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Increasing evidence supports a role for cerebrovasculature dysfunction in the etiology
of Alzheimer’s disease (AD). Blood vessels in the brain are composed of a collection of
cells and acellular material that comprise the neurovascular unit (NVU). The NVU in the
hippocampus and cortex receives innervation from cholinergic neurons that originate in
the basal forebrain. Death of these neurons and their nerve fibers is an early feature
of AD. However, the effect of the loss of cholinergic innervation on the NVU is not
well characterized. The purpose of this study was to evaluate the effect of the loss of
cholinergic innervation of components of the NVU at capillaries, arteries and veins in the
hippocampus and cortex. Adult male C57BL/6 mice received an intracerebroventricular
injection of the immunotoxin p75NTR mu-saporin to induce the loss of cholinergic
neurons. Quadruple labeling immunohistochemistry and 3D reconstruction were carried
out to characterize specific points of contact between cholinergic fibers and collagen IV,
smooth muscle cells and astrocyte endfeet. Innate differences were observed between
vessels of the hippocampus and cortex of control mice, including a greater amount
of cholinergic contact with perivascular astrocytes in hippocampal capillaries and a
thicker basement membrane in hippocampal veins. Saporin treatment induced a loss
of cholinergic innervation at the arterial basement membrane and smooth muscle cells
of both the hippocampus and the cortex. In the cortex, there was an additional loss of
innervation at the astrocytic endfeet. The current results suggest that cortical arteries are
more strongly affected by cholinergic denervation than arteries in the hippocampus. This
regional variation may have implications for the etiology of the vascular pathology that
develops in AD.
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INTRODUCTION

The loss of cholinergic neurons in the basal forebrain and the
areas innervated by their fiber projections is a hallmark of
Alzheimer’s disease (AD; Whitehouse et al., 1982; Francis et al.,
1999). Decreased cholinergic innervation of the hippocampus
and cortex is associated with memory impairment (Damasio
et al., 1985), decreased mini-mental state examination scores and
behavioral changes (Perry, 1980; Tong and Hamel, 1999; Garcia-
Alloza et al., 2005). Moreover, acetylcholinesterase inhibitors
(AChEIs) are currently one of only two approved drugs for
the treatment of AD (Hampel et al., 2018). Recent studies
have demonstrated that loss of basal forebrain gray matter
occurs before the onset of clinical symptoms (Schmitz and
Nathan Spreng, 2016) and that administration of the AChEI
Donepezil during the prodromal stage of AD prevented basal
forebrain degeneration (Cavedo et al., 2017). This highlights the
significance of cholinergic neurotransmission in AD.

Numerous experimental models have been used to mimic
the loss of basal forebrain cholinergic neurons and their fiber
projections. These include injection of ibotenic acid into the
substantia innominata (Vaucher and Hamel, 1995), lesioning of
the fimbria fornix (van der Staay et al., 1989) and electric pulse
ablation of the medial septum (Scheiderer et al., 2006; Nelson
et al., 2014). However, these models can result in widespread
degeneration that may not specifically target cholinergic cell
populations. The discovery that cholinergic neurons in the basal
forebrain express the p75 neurotrophin receptor (NTR), while
other populations of cholinergic neurons do not (Steininger et al.,
1993), allowed for the development of targeted immunotoxins
such as 192 IgG-saporin and its mouse analog, mu-p75-saporin.
In vivo administration of mu-p75-saporin has been shown
to selectively kill cholinergic neurons in the medial septum,
horizontal and diagonal bands of Broca and nucleus basalis of
Meynert and cause withdrawal of cholinergic projections in the
cortex and hippocampus in mice (Berger-Sweeney et al., 2001;
Hunter et al., 2004; Hamlin et al., 2013; Kerbler et al., 2013;
Laursen et al., 2013; Ramos-Rodriguez et al., 2013). Although
recent genetically-driven technologies such as optogenetics
and designer receptor exclusively activated by designer drug
(DREDD) have led to more targeted approaches to silence
specific cholinergic populations (Hangya et al., 2015; Zhang et al.,
2017), it is not clear if these techniques replicate the loss of
cholinergic innervation that is seen in AD.

In addition to early loss of cholinergic neurons, increasing
evidence suggests that alterations of the cerebrovasculature
contribute to the etiology and/or progression of AD. In fact,
vascular pathology has been suggested to be the earliest indicator
of the development of AD (Jack et al., 2010; Iturria-Medina et al.,
2016). The most common form of cerebrovascular pathology
associated with AD is cerebral amyloid angiopathy (CAA). CAA
is defined as the presence of β-amyloid (Aβ) deposits in the
walls of cerebral blood vessels (Vinters, 1987) and is believed to
develop due to an age-related failure of clearance of Aβ from the
brain. CAA develops principally in cortical and leptomeningeal
arteries, with additional capillary involvement in individuals
carrying the apolipoprotein E4 (apoE4) allele (Thal et al., 2008). It

is observed least frequently in veins. Topographically, CAA starts
in blood vessels of neocortical areas (e.g., occipital and parietal
lobe), while subcortical vessels (e.g., hippocampus, thalamus)
are typically not affected until later stages of the disease (Thal
et al., 2008; Vinters and Gilbert, 1983). The reasons underlying
the development of CAA and its pattern of distribution are
currently unknown.

Blood vessels in the brain are composed of endothelial
cells, basement membrane proteins, pericytes, smooth muscle
cells, astrocytes and neurons that are collectively referred to
as the neurovascular unit (NVU; Iadecola, 2017). The NVU
is also a target of cholinergic innervation, which can occur at
multiple sites, including astrocytes, smooth muscle cells and
endothelial cells (Vaucher and Hamel, 1995). This innervation is
important for the maintenance of vascular tone and in mediating
site-directed blood flow via neurovascular coupling (Hamel,
2006). Loss of cholinergic contact with blood vessels has been
reported in the cortex of AD brains (Tong and Hamel, 1999) and
in transgenic mouse models of AD (Kuznetsova and Schliebs,
2013; Michalski et al., 2017). However, most of these studies
have been carried out using 2D images and have focused on
specific brain regions and/or selected vessels. Thus, the impact
of the loss of cholinergic innervation on the entire NVU is not
well characterized.

In this study, the mu-p75-saporin saporin model was used to
induce death of basal forebrain cholinergic neurons and their
fiber projections. Quadruple labeling immunohistochemistry
and 3D reconstruction were carried out to characterize specific
points of contact between cholinergic fibers and various
components of the NVU and to compare this pattern between
the cortex and the hippocampus.

MATERIALS AND METHODS

Animals
Eight- to ten-week-old male C57BL/6 mice were obtained from
The Open University (OU,Milton Keynes, UK) or the University
of Southampton (Southampton, UK) and were kept on a 12 h
light/dark cycle with access to food and water ad libitum.
Experiments were carried out in compliance with guidelines of
the Animal Welfare and Ethics Research Boards at the Open
University and the University of Southampton and with approval
from the Home Office (PPL 70/8507; PPL 30/3095).

Intracerebroventricular Injections
Mice were anesthetized under isoflurane gas and placed into
a stereotaxic frame (Kopf instruments, CA, USA). Topical
anesthetic (Cryogesic, Acorus Therapeutics Limited Chester,
UK) was applied to the scalp before the head was shaved.
A midline incision was made and the skull cleaned. A small
burr hole was drilled over the left and right lateral ventricles
and 0.5 µL of mu-saporin (0.596 µg/µL, Advanced Targeting
Systems, San Diego, CA, USA; n = 16) or 0.9% saline (n = 19)
was injected into each ventricle (coordinates from Bregma:
AP = −0.4 mm, ML = 1.0 mm, DV = −2.3 mm) at a rate
of 0.2 µl/min using a 32G Hamilton syringe. The needle
was left in situ for 2 min after the injection to allow for
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diffusion. Analgesia was administered intraperitoneally at the
time of surgery (Carprieve, 5% w/v, 0.32 ml/kg, Norbrook,
Northamptonshire, UK) and mice were able to self-administer
sugar-free jelly (Hartley, Histon Sweet Spreads Limited, Leeds,
UK) containing Carprofen (250 µg, Zoetis, London, UK) for
1 week post-surgery.

