆∗𝑝𝐼∗𝑝)(𝜆3 + 𝜂2𝜆2 + 𝜂1𝜆 + 𝜂0)= 0,

(31)

where

𝜂2 = 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗
ℎ

+ 2𝜇ℎ + 𝜔ℎ + 𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗
ℎ
)2 > 0,

𝜂1
= (𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗

ℎ

+ 𝜇ℎ + 𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗
ℎ
)2)(𝜇ℎ + 𝜔ℎ)

+ (𝜇ℎ + 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗
ℎ

)(𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗
ℎ
)2)

+ 𝑎𝜔ℎ𝛽ℎ 𝑆∗ℎ𝐼∗𝑝(1 + 𝑎𝐼∗
ℎ
)2 > 0,

𝜂0
= (𝜇ℎ + 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗

ℎ

) (𝜇ℎ + 𝜔ℎ)(𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗
ℎ
)2)

+ 𝑎𝜇ℎ𝜔ℎ𝛽ℎ 𝑆∗ℎ𝐼∗𝑝(1 + 𝑎𝐼∗
ℎ
)2 > 0.

(32)

It follows that

𝜂2𝜂1 − 𝜂0 = [(𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗
ℎ

+ 𝜇ℎ) + 𝜇ℎ + ⋅ ⋅ ⋅]
⋅ [(𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗

ℎ
)2)(𝜇ℎ + 𝜔ℎ)

+ 𝑎𝜔ℎ𝛽ℎ 𝑆∗ℎ𝐼∗𝑝(1 + 𝑎𝐼∗
ℎ
)2 + ⋅ ⋅ ⋅] − (𝜇ℎ + 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼∗

ℎ

)
⋅ (𝜇ℎ + 𝜔ℎ)(𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼∗

ℎ
)2) − 𝑎𝜇ℎ𝜔ℎ𝛽ℎ

⋅ 𝑆∗ℎ𝐼∗𝑝(1 + 𝑎𝐼∗
ℎ
)2 > 0.

(33)

By the Routh-Hurwitz criterion, the roots of (31) have nega-
tive real parts. The next theorem shows the global dynamics
of the system.

Theorem 6. If 𝑅0 < 1, the disease-free equilibrium 𝐸02 is
globally asymptotically stable in Γ; if 𝑅0 > 1 and 𝑏 ≥ 2Λ(𝜇1 −𝜇0 − (𝜇ℎ/2))/𝜇2ℎ > 0, the endemic equilibrium 𝐸∗ is globally
asymptotically stable in Γ.
Proof. If 𝑅0 < 1, Theorem 4 indicates that the disease-
free equilibrium 𝑃02(𝐾𝑝, 0) is globally asymptotically stable
in subsystem (23). By calculation, system (6) can be reduced
to the following system:

𝑑𝑆ℎ𝑑𝑡 = Λ − 𝜇ℎ𝑆ℎ,𝑑𝐸ℎ𝑑𝑡 = − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ,𝑑𝐼ℎ𝑑𝑡 = 𝜔ℎ𝐸ℎ − (𝜇ℎ + 𝛿ℎ) 𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ.
(34)
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From the first two equations of system (34), we can obtain

𝑆ℎ (𝑡) = (𝑆ℎ (0) − Λ𝜇ℎ) exp (−𝜇ℎ𝑡) + Λ𝜇ℎ ,𝐸ℎ (𝑡) = 𝐸ℎ (0) exp (− (𝜇ℎ + 𝜔ℎ) 𝑡) . (35)

Clearly, we have that

lim
𝑡→+∞

𝑆ℎ = 𝑆ℎ,
lim
𝑡→+∞

𝐸ℎ = 0, (36)

further, since 𝑑𝐼ℎ𝑑𝑡 = −𝑑0𝐼ℎ − 𝑏 (𝜇1 − 𝜇0) 𝐼ℎ(𝑏 + 𝐼ℎ) < 0; (37)

that is, 𝐼ℎ(𝑡) is a monotonically decreasing function and
lim𝑡→+∞𝐼ℎ = 0. In summary, the disease-free equilibrium𝐸02
is globally asymptotically stable.