Tissue Processing
All mice were perfused intracardially with 0.01 M phosphate
buffered saline (PBS, pH 7.4) 45 days after surgery. For Western
blots, brains were immediately dissected and snap frozen on dry
ice and stored at −80◦C. For immunohistochemistry, mice were
perfused with 4% paraformaldehyde, the brains were post-fixed
overnight and left in 30% sucrose for 1 week. Brains were
cryosectioned at 20 µm thickness and collected as free-floating
coronal sections and stored in anti-freeze storage solution (30%
glycerol, 30% ethylene glycol, 40% 0.01 M PBS) at−20◦C.

Western Blotting
Tissues from control (n = 8) and saporin-treated mice (n = 6)
were homogenized in Ripa lysis buffer [20 mM Tris-HCl (pH
8.0), 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Igepal,
50 mM NaF, 1 mM NaVO3] containing a protease inhibitor
cocktail (Merck Millipore, Watford, UK), spun down (13,000 g,
10 mins, 4◦C) and supernatants collected, aliquoted and frozen
at −80◦C until further use. Proteins (30 µg) were separated
by gel electrophoresis on 4%–20% Tris-acetate gels (Fisher
Scientific) and transferred onto a nitrocellulose membrane.
Membranes were incubated overnight at 4◦C with anti-choline
acetyltransferase (ChAT, 1:500, Merck Millipore), stripped and
re-probed with anti-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, 1:50,000, Sigma-Aldrich, Dorset, UK) antibody to
ensure equal protein loading. Two blots were replicated for each
brain region. Immunoblotswerequantifiedbydensitometryusing
ImageJ software (NIH, MD, USA) and calculated as an optical
density ratio of protein levels normalized to GAPDH levels.

Immunohistochemistry
For single-labeling immunohistochemistry of cholinergic cell
bodies and fibers, tissue sections were washed in 0.01 M PBS,
blocked with 15% normal donkey serum (NDS; Sigma-Aldrich)
and incubated overnight with either anti-ChAT (1:100) or
anti-laminin (1:350, Sigma-Aldrich), after pre-treatment with
pepsin (1 mg/mL in 0.2 N HCl, 30 s at 37◦C). The next day,
sections were washed in PBS and incubated for 2 h at room
temperature with anti-donkey AlexaFluor 488 (Fisher Scientific,
Loughborough, UK). For quadruple labeling of the NVU,
sections were treated with pepsin, incubated overnight with
anti-ChAT (1:100), washed in PBS and incubated with anti-goat
AlexaFluor 555. After washing in PBS, sections were incubated
simultaneously with anti-collagen IV (1:100, Abcam, Cambridge,
UK), anti-α smooth muscle actin (α-SMA)-FITC (1:350, Sigma-
Aldrich) and anti-glial fibrillary protein (GFAP, 1:500, Abcam).
Sections were then developed with anti-rabbit AlexaFluor
405 and anti-chicken AlexaFluor 633 (1:200, Fisher Scientific).
All fluorescent sections were coverslipped using Mowiolr

(Sigma-Aldrich) containing 0.1% v/v Citifluor (Citifluor Limited,
London, UK) mounting media.

Image Acquisition and Analysis
Coronal brain sections were imaged with an SP5 Leica scanning
laser confocal microscope. Low magnification images of the
cortex and hippocampus were stitched together using ImageJ
software (NIH, MD, USA). The density of neuronal cell
bodies, fibers and blood vessels in each region of interest was
quantified by calculating the percentage area covered by staining
using ImageJ software. NVUs in the hippocampus and cortex
were imaged using the ×100 oil immersion objective, using
z stacks with ≤2 µm spacing between slices. Images were
deconvolved and converted into Imaris-compatible files using
AutoQuant X3 version X3.0.4 software (MediaCybernetics Inc.,
Rockville, MD, USA).

3D Reconstruction of the NVU
To quantify the parameters of each component of the NVU,
deconvolved images were processed using Imaris software
(Bitplaner) and surfaces were created for each component
of the NVU. For each vessel, the following measurements
were acquired: the total area of a selected surface (µm2),
the volume of a selected surface (µm3), the length of the
vessel imaged (µm) and the average diameter of the vessel
(µm). The total area of contact between two selected surfaces
(e.g., ChAT nerve fibers contacting collagen IV) was calculated
using the Imaris Xtension ‘‘Surface to Surface Contact Area’’
(Imaris V8.31, ImarisXT Bitplane Inc created by Matthew J
Gastinger, Bitplane). Only surfaces that made direct contact
with each other (i.e., 0 µm apart) were quantified. Vessels
were classified as capillaries if they were ≤10 µm in diameter,
arteries were identified as having a diameter of >10 µm
and positive for SMA, while veins were identified as having
a diameter >10 µm but lacking SMA. A total of five
capillaries, five arteries and three veins were quantified for
each mouse (n = 7–11 control, n = 6–10 saporin) per brain
region and the average values per mouse were used for
statistical analysis.

Statistical Analysis
Data were tested for normality using the Kolmogorov-Smirnov
test. For normally distributed data, comparisons between two
groups were carried out using two-tailed Student’s t-test. Where
there were more than two groups, one-way or two-way repeated
measures ANOVA was used followed by Sidak’s post hoc. The
ROUT test was used to identify and exclude any outliers. For
data that were not normally distributed, the Mann-Whitney U
test or Kruskal-Wallis test with Dunn’s post hoc test was used.
Data represents mean± SEM and p < 0.05 was considered to be
statistically significant. Analysis was carried out using GraphPad
Prism software.

RESULTS

Cholinergic Loss in the Medial Septum,
Hippocampus and Cortex Following
Administration of Mu-Saporin
As shown in Figure 1, ChAT-positive cholinergic neurons
were observed in the medial septum, diagonal band of Broca,
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FIGURE 1 | Loss of cholinergic neurons and fiber projections following administration of mu-p75-saporin. (A–H) Photomicrographs of choline acetyltransferase
(ChAT)-positive neurons and fibers in the medial septum (A,E), hippocampus (B,F), cortex (C,G) and striatum (E,H) in control (A–D) and saporin-treated (E–H) mice.
(I–L) Quantification of the percent area covered by ChAT-positive staining in control and saporin-treated mice in the medial septum (I), hippocampus (J) and cortex
(K). p75-negative cholinergic neurons in the striatum were not affected by saporin treatment (L). (M–O) Western blotting confirmed a significant loss of ChAT protein
expression in the hippocampus (M) and cortex (N) after saporin administration, while ChAT levels in the striatum did not differ between control and treated mice (O).
Data represent mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, two-tailed Student’s t-test. Scale bar = 100 µm.

nucleus basalis of Meynert and in the striatum of control
mice. Cholinergic fiber projections were also observed in the
hippocampus (Figure 1B) and cortex (Figure 1C). Significantly
less ChAT staining was detected in the medial septum of saporin-
treated mice at 45 days post-surgery (Figures 1E,I). This was

accompanied by a significant decrease in cholinergic nerve
fiber density in the hippocampus (Figures 1F,J) and the cortex
(Figures 1G,K). As expected, p75 NTR-negative neurons in the
striatum were not affected by saporin treatment (Figures 1H,L).
Western blotting confirmed a significant decrease in ChAT
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FIGURE 2 | 3D reconstruction of the neurovascular unit (NVU). (A,B) Photomicrograph (A) and 3D reconstruction (B) of an artery stained for collagen IV (dark blue),
smooth muscle actin (SMA; green), astrocytes (turquoise) and cholinergic nerve fibers (red). (C–E) Yellow outlines indicate the surfaces created for each of the NVU
components. Examples are shown for surface area contact between perivascular astrocytes and collagen IV (C), contact of cholinergic nerve fibers to smooth
muscle cells (D, yellow outlines in inset) and contact of cholinergic nerve fibers to collagen IV (E, yellow outlines in inset). Scale bar (A,B,D,E) = 5 µm, (C) = 20 µm.

protein levels in the hippocampus (Figure 1M) and cortex
(Figure 1N) following saporin administration and no difference
in ChAT expression between control and saporin-treated mice in
the striatum (Figure 1O).

Characterization of Cholinergic Loss at the
NVU in the Hippocampus and Cortex
Cholinergic nerve fibers are known to innervate blood vessels
in the hippocampus and cortex (Vaucher and Hamel, 1995). To
characterize the precise effects of saporin treatment at the NVU,
quadruple-labeling immunohistochemistry was used to label
cholinergic fibers and three components of the NVU—collagen
IV-positive basement membranes, smooth muscle cells and
astrocytes (Figure 2A). Confocal images of the vessels were
then reconstructed using 3D modeling software and surfaces
were created for each of the four proteins (Figures 2B–E). The
surface area of ChAT contact with each component of the NVU
(standardized to vessel length) was analyzed across capillaries,
arteries/arterioles and veins/venules from control and saporin-
treated mice.

At the basement membrane of vessels in the hippocampus,
saporin treatment induced a decrease in the amount of contact

between cholinergic nerve fibers and collagen IV at capillaries,
arteries and veins (Figures 3A–F), although this decrease was
only statistically significant at arteries (Figure 3G). In the cortex,
cholinergic innervation of the basement membrane did not
differ between control and saporin-treated mice at capillaries
and veins but was significantly decreased at the arteries of
saporin-treated mice (Figures 3H–N). No differences were noted
between control and saporin-treated mice at any vessel type in
the striatum (Supplementary Figure S1A).

Analysis of perivascular innervation at the smooth muscles
of arteries found that there was a significant decrease in the
surface area contact between ChAT and α-SMA in saporin-
treated in both the hippocampus (Figures 4A–C) and the
cortex (Figures 4D–F), while the striatum was not affected
(Supplementary Figure S1B).

Quantification of ChAT contact with perivascular astrocytes
in the hippocampus revealed no difference in the amount
of contact with GFAP-positive astrocytes between control
and saporin-treated mice in any vessel type (Figures 5A–G).
By contrast, significantly less ChAT contact was observed
at arteries in the cortex of saporin-treated mice compared
to control animals (Figures 5H–N). No differences were
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FIGURE 3 | Perivascular cholinergic contact at the basement membrane. (A–M) Representative images of the 3D reconstruction of the NVU in capillaries (A,B,H,I),
arteries (C,D,J,K) and veins (E,F,L,M) in the hippocampus (A–F) and cortex (H–M) of control (A,C,E,H,J,L) and saporin-treated mice (B,D,F,I,K,M). ChAT-positive
fibers are shown in red, collagen IV is shown in blue and SMA is shown in green. (G,N) Quantification of the surface area of contact between ChAT-positive fibers and
collagen IV demonstrated a significant decrease in contact at the arteries of saporin-treated animals in both the hippocampus (G) and cortex (N). Data represent
mean ± SEM. ∗p < 0.05, two-way ANOVA with Sidak’s post hoc test. Scale bars = 20 µm.

observed between control and saporin mice at cortical
capillaries or veins (Figures 5H–N) or between control
and saporin-treated mice at any vessel type in the striatum
(Supplementary Figure S1C).

To determine if saporin induced changes in blood vessel
density, the percent area covered by laminin-positive capillaries
and large-diameter vessels were quantified in the cortex
and hippocampus of control and saporin-treated mice
(Figures 6A–E). In control mice, the density of both capillaries

and arteries/veins was significantly higher in the cortex
compared to the hippocampus (Figures 6A,B). No differences in
vessel density were noted between control and saporin-treated
mice in either brain region (Figure 6E).

Regional Variation in Perivascular
Innervation
To determine if there were regional differences in endogeneous
and saporin-induced cholinergic innervation, measurements of
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FIGURE 4 | Perivascular cholinergic contact at smooth muscle cells. (A–E) Representative images of the 3D reconstruction of the NVU in arteries in the
hippocampus (A,B) and cortex (D,E) from control (A,D) and saporin-treated (B,E) mice. ChAT-positive nerve fibers are shown in red and smooth muscle cells are
shown in green. (C,F) Quantification of the surface area of contact between ChAT-positive fibers and SMA demonstrated a significant decrease in contact in
saporin-treated animals in both the hippocampus (C) and cortex (F). Data represent mean ± SEM. ∗p < 0.05, Mann-Whitney U test (hippocampus) and one-tailed
Student’s t-test (cortex). Scale bars = 20 µm.

ChAT contact with components of the NVU were compared
between the hippocampus and cortex. Quantification of overall
cholinergic nerve fiber density was found to be significantly
higher in the hippocampus compared to the cortex in control
mice (Figure 7A). Following saporin treatment, this difference
was lost (Figure 7B). The degree of cholinergic innervation at
the basement membrane did not differ between the hippocampus
and cortex at capillaries, arteries or veins of control (Figure 7C)
or saporin-treated mice (Figure 7D). ChAT innervation of
smooth muscle cells also did not differ between arteries in the
hippocampus and cortex in either control (Figure 7E) or saporin-
treated mice (Figure 7F). However, perivascular astrocyte
endfeet surrounding cortical capillaries in control mice received
significantly less cholinergic input compared to astrocytes at the
capillaries in the hippocampus (Figure 7G). Significantly less
cholinergic input onto astrocyte endfeet was also noted at veins
in the cortex of saporin-treated mice compared to hippocampal
veins (Figure 7H).

Impact of Loss of Perivascular Innervation
on Components of the NVU
To determine if loss of cholinergic innervation induced changes
in components of the NVU, the volume of collagen IV and
smooth muscle cells as well as the area of astrocyte endfoot
coverage was evaluated in vessels of control and saporin-treated
mice. Comparisons between the cortex and hippocampus were
also carried out.

As shown in Table 1, within the hippocampus, the volume
of collagen IV was significantly higher in veins compared to
capillaries in control mice. This relationship was maintained
following saporin treatment. However, collagen IV volumes did
not differ between control and saporin-treated mice in any vessel
type. In the cortex, the volume of collagen IV was highest in
arteries compared to capillaries and veins in both control and
saporin-treated mice (Table 1). Regional comparisons including
the striatum revealed that the volume of collagen IV was
significantly higher in veins in the hippocampus than veins in
the cortex and striatum in both control mice and those treated
with saporin.

Analysis of smooth muscle volume found no significant
difference between control and saporin mice in any brain region
(Table 2). Similarly, no significant differences in smooth muscle
volume were noted between the cortex, hippocampus or striatum
in either treatment group (Table 2).