If 𝑅0 > 1, Theorem 4 indicates that the endemic
equilibrium 𝑃∗(𝑆∗𝑝, 𝐼∗𝑝 ) is globally asymptotically stable in
subsystem (23). Similarly, we can also simplify system (6) as

𝑑𝑆ℎ𝑑𝑡 = Λ − 𝛽ℎ𝑆ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ − 𝜇ℎ𝑆ℎ,𝑑𝐸ℎ𝑑𝑡 = 𝛽ℎ𝑆ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ − (𝜇ℎ + 𝜔ℎ) 𝐸ℎ,𝑑𝐼ℎ𝑑𝑡 = 𝜔ℎ𝐸ℎ − (𝜇ℎ + 𝛿ℎ) 𝐼ℎ − (𝜇0 + 𝑏(𝜇1 − 𝜇0)𝑏 + 𝐼ℎ ) 𝐼ℎ.
(38)

From the Jacobian matrix of system (38), we can obtain the
second additive compound matrix J[2]:

J[2]

= [[[[[[[[
−𝑗11 −𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 −𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2𝜔ℎ −𝑗22 0
0 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ −𝑗33

]]]]]]]]
, (39)

where

𝑗11 = 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ + 2𝜇ℎ + 𝜔ℎ,
𝑗22 = 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ + 𝜇ℎ + 𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 ,
𝑗33 = 𝜇ℎ + 𝜔ℎ + 𝑑0 + 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 .

(40)

We choose the matrix P(𝑆ℎ, 𝐸ℎ, 𝐼ℎ) = diag(1, 𝐸ℎ/𝐼ℎ, 𝐸ℎ/𝐼ℎ)
and calculate P𝑓, which denotes the matrix whose com-
ponents are P𝑓𝑖𝑗(𝑥) = (𝜕P𝑖𝑗(𝑥)/𝜕𝑥)𝑇 ⋅ 𝑓(𝑥), so P𝑓P−1 =
diag(0, 𝐸ℎ/𝐸ℎ − 𝐼ℎ/𝐼ℎ, 𝐸ℎ/𝐸ℎ − 𝐼ℎ/𝐼ℎ). Rewrite the matrix B =
P𝑓P−1 + PJ[2]P−1 in block matrix

B = [B11 B12
B21 B22

] , (41)

where

B11 = −𝑗11,
B12

= [−𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝐼ℎ𝐸ℎ , −𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝐼ℎ𝐸ℎ] ,
B21= [𝜔ℎ𝐸ℎ𝐼ℎ , 0]𝑇,
B22 = [[[[[

−𝑗22 + 𝐸ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ 0
𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ −𝑗33 + 𝐸ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ

]]]]]
.

(42)

We consider the norm ‖ ⋅ ‖ in 𝑅+3 as(𝑆ℎ, 𝐸ℎ, 𝐼ℎ) = max {𝑆ℎ , 𝐸ℎ + 𝐼ℎ} , (43)

with vector (𝑆ℎ, 𝐸ℎ, 𝐼ℎ) in𝑅+3 and denote by 𝜇(B) the Lozinskil
measure with respect to this norm. It follows that

𝜇 (B) ≤ sup {𝑔1, 𝑔2}≡ sup {𝜇1 (B11) + B12 , B21 + 𝜇1 (B22)} , (44)

where |B12|, |B21| are matrix norms with respect to the 𝐿1
vector norm and 𝜇1 denotes the Lozinskil measure with
respect to the 𝐿1 norm.

We calculate 𝑔1 = 𝜇1(B11) + |B12|, where𝜇1 (B11) = −𝑗11,B12 = 𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝐼ℎ𝐸ℎ . (45)

Hence,

𝑔1 = −𝑗11 + 𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝐼ℎ𝐸ℎ
= −𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ − 2𝜇ℎ − 𝜔ℎ + 𝑎𝛽ℎ𝑆ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝐼ℎ𝐸ℎ .

(46)
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Further, 𝑔2 = |B21| + 𝜇1(B22), where
𝜇1 (B22) = max{−𝑗22 + 𝐸ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ + 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ , −𝑗33
+ 𝐸ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ} = max{−𝜇ℎ − 𝑑0 − 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2
+ 𝐸ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ , −𝜇ℎ − 𝜔ℎ − 𝑑0 − 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 + 𝐸


ℎ𝐸ℎ

− 𝐼ℎ𝐼ℎ} = −𝜇ℎ − 𝑑0 − 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 + 𝐸

ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ ,

(47)

and, hence,

𝑔2 = −𝜇ℎ − 𝑑0 − 𝑏2 (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 + 𝐸

ℎ𝐸ℎ − 𝐼ℎ𝐼ℎ + 𝜔ℎ𝐸ℎ𝐼ℎ . (48)

From the last two equations of system (38), we have𝐼ℎ𝐼ℎ + 𝑑0 − 𝜔ℎ𝐸ℎ𝐼ℎ = −𝑏(𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ) ,𝐸ℎ𝐸ℎ − 𝛽ℎ 𝑆ℎ𝐸ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ = − (𝜔ℎ + 𝜇ℎ) .
(49)

Taking into consideration (49), the following holds:

𝑔1 = 𝐸ℎ𝐸ℎ − 𝜇ℎ − 𝛽ℎ 𝐼∗𝑝1 + 𝑎𝐼ℎ − 𝛽ℎ 𝐼∗𝑝(1 + 𝑎𝐼ℎ)2 𝑆ℎ𝐸ℎ ,
𝑔2 = 𝐸ℎ𝐸ℎ − 𝜇ℎ + 𝑏(𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 𝐼ℎ,

(50)

and thus

𝜇 (B) ≤ sup {𝑔1, 𝑔2} ≤ 𝐸ℎ𝐸ℎ − 𝜇ℎ + 𝑏(𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ)2 𝐼ℎ
≤ 𝐸ℎ𝐸ℎ − 𝜇ℎ + 𝐼ℎ (𝜇1 − 𝜇0)(𝑏 + 𝐼ℎ) .

(51)

We assume 𝑏 ≥ 2Λ(𝜇1 − 𝜇0 − 𝜇ℎ/2)/𝜇2ℎ > 0; hence
𝜇 (B) ≤ 𝐸ℎ𝐸ℎ − 𝜇ℎ2 , (52)

and then

𝑞 = lim sup
𝑡→+∞

sup
𝑥∈Γ

1𝑡 ∫𝑡0 𝜇 (B) 𝑑𝑠
≤ 1𝑡 ∫𝑡∗0 𝜇 (B) 𝑑𝑠 + 1𝑡 ln 𝐸ℎ (𝑡)𝐸ℎ (𝑡∗) − 𝜇ℎ2 𝑡 − 𝑡∗𝑡 < 0. (53)

The Bendixson condition is satisfied; then the result follows.

4. Numerical Simulations

In this section, we carry out numerical simulations for
system (5) in order to illustrate the influences of the basic
reproduction number 𝑅0, psychological effect, and hospital
resources on the disease evolution.The lifespan of poultry for
chickens is 5 to 10 years under favorable conditions [21];
thus we assume the poultry can survive 8 years and fix
the parameter 𝜇𝑝 = 3.4246 ∗ 10−4. People can usually
live for 70 years, so the natural death rate of human 𝜇ℎ is3.91 ∗ 10−5. The latent period is about 7 days (China CDC)
and 𝜔ℎ = 1/7. We assume the following parameters:𝑟𝑝 = 5 ∗ 10−3, 𝐾𝑝 = 5 ∗ 104, 𝛿𝑝 = 4 ∗ 10−4, Λ =30, 𝛽ℎ = 7 ∗ 10−9, 𝜇0 = 0.067, 𝛿ℎ = 0.077. We choose
the initial values as (𝑆𝑝(0), 𝐼𝑝(0), 𝑆ℎ(0), 𝐸ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0)) =(1000000, 500, 100000, 3, 1, 0).