Finally, analysis of perivascular astrocyte coverage of
hippocampal vessels revealed a significantly higher amount of
endfoot contact in veins compared to capillaries in control
animals (Table 3). Following saporin administration, astrocyte
coverage remained significantly higher in hippocampal veins
compared to both capillaries. No differences in perivascular
astrocyte coverage were noted between vessel types in the
cortex in either control or saporin-treated mice (Table 3).
Comparison between vessels of the hippocampus, cortex and
striatum found that astrocyte contact was lowest in all the

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2019 | Volume 11 | Article 172

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Nizari et al. Cholinergic Denervation at the NVU

FIGURE 5 | Perivascular cholinergic contact at perivascular astrocytes. (A–M) Representative images of the 3D reconstruction of the NVU in capillaries (A,B,H,I),
arteries (C,D,J,K) and veins (E,F,L,M) in the hippocampus (A–F) and cortex (H–M) of control (A,C,E,H,J,L) and saporin-treated mice (B,D,F,I,K,M). ChAT-positive
fibers are shown in red, collagen IV is shown in blue, SMA is shown in green and glial fibrillary protein (GFAP) is shown in turquoise. (G,N) Quantification of the
surface area of contact between ChAT-positive fibers and astrocyte endfeet found no differences between control and saporin-treated animals in any vessels of the
hippocampus (G), but a significant decrease in contact at the arteries of saporin-treated animals the cortex (N). Data represent mean ± SEM. ∗∗p < 0.01, two-way
ANOVA with Sidak’s post hoc test. Scale bars = 20 µm.

vessel types in the striatum. In addition, astrocyte coverage of
veins in the hippocampus was approximately 10-fold higher
compared to coverage of veins in the cortex and 100-fold
higher than veins in the striatum in both control and saporin
mice (Table 3).

DISCUSSION

Although the loss of cholinergic neurons in AD has been
described extensively, the effect of this loss on the NVU is
not well characterized. Moreover, previous studies that have
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FIGURE 6 | Regional comparison of blood vessel density. (A–D) Photomicrographs of laminin-positive blood vessels in the hippocampus (A,C) and cortex (B,D) of
control (A,B) and saporin-treated mice (C,D). (E) Quantification of the density of capillaries (caps) and large-diameter vessels in the hippocampus and cortex in
treatment groups. Data represent mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, two-tailed Student’s t-test. Scale bar = 100 µm.

looked at perivascular innervation by cholinergic nerve fibers
have largely been carried out using 2D images obtained
from double or triple labeling immunohistochemistry or by

immuno-EM (Itakura et al., 1977; Tong and Hamel, 1999;
Kuznetsova and Schliebs, 2013). By combining quadruple
labeling immunohistochemistry with 3D reconstruction, the
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FIGURE 7 | Regional comparison of measures of the NVU. (A,B) Total
density of ChAT-positive fibers in the cortex and hippocampus in control mice
(A) and following administration of saporin (B). (C–H) Quantification of area of
contact between ChAT-positive fibers and collagen IV (C,D), SMA (E,F) and
astrocyte endfeet (G,H) in the cortex and hippocampus in control (C,E,G)
and saporin-treated mice (D,F,H). Data represent mean ± SEM. ∗p < 0.05,
paired two-tailed Student’s t-test (A,B), Kruskal-Wallis with Dunn’s post hoc
test, (C,D), Wilcoxon matched paired test (E–H).

current study allowed not only for individual components of
the NVU to be assessed under basal and pathological conditions
but also for perivascular innervation to be quantified along
multiple components of the NVU around the entire surface of
the blood vessel.

We chose to use the saporin model of cholinergic denervation
because of its well characterized ability to cause selective death
of basal forebrain cholinergic neurons across many species,
including mice, rats and non-human primates (Fine et al., 1997;
Leanza, 1998; Lin et al., 1999; Berger-Sweeney et al., 2001;
Lehmann et al., 2002; Birthelmer et al., 2003; Hawkes et al.,
2005; Scheiderer et al., 2006; Ramos-Rodriguez et al., 2013).
Such immunotoxin models are preferable to older lesioning
models that can result in widespread, non-specific neuronal
damage (van der Staay et al., 1989; Scheiderer et al., 2006;
Nelson et al., 2014). On the other hand, the relatively rapid
time course of death induced by saporin is unlikely to mimic
the progressive loss of cholinergic neurons that is seen in AD.
More refined methods have been developed to silence basal
forebrain cholinergic neurons using optogenetics and DREDD TA

B
LE

1
|

R
eg

io
na

lc
om

pa
ris

on
of

vo
lu

m
e

of
ba

se
m

en
tm

em
br

an
e

ac
ro

ss
ve

ss
el

ty
pe

.

B
as

em
en

t
m
em

b
ra
ne

M
ea

n
vo

lu
m
e/
le
ng

th
(µ
m

3
/µ

m
)±

S
E
M

H
ip
p
o
ca

m
p
us

C
o
rt
ex

S
tr
ia
tu
m

C
ap

ill
ar
ie
s

A
rt
er
ie
s

Ve
in
s

C
ap

ill
ar
ie
s

A
rt
er
ie
s

Ve
in
s

C
ap

ill
ar
ie
s

A
rt
er
ie
s

Ve
in
s

C
on

tr
ol

32
.6

3
±

7.
9∗

87
.4

9
±

22
.6

14
8.

9
±

40
.6
∗
N

18
.8

2
±

3.
45

11
4.

5
±

40
.3
5

42
.6

8
±

7.
7N

26
.8

2
±

3.
65

10
6.

7
±

29
.2
5

51
.0

5
±

6.
7N

S
ap

or
in

32
.7

1
±

5.
4∗

11
4.

7
±

22
.2

15
3.

8
±

30
.3
∗
N

21
.2

6
±

2.
4

84
.5

6
±

11
.5
∞

37
.3

8
±

7.
2N
∞

21
.9

5
±

1.
65

73
.4

6
±

18
.3
5

35
.4

5
±

2.
8N

D
at

a
re

pr
es

en
ts

m
ea

n
±

S
EM

.∗
p

<
0.

05
ca

pi
lla

rie
s

vs
.v

ei
ns

;5
p

<
0.

05
ca

pi
lla

rie
s

vs
.a

rt
er

ie
s;
∞

p
<

0.
05

ar
te

rie
s

vs
.v

ei
ns

(o
ne

-w
ay

A
N

O
VA

w
ith

S
id

ak
’s

po
st

ho
c)

N
p

<
0.

01
;h

ip
po

ca
m

pu
s

vs
.c

or
te

x
or

st
ria

tu
m

(tw
o-

w
ay

re
pe

at
ed

m
ea

su
re

s
A

N
O

VA
w

ith
S

id
ak

’s
po

st
ho

c
an

al
ys

is
).

Frontiers in Aging Neuroscience | www.frontiersin.org 10 July 2019 | Volume 11 | Article 172

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Nizari et al. Cholinergic Denervation at the NVU

technologies (Shi et al., 2015; Chen et al., 2016). However,
whether such techniques fully replicate the loss of cholinergic
signaling, including withdrawal of trophic support and related
inflammatory processes, that is observed in AD is not yet known.
In the present study, administration of saporin led to a significant
and specific loss of cholinergic neurons in the basal forebrain at
45 days post-surgery. The fiber projections from these neurons
were also lost in the hippocampus and cortex. Other major
populations of cholinergic neurons that do not express the
p75NTR, including those in the striatum (Yeo et al., 1997) were
not affected by saporin treatment.

Using 3D reconstruction of blood vessels, ChAT-positive
fibers were found to innervate capillaries, arteries and veins in the
hippocampus and cortex. As expected (Toribatake et al., 1997;
Mulligan and MacVicar, 2004; Hamel, 2006; Hamilton et al.,
2010; Chen et al., 2014), cholinergic innervation was observed
at all levels of the NVU investigated, including the basement
membranes, smooth muscle cells and perivascular astrocytes.
The majority of the innervation was observed at arteries, in
agreement with previous studies (Chédotal et al., 1994; Vaucher
and Hamel, 1995; Luiten et al., 1996; Kuznetsova and Schliebs,
2013). Predominant targeting of arteries by cholinergic nerve
fibers is perhaps unsurprising given the role of ACh in mediating
neurovascular coupling (Hamel, 2006; Willis et al., 2006; Lecrux
et al., 2017).