Our theoretical results show that the basic reproduction
number 𝑅0 determines the global dynamics of the system (5).
Fix 𝑎 = 0.001, 𝑏 = 0.05, and𝜇1 = 0.1, for𝑅0 = 𝛽𝑝𝐾𝑝/(𝜇𝑝+𝛿𝑝);
when𝑅0 equals 1, we obtain𝛽∗𝑝 = 1.48∗10−8. If𝛽𝑝 < 𝛽∗𝑝 (𝑅0 <1), the solutions of 𝐼ℎ converge to the disease-free steady
state and the disease will finally be extinct (see Figure 1(a)).
If 𝛽𝑝 > 𝛽∗𝑝 (𝑅0 > 1), the solutions of 𝐼ℎ converge to the
endemic state, which implies that the disease will persist (see
Figure 1(b)).

We then use Latin hypercube sampling (LHS) [22] and
partial rank correlation coefficients (PRCCs) [23] to explore
parameter space and find to which parameter the prevalence
at endemic equilibrium is sensitive when parameters vary.
Due to limited data on the distribution for each parameter, we
choose a uniform distribution for all input parameters with
the mean value listed in Table 1. PRCC results in Figure 2(a)
indicate that the first four parameters with the most signif-
icant impact on the equilibrium prevalence are the psycho-
logical effect parameter 𝑎, the hospital bed-population ratio𝑏, the minimum recovery rate of human 𝜇0, and maximum
recovery rate of human 𝜇1. It is reasonable that the four
parameters play important roles in the infections. In fact,
a larger psychological effect parameter 𝑎 means that the
public improve their awareness of A(H7N9) virus and take
more preventive measures, which leads to lower incidence
rate and then lower new infections. A larger hospital bed
ratio 𝑏 indicates that more sufficient hospital resources
and treatments are provided, which then can improve the
recovery rate and lead to lower new infections.The results can
be seen explicitly from Figure 2(b). When the impact of
psychological effect and hospital resources is introduced, the
amount of equilibrium prevalence obviously decreases with
the parameters 𝑎 and (or) 𝑏 increasing.

To further examine the impact of psychological effect
and hospital resources on infections, respectively, we take𝛽𝑝 = 3.5 ∗ 10−8 (𝑅0 = 2.3570 > 1) and 𝜇1 = 0.24 with
one of parameters 𝑎 and 𝑏 fixed and the other varying.
Figure 3(a) shows that slightly increasing parameter 𝑎 can
not only diminish the final size of the infected but also result
in a much lower peak of the disease. Similar results can be
obtained when parameter 𝑏 varies (see Figure 3(b)).
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Figure 1: (a) All solutions of 𝐼ℎ(𝑡) converge to the disease-free steady state eventually if 𝛽𝑝 < 𝛽∗𝑝 (𝑅0 < 1). (b) All solutions of 𝐼ℎ(𝑡) converge
to the endemic steady state eventually if 𝛽𝑝 > 𝛽∗𝑝 (𝑅0 > 1).
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Figure 2: (a) PRCCs for the endemic equilibriumprevalence. All the parameters came fromLatin hypercube sampling. (b) Plot of the endemic
equilibrium prevalence with respect to the psychological effect parameter 𝑎 and hospital bed ratio 𝑏. 𝛽𝑝 = 3.5 ∗ 10−8 (𝑅0 > 1), 𝜇1 = 0.24.
5. Conclusions and Discussions