Increasing evidence suggests that there is heterogeneity of
cells of the NVU, including pericytes and astrocytes, across
both vessel type and brain regions (Shepro and Morel, 1993;
Noumbissi et al., 2018). In the present study, we observed
innate differences between vessels of the hippocampus and
cortex. These included: (i) a significantly higher vessel density
in the cortex; (ii) a higher overall ChAT fiber density in
the hippocampus and more ChAT contact with perivascular
astrocytes in hippocampal capillaries; (iii) thicker basement
membrane in the veins of the hippocampus; and (iv) greater
coverage of the basement membrane by astrocyte endfeet in
hippocampal veins compared to veins in the cortex.

The observation that total cholinergic fiber density was
higher in the hippocampus compared to the cortex is in
agreement with previous reports (Kitt et al., 1994). However,
given that vesssel density showed the opposite pattern, it is
perhaps surprising that there was no difference in the amount
of cholinergic innervation at blood vessels in the hippocampus
vs. those in the cortex. It is possible that by only quantifying
direct contact (e.g., 0 µm distance) between ChAT fibers
and basement membrane or smooth muscle cells, we have
underestimated the potential degree of cholinergic innervation
at the NVU, which has been classified in previous studies
to be within 3 µm from the basement membrane (Vaucher

TABLE 2 | Regional comparison of volume of smooth muscle cells in arteries.

SMA Volume/length
(µm3/µm) ± SEM

Hippocampus Cortex Striatum

Control 60.02 ± 10.6 50.75 ± 16.2 65.88 ± 19.7
Saporin 33.10 ± 7.4 39.54 ± 9.0 33.03 ± 5.7

Values represent mean ± SEM. No significant differences were noted (two-way repeated
measures ANOVA with Sidak’s post hoc test). TA
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and Hamel, 1995). Our findings that cholinergic contact with
perivascular astrocyte endfeet tended to be higher in the
hippocampus across all vessel types and was significantly higher
at hippocampal capillaries compared to cortical capillaries,
suggest that there may be functional differences between
cortical and hippocampal vessels in their responsiveness to
cholinergic signaling.

Astrocyte coverage of vessels was also observed to be higher
in the hippocampus than the cortex, although this was only
significant at veins. This is in keeping with the reported
distribution of parenchymal GFAP-positive astrocytes (Emsley
and Macklis, 2006). This finding was likely related to the
observed greater thickness of collagen IV, given that astrocytes
and endothelial cells are the main sites of basement membrane
production (Baeten and Akassoglou, 2011). Expression of
collagen IV has been shown to be significantly upregulated
in capillaries and arteries during normal and in AD (Kalaria
and Pax, 1995; Farkas and Luiten, 2001; Christov et al., 2008;
Magaki et al., 2018). Thickening of the basement membrane
and alterations in basement membrane composition has been
hypothesized to precede the development of CAA (Wyss-Coray
et al., 2000). However, veins are the vessel type least likely
to be affected by CAA and CAA develops more slowly in
vessels in the hippocampus than those in the cortex (Thal
et al., 2008). It may be that increased basement thickness
makes the veins in the hippocampus less likely to be deformed
by pressure changes and thus helps to ensure a consistent
cerebral perfusion (Zócalo et al., 2013; Thorin-Trescases et al.,
2018) and to maintain a driving force for clearance of
solutes in the cerebral spinal fluid (CSF) and/or interstitial
fluid (ISF). In addition, the walls of veins are important
for the egress of leukocytes from the blood into the brain
in neurodegenerative diseases and this process requires that
leukocytes enter a perivenular space bounded by endothelial
and glia limitans basement membranes (Owens et al., 2008;
Engelhardt et al., 2016). The variation in the degree of collagen
IV and astrocyte coverage may reflect regional variability in the
neuroinflammatory properties of the veins in the hippocampus
compared to the cortex.

Saporin treatment significantly reduced the amount of
cholinergic contact with the basement membrane of arteries in
both the cortex and hippocampus, while capillaries and veins
were unaffected. This may reflect the proportional endogeneous
degree of cholinergic innervation between vessel types, which
was highest in arteries. Regional differences were also observed
in the degree of cholinergic loss at the NVU. While saporin
treatment induced a loss of cholinergic innervation at the
basement membrane and smooth muscle cells of arteries in
both the hippocampus and cortex, there was additional loss
of cholinergic contact of astrocyte endfeet in cortical arteries.
The reason for this variability is unknown. It may be that
cholinergic supply of the cortical astrocytes is important for
their function in the convective influx/glymphatic entry of
CSF along the pial glial basement membranes (Albargothy
et al., 2018). Recent 3D mapping studies have shown that
the dendritic arbors of basal forebrain neurons that project to
the cortex differ from those that project to the hippocampus

in that single cortical dendrites innervate large areas of the
neuropil (Wu et al., 2014; Li et al., 2018). It is possible
that a similar pattern of innervation exists at blood vessels
in the cortex such that the loss of one dendritic arbor
affects multiple vessels. This may also be related to the lower
endogeneous level of contact between cholinergic nerves and
astrocytes in the cortex, which may make cortical vessels
more susceptible than those in the hippocampus to loss of
cholinergic innervation.

Each of the NVU components studied have been shown to
play a role in mediating the clearance of Aβ from the brain.
Cerebrovascular basement membranes act as conduits along
which Aβ contained within CSF and ISF is removed from
the brain (Iliff et al., 2012; Hawkes et al., 2013; Morris et al.,
2014; Albargothy et al., 2018). Smooth muscle cells express
low-density receptor related protein-1 (LRP-1) which mediates
cellular uptake of Aβ and its transcytosis across the blood
brain barrier (BBB; Kanekiyo et al., 2012). Moreover, localized
contraction of smooth muscles has recently been proposed to
generate the force that drives intramural periarterial drainage of
Aβ (Aldea et al., 2019). Astrocytes contribute to the formation
of the basement membrane and have also been shown to take
up Aβ via LRP-1 (Basak et al., 2012). In addition, astrocytes
are the main producers of apolipoprotein E, which chaperones
Aβ across the BBB (Bell et al., 2007). Therefore, it is possible
that the combined loss of cholinergic innervation at each of
these components contributes to the increased susceptibility of
cortical vessels to the development of CAA. Further studies
are needed to investigate this putative relationship in human
brain tissues.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the Animal Welfare and Ethics
Research Boards at the Open University and the University
of Southampton. The protocol was approved by the Home Office
(PPL 70/8507; PPL 30/3095).

AUTHOR CONTRIBUTIONS

SN performed the experiments and data analysis. RC, IR
and CH planned the experimental design. SN and CH wrote
the manuscript.

FUNDING

This work was supported by funding from Alzheimer’s
Research UK (ARUK-PG2015-12).

Frontiers in Aging Neuroscience | www.frontiersin.org 12 July 2019 | Volume 11 | Article 172

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Nizari et al. Cholinergic Denervation at the NVU

ACKNOWLEDGMENTS

We wish to thank the BRU staff at the Open
University and the University of Southampton
for assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2019.00172/full#supplementary-material

REFERENCES

Albargothy, N. J., Johnston, D. A., MacGregor-Sharp, M., Weller, R. O.,
Verma, A., Hawkes, C. A., et al. (2018). Convective influx/glymphatic system:
tracers injected into the CSF enter and leave the brain along separate
periarterial basement membrane pathways. Acta Neuropathol. 136, 139–152.
doi: 10.1007/s00401-018-1862-7

Aldea, R., Weller, R. O., Wilcock, D. M., Carare, R. O., and Richardson, G. (2019).
Cerebrovascular smooth muscle cells as the drivers of intramural periarterial
drainage of the brain. Front. Aging Neurosci. 11:1. doi: 10.3389/fnagi.2019.
00001

Baeten, K. M., and Akassoglou, K. (2011). Extracellular matrix and matrix
receptors in blood-brain barrier formation and stroke. Dev. Neurobiol. 71,
1018–1039. doi: 10.1002/dneu.20954

Basak, J. M., Verghese, P. B., Yoon, H., Kim, J., and Holtzman, D. M. (2012).
Low-density lipoprotein receptor represents an apolipoprotein E-independent
pathway of Aβ uptake and degradation by astrocytes. J. Biol. Chem. 287,
13959–13971. doi: 10.1074/jbc.M111.288746

Bell, R. D., Sagare, A. P., Friedman, A. E., Bedi, G. S., Holtzman, D. M., Deane, R.,
et al. (2007). Transport pathways for clearance of human Alzheimer’s amyloid
beta-peptide and apolipoproteins E and J in the mouse central nervous system.
J. Cereb. Blood Flow Metab. 27, 909–918. doi: 10.1038/sj.jcbfm.9600419

Berger-Sweeney, J., Stearns, N. A.,Murg, S. L., Floerke-Nashner, L. R., Lappi, D. A.,
and Baxter, M. G. (2001). Selective immunolesions of cholinergic neurons in
mice: effects on neuroanatomy, neurochemistry and behavior. J. Neurosci. 21,
8164–8173. doi: 10.1523/JNEUROSCI.21-20-08164.2001

Birthelmer, A., Ehret, A., Amtage, F., Förster, S., Lehmann, O., Jeltsch, H.,
et al. (2003). Neurotransmitter release and its presynaptic modulation in the
rat hippocampus after selective damage to cholinergic or/and serotonergic
afferents. Brain Res. Bull. 59, 371–381. doi: 10.1016/s0361-9230(02)00930-9

Cavedo, E., Grothe, M. J., Colliot, O., Lista, S., Chupin, M., Dormont, D.,
et al. (2017). Reduced basal forebrain atrophy progression in a randomized
donepezil trial in prodromal Alzheimer’s disease. Sci. Rep. 7:11706.
doi: 10.1038/s41598-017-09780-3

Chédotal, A., Cozzani, C., Faure Pierre, M., Hartman, B. K., and Hamel, E. (1994).
Distinct choline acetyltransferase (ChAT) and vasoactive intestinal polypeptide
(VIP) bipolar neurons project to local blood vessels in the rat cerebral cortex.
Brain Res. 646, 181–193. doi: 10.1016/0006-8993(94)90076-0

Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A., and Hillman, E. M. C.
(2014). A critical role for the vascular endothelium in functional neurovascular
coupling in the brain. J. Am. Heart Assoc. 3:e000787. doi: 10.1161/JAHA.114.
000787

Chen, L., Yin, D., Wang, T.-X., Guo, W., Dong, H., Xu, Q., et al.
(2016). Basal forebrain cholinergic neurons primarily contribute to
inhibition of electroencephalogram delta activity, rather than inducing
behavioral wakefulness in mice. Neuropsychopharmacology 41, 2133–2146.
doi: 10.1038/npp.2016.13

Christov, A., Ottman, J., Hamdheydari, L., and Grammas, P. (2008). Structural
changes in Alzheimer’s disease brain microvessels. Curr. Alzheimer Res. 5,
392–395. doi: 10.2174/156720508785132334

Damasio, A. R., Graff-Radford, N. R., Eslinger, P. J., Damasio, H., and Kassell, N.
(1985). Amnesia following basal forebrain lesions. Arch. Neurol. 42, 263–271.
doi: 10.1001/archneur.1985.04060030081013

Emsley, J. G., and Macklis, J. D. (2006). Astroglial heterogeneity closely reflects
the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol. 2,
175–186. doi: 10.1017/S1740925x06000202

Engelhardt, B., Carare, R. O., Bechmann, I., Flügel, A., Laman, J. D., and
Weller, R. O. (2016). Vascular, glial and lymphatic immune gateways of the
central nervous system. Acta Neuropathol. 132, 317–338. doi: 10.1007/s00401-
016-1606-5

Farkas, E., and Luiten, P. G. (2001). Cerebral microvascular pathology in aging
and Alzheimer’s disease. Prog. Neurobiol. 64, 575–611. doi: 10.1016/s0301-
0082(00)00068-x

Fine, A., Hoyle, C., Maclean, C. J., Levatte, T. L., Baker, H. F., and
Ridley, R. M. (1997). Learning impairments following injection of a selective
cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of
meynert in monkeys. Neuroscience 81, 331–343. doi: 10.1016/s0306-4522(97)
00208-x

Francis, P. T., Palmer, A.M., Snape,M., andWilcock, G. K. (1999). The cholinergic
hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg.
Psychiatry 66, 137–147. doi: 10.1136/jnnp.66.2.137

Garcia-Alloza, M., Gil-Bea, F. J., Diez-Ariza, M., Chen, C. P. L.-H., Francis, P. T.,
Lasheras, B., et al. (2005). Cholinergic-serotonergic imbalance contributes to
cognitive and behavioral symptoms in Alzheimer’s disease. Neuropsychologia
43, 442–449. doi: 10.1016/j.neuropsychologia.2004.06.007

Hamel, E. (2006). Perivascular nerves and the regulation of cerebrovascular tone.
J. Appl. Physiol. 100, 1059–1064. doi: 10.1152/japplphysiol.00954.2005

Hamilton, N. B., Attwell, D., and Hall, C. N. (2010). Pericyte-mediated regulation
of capillary diameter: a component of neurovascular coupling in health and
disease. Front. Neuroenergetics 2:5. doi: 10.3389/fnene.2010.00005

Hamlin, A. S., Windels, F., Boskovic, Z., Sah, P., and Coulson, E. J. (2013).
Lesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic
Navigation. PLoS One 8:e53472. doi: 10.1371/journal.pone.0053472

Hampel, H., Mesulam, M.-M., Cuello, A. C., Farlow, M. R., Giacobini, E.,
Grossberg, G. T., et al. (2018). The cholinergic system in the
pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933.
doi: 10.1093/brain/awy132

Hangya, B., Ranade, S. P., Lorenc, M., and Kepecs, A. (2015). Central cholinergic
neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168.
doi: 10.1016/j.cell.2015.07.057

Hawkes, C. A., Gatherer, M., Sharp, M. M., Dorr, A., Yuen, H. M., Kalaria, R.,
et al. (2013). Regional differences in the morphological and functional effects
of aging on cerebral basement membranes and perivascular drainage of
amyloid-β from the Mouse Brain. Aging Cell 12, 224–236. doi: 10.1111/acel.
12045

Hawkes, C., Jhamandas, J. H., and Kar, S. (2005). Selective Loss of basal
forebrain cholinergic neurons by 192 IgG-saporin is associated with decreased
phosphorylation of ser glycogen synthase kinase-3β. J. Neurochem. 95, 263–272.
doi: 10.1111/j.1471-4159.2005.03363.x

Hunter, C. L., Quintero, E. M., Gilstrap, L., Bhat, N. R., and Granholm, A.-
C. (2004). Minocycline protects basal forebrain cholinergic neurons from
mu P75-saporin immunotoxic lesioning. Eur. J. Neurosci. 19, 3305–3316.
doi: 10.1111/j.0953-816x.2004.03439.x

Iadecola, C. (2017). The neurovascular unit coming of age: a journey through
neurovascular coupling in health and disease.Neuron 96, 17–42. doi: 10.1016/j.
neuron.2017.07.030

Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng,W., Gundersen, G. A., et al. (2012).
A paravascular pathway facilitates CSF flow through the brain parenchyma
and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med.
4:147ra111. doi: 10.1126/scitranslmed.3003748

Itakura, T., Yamamoto, K., Tohyama, M., and Shimizu, N. (1977). Central
dual innervation of arterioles and capillaries in the brain. Stroke 8, 360–365.
doi: 10.1161/01.str.8.3.360

Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Pérez, J. M., Evans, A. C.,
and Alzheimer’s Disease Neuroimaging Initiative. (2016). Early role of vascular
dysregulation on late-onset Alzheimer’s disease based on multifactorial
data-driven analysis. Nat. Commun. 7:11934. doi: 10.1038/ncomms
11934

Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M.W.,
et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s

Frontiers in Aging Neuroscience | www.frontiersin.org 13 July 2019 | Volume 11 | Article 172

https://www.frontiersin.org/articles/10.3389/fnagi.2019.00172/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00172/full#supplementary-material
https://doi.org/10.1007/s00401-018-1862-7
https://doi.org/10.3389/fnagi.2019.00001
https://doi.org/10.3389/fnagi.2019.00001
https://doi.org/10.1002/dneu.20954
https://doi.org/10.1074/jbc.M111.288746
https://doi.org/10.1038/sj.jcbfm.9600419
https://doi.org/10.1523/JNEUROSCI.21-20-08164.2001
https://doi.org/10.1016/s0361-9230(02)00930-9
https://doi.org/10.1038/s41598-017-09780-3
https://doi.org/10.1016/0006-8993(94)90076-0
https://doi.org/10.1161/JAHA.114.000787
https://doi.org/10.1161/JAHA.114.000787
https://doi.org/10.1038/npp.2016.13
https://doi.org/10.2174/156720508785132334
https://doi.org/10.1001/archneur.1985.04060030081013
https://doi.org/10.1017/S1740925x06000202
https://doi.org/10.1007/s00401-016-1606-5
https://doi.org/10.1007/s00401-016-1606-5
https://doi.org/10.1016/s0301-0082(00)00068-x
https://doi.org/10.1016/s0301-0082(00)00068-x
https://doi.org/10.1016/s0306-4522(97)00208-x
https://doi.org/10.1016/s0306-4522(97)00208-x
https://doi.org/10.1136/jnnp.66.2.137
https://doi.org/10.1016/j.neuropsychologia.2004.06.007
https://doi.org/10.1152/japplphysiol.00954.2005
https://doi.org/10.3389/fnene.2010.00005
https://doi.org/10.1371/journal.pone.0053472
https://doi.org/10.1093/brain/awy132
https://doi.org/10.1016/j.cell.2015.07.057
https://doi.org/10.1111/acel.12045
https://doi.org/10.1111/acel.12045
https://doi.org/10.1111/j.1471-4159.2005.03363.x
https://doi.org/10.1111/j.0953-816x.2004.03439.x
https://doi.org/10.1016/j.neuron.2017.07.030
https://doi.org/10.1016/j.neuron.2017.07.030
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1161/01.str.8.3.360
https://doi.org/10.1038/ncomms11934
https://doi.org/10.1038/ncomms11934
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Nizari et al. Cholinergic Denervation at the NVU

pathological cascade. Lancet Neurol. 9, 119–128. doi: 10.1016/S1474-
4422(09)70299-6

Kalaria, R. N., and Pax, A. B. (1995). Increased collagen content of
cerebral microvessels in Alzheimer’s disease. Brain Res. 705, 349–352.
doi: 10.1016/0006-8993(95)01250-8

Kanekiyo, T., Liu, C.-C., Shinohara, M., Li, J., and Bu, G. (2012). LRP1 in brain
vascular smooth muscle cells mediates local clearance of Alzheimer’s Amyloid-
β. J. Neurosci. 32, 16458–16465. doi: 10.1523/JNEUROSCI.3987-12.2012

Kerbler, G. M., Hamlin, A. S., Pannek, K., Kurniawan, N. D., Keller, M. D.,
Rose, S. E., et al. (2013). Diffusion-weighted magnetic resonance imaging
detection of basal forebrain cholinergic degeneration in a mouse model.
Neuroimage 66, 133–141. doi: 10.1016/j.neuroimage.2012.10.075

Kitt, C. A., Höhmann, C., Coyle, J. T., and Price, D. L. (1994). Cholinergic
innervation of mouse forebrain structures. J. Comp. Neurol. 341, 117–129.
doi: 10.1002/cne.903410110

Kuznetsova, E., and Schliebs, R. (2013). β-amyloid, cholinergic transmission
and cerebrovascular system–a developmental study in a mouse
model of Alzheimer’s disease. Curr. Pharm. Des. 19, 6749–6765.
doi: 10.2174/13816128113199990711

Laursen, B., Mørk, A., Plath, N., Kristiansen, U., and Bastlund, J. F. (2013).
Cholinergic degeneration is associated with increased plaque deposition
and cognitive impairment in APPswe/PS1dE9 mice. Behav. Brain Res. 240,
146–152. doi: 10.1016/j.bbr.2012.11.012

Leanza, G. (1998). Chronic elevation of amyloid precursor protein expression
in the neocortex and hippocampus of rats with selective cholinergic lesions.
Neurosci. Lett. 257, 53–56. doi: 10.1016/s0304-3940(98)00744-7

Lecrux, C., Sandoe, C. H., Neupane, S., Kropf, P., Toussay, X., Tong, X. K., et al.
(2017). Impact of altered cholinergic tones on the neurovascular coupling
response to whisker stimulation. J. Neuroscience 37, 1518–1531. doi: 10.1523/
JNEUROSCI.1784-16.2016

Lehmann, O., Bertrand, F., Jeltsch, H.,Morer,M., Lazarus, C.,Will, B., et al. (2002).
5,7-DHT-induced hippocampal 5-HT depletion attenuates behavioural deficits
produced by 192 IgG-saporin lesions of septal cholinergic neurons in the rat.
Eur. J. Neurosci. 15, 1991–2006. doi: 10.1046/j.1460-9568.2002.02037.x

Li, X., Yu, B., Sun, Q., Zhang, Y., Ren, M., Zhang, X., et al. (2018). Generation
of a whole-brain atlas for the cholinergic system and mesoscopic projectome
analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. U S A 115,
415–420. doi: 10.1073/pnas.1703601115

Lin, L., Georgievska, B., Mattsson, A., and Isacson, O. (1999). Cognitive changes
and modified processing of amyloid precursor protein in the cortical and
hippocampal system after cholinergic synapse loss and muscarinic receptor
activation. Proc. Natl. Acad. Sci. U S A 96, 12108–12113. doi: 10.1073/pnas.96.
21.12108

Luiten, P. G., de Jong, G. I., Van der Zee, E. A., and van Dijken, H. (1996).
Ultrastructural localization of cholinergic muscarinic receptors in rat brain
cortical capillaries. Brain Res. 720, 225–229. doi: 10.1016/0006-8993(96)
00195-3

Magaki, S., Tang, Z., Tung, S., Williams, C. K., Lo, D., Yong, W. H., et al.
(2018). The effects of cerebral amyloid angiopathy on integrity of the blood-
brain barrier. Neurobiol. Aging 70, 70–77. doi: 10.1016/j.neurobiolaging.2018.
06.004

Michalski, D., Hofmann, S., Pitsch, R., Grosche, J., and Härtig, W. (2017).
Neurovascular specifications in the alzheimer-like brain of mice affected by
focal cerebral ischemia: implications for future therapies. J. Alzheimers Dis. 59,
655–674. doi: 10.3233/JAD-170185