In this work, in order to evaluate the combined impact of
psychological effect and available hospital resources on the
transmission of A(H7N9) virus from poultry to humans,
we formulated and analyzed a dynamical model with a
nonlinear incidence rate and a nonlinear recovery rate.
From the mathematical point of view, we obtained the basic
reproduction number 𝑅0, which determines the extinction of
the avian influenza. Theoretical analysis of system (6) indi-
cates that the disease-free equilibrium 𝐸02(𝐾𝑝, 0, 𝑆ℎ, 0, 0) is
globally asymptotically stable in Γ when the basic reproduc-
tion number is less than unity; that is, the avian influenza
A(H7N9) will die out (see Figure 1(a)); and the endemic
equilibrium 𝐸∗(𝑆∗𝑝, 𝐼∗𝑝 , 𝑆∗ℎ , 𝐸∗ℎ , 𝐼∗ℎ ) is globally asymptotically
stable in Γwhen the basic reproduction number is larger than

unity and 𝑏 ≥ 2Λ(𝜇1 − 𝜇0 − 𝜇ℎ/2)/𝜇2ℎ > 0. Note that although
the global stability of endemic equilibrium is obtained under
this specific condition, whichmay be due to the limitations of
the analytical method, numerical simulations show that all
solutions can converge to 𝐸∗ eventually without the specific
condition (see Figure 1(b)).

Both the psychological effect and available hospital
resources cannot neither change the stability of endemic
equilibriumnor alter the basic reproductionnumber, but they
indeed play a significant role in affecting the number of infec-
tious humans, seen from PRCC results (Figure 2(a)) and the
impact of parameters 𝑎 and 𝑏 on equilibrium prevalence (Fig-
ure 2(b)). Comparing the number of infectious humans with
or without psychological effects, that is, parameter 𝑎 = 0 or𝑎 > 0, it can be seen that bigger parameter 𝑎 can significantly
decrease the peak of A(H7N9) infections; meanwhile, the
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Figure 3: Fix 𝛽𝑝 = 3.5∗10−8 (𝑅0 > 1). (a) Plot of 𝐼ℎ with varying parameter 𝑎 for 𝑏 = 1. (b) Plot of 𝐼ℎ with varying parameter 𝑏 for 𝑎 = 0.001.
In both cases, the final size and the peak value of the infected are diminished.

final size of the disease can be reduced. However, no matter
whether there is psychological effect or not, the disease can-
not die out, seen from Figure 3(a). Figure 3(b) indicates that
when the available hospital resources are more sufficient, a
bigger parameter 𝑏 leads to a smaller size of the outbreak and
a lower number of infectious humans. Similarly, the impact
of available hospital resources cannot eradicate the disease
either.

Different from the previous avian influenza dynamics
models, which usually use bilinear and standard incidence
rates and constant recovery rate, in this work, incorporating
the combined impact of psychological effect and available
hospital resources, we formulate A(H7N9) dynamic model
with nonlinear incidence rate and nonlinear recovery rate.
We introduce the recovery function 𝜇(𝑏, 𝐼ℎ) = 𝜇0 + 𝑏(𝜇1 −𝜇0)/(𝑏 + 𝐼ℎ), where parameter 𝑏 represents hospital bed-
population ratio, which reflects the available resources of the
health care system to public. The number of hospital beds is
a critical index and with the number of infected cases
increasing it may become a limiting factor in controlling
the spread of A(H7N9) virus. Our results demonstrate that
both psychological effect and available hospital resources
can dramatically affect the A(H7N9) virus transmission
dynamics.This work is an improvement of existingmodels of
the avian influenza A(H7N9) and the results can provide
some practical implications for the control of A(H7N9) virus
transmission.

Note that, from current data for A(H7N9) infection, there
is an incubation period between infection and symptom
onset in both avian and human populations [24].We consider
latent class (𝐸ℎ) in our model, which is more realistic to

exhibit the epidemiology of A(H7N9). Based on this charac-
teristic of A(H7N9) virus, we will incorporate time delay in
our model for future study. There have been five seasonal
outbreaks of human infection by A(H7N9) virus in China,
since the first outbreak was observed in 2013. Except for the
first outbreak, others usually started in October, significantly
increased in lateDecember, and then peaked in January of the
next year [25]. Thus seasonal variation may affect the spread
of A(H7N9) virus as one of the important factors. Zhao et al.
[26] presented amodel with period parameters to analyze the
effect of climate change on the transmission of A(H7N9) and
discussed the global stability and threshold conditions. In
our future work, we can also consider the incidence rate as
a periodic function.
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