Morris, A. W. J., Carare, R. O., Schreiber, S., and Hawkes, C. A. (2014). The
cerebrovascular basement membrane: role in the clearance of β-amyloid and
cerebral amyloid angiopathy. Front. Aging Neurosci. 6:251. doi: 10.3389/fnagi.
2014.00251

Mulligan, S. J., and MacVicar, B. A. (2004). Calcium transients in astrocyte
endfeet cause cerebrovascular constrictions. Nature 431, 195–199.
doi: 10.1038/nature02827

Nelson, A. R., Kolasa, K., and McMahon, L. L. (2014). Noradrenergic sympathetic
sprouting and cholinergic reinnervation maintains non-amyloidogenic
processing of AβPP. J. Alzheimers Dis. 38, 867–879. doi: 10.3233/JAD-
130608

Noumbissi, M. E., Galasso, B., and Stins, M. F. (2018). Brain vascular
heterogeneity: implications for disease pathogenesis and design of in vitro

blood-brain barrier models. Fluids Barriers CNS 15:12. doi: 10.1186/s12987-
018-0097-2

Owens, T., Bechmann, I., and Engelhardt, B. (2008). Perivascular spaces and the
two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67, 1113–1121.
doi: 10.1097/NEN.0b013e31818f9ca8

Perry, E. K. (1980). The cholinergic system in old age and Alzheimer’s disease. Age
Ageing 9, 1–8. doi: 10.1093/ageing/9.1.1

Ramos-Rodriguez, J. J., Pacheco-Herrero, M., Thyssen, D., Murillo-
Carretero, M. I., Berrocoso, E., Spires-Jones, T. L., et al. (2013). Rapid
β-amyloid deposition and cognitive impairment after cholinergic denervation
in APP/PS1 mice. J. Neuropathol. Exp. Neurol. 72, 272–285. doi: 10.1097/NEN.
0b013e318288a8dd

Scheiderer, C. L., McCutchen, E., Thacker, E. E., Kolasa, K., Ward, M. K.,
Parsons, D., et al. (2006). Sympathetic sprouting drives hippocampal
cholinergic reinnervation that prevents loss of a muscarinic receptor-
dependent long-term depression at CA3-CA1 synapses. J. Neurosci. 26,
3745–3756. doi: 10.1523/JNEUROSCI.5507-05.2006

Schmitz, T. W., Nathan Spreng, R., and Alzheimer’s Disease Neuroimaging
Initiative. (2016). Basal forebrain degeneration precedes and predicts
the cortical spread of Alzheimer’s pathology. Nat. Commun. 7:13249.
doi: 10.1038/ncomms13249

Shepro, D., and Morel, N. M. (1993). Pericyte physiology. FASEB J. 7, 1031–1038.
doi: 10.1096/fasebj.7.11.8370472

Shi, Y.-F., Han, Y., Su, Y.-T., Yang, J.-H., and Yu, Y.-Q. (2015). Silencing
of cholinergic basal forebrain neurons using archaerhodopsin prolongs
slow-wave sleep in mice. PLOS One 10:e0134421. doi: 10.1371/journal.pone.01
30130

Steininger, T. L., Wainer, B. H., Klein, R., Barbacid, M., and Palfrey, H. C. (1993).
High-affinity nerve growth factor receptor (Trk) immunoreactivity is localized
in cholinergic neurons of the basal forebrain and striatum in the adult rat brain.
Brain Res. 612, 330–335. doi: 10.1016/0006-8993(93)91681-h

Thal, D. R., Griffin, W. S. T., de Vos, R. A. I., and Ghebremedhin, E. (2008).
Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta
Neuropathol. 115, 599–609. doi: 10.1007/s00401-008-0366-2

Thorin-Trescases, N., de Montgolfier, O., Pinçon, A., Raignault, A., Caland, L.,
Labbé, P., et al. (2018). Impact of pulse pressure on cerebrovascular events
leading to age-related cognitive decline. Am. J. Physiol. Heart Circ. Physiol. 69,
H1214–H1224. doi: 10.1152/ajpheart.00637.2017

Tong, X. K., and Hamel, E. (1999). Regional cholinergic denervation of
cortical microvessels and nitric oxide synthase-containing neurons in
Alzheimer’s disease. Neuroscience 92, 163–175. doi: 10.1016/s0306-4522(98)
00750-7

Toribatake, Y., Tomita, K., Kawahara, N., Baba, H., Ohnari, H., and Tanaka, S.
(1997). Regulation of vasomotion of arterioles and capillaries in the cat spinal
cord: role of α actin and endothelin-1. Spinal Cord 35, 26–32. doi: 10.1038/sj.
sc.3100348

van der Staay, F. J., Raaijmakers, W. G., Lammers, A. J., and Tonnaer, J. A. (1989).
Selective fimbria lesions impair acquisition of working and reference memory
of rats in a complex spatial discrimination task. Behav. Brain Res. 32, 151–161.
doi: 10.1016/s0166-4328(89)80081-6

Vaucher, E., and Hamel, E. (1995). Cholinergic basal forebrain neurons project to
cortical microvessels in the rat: electron microscopic study with anterogradely
transported phaseolus vulgaris leucoagglutinin and choline acetyltransferase
immunocytochemistry. J. Neurosci. 15, 7427–7441. doi: 10.1523/jneurosci.15-
11-07427.1995

Vinters, H. V. (1987). Cerebral amyloid angiopathy. A critical review. Stroke 18,
311–324. doi: 10.1161/01.STR.18.2.311

Vinters, H. V., and Gilbert, J. J. (1983). Cerebral amyloid angiopathy: incidence
and complications in the aging brain. II. The distribution of amyloid vascular
changes. Stroke 14, 924–928. doi: 10.1161/01.str.14.6.924

Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T.,
and Delon, M. R. (1982). Alzheimer’s disease and senile dementia: loss of
neurons in the basal forebrain. Science 215, 1237–1239. doi: 10.1126/science.70
58341

Willis, C. L., Ray, D. E., Marshall, H., Elliot, G., Evans, J. G., and Kind, C. N. (2006).
Basal forebrain cholinergic lesions reduce heat shock protein 72 response but
not pathology induced by the NMDA antagonist MK-801 in the rat cingulate
cortex. Neurosci. Lett. 407, 112–117. doi: 10.1016/j.neulet.2006.08.020

Frontiers in Aging Neuroscience | www.frontiersin.org 14 July 2019 | Volume 11 | Article 172

https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/0006-8993(95)01250-8
https://doi.org/10.1523/JNEUROSCI.3987-12.2012
https://doi.org/10.1016/j.neuroimage.2012.10.075
https://doi.org/10.1002/cne.903410110
https://doi.org/10.2174/13816128113199990711
https://doi.org/10.1016/j.bbr.2012.11.012
https://doi.org/10.1016/s0304-3940(98)00744-7
https://doi.org/10.1523/JNEUROSCI.1784-16.2016
https://doi.org/10.1523/JNEUROSCI.1784-16.2016
https://doi.org/10.1046/j.1460-9568.2002.02037.x
https://doi.org/10.1073/pnas.1703601115
https://doi.org/10.1073/pnas.96.21.12108
https://doi.org/10.1073/pnas.96.21.12108
https://doi.org/10.1016/0006-8993(96)00195-3
https://doi.org/10.1016/0006-8993(96)00195-3
https://doi.org/10.1016/j.neurobiolaging.2018.06.004
https://doi.org/10.1016/j.neurobiolaging.2018.06.004
https://doi.org/10.3233/JAD-170185
https://doi.org/10.3389/fnagi.2014.00251
https://doi.org/10.3389/fnagi.2014.00251
https://doi.org/10.1038/nature02827
https://doi.org/10.3233/JAD-130608
https://doi.org/10.3233/JAD-130608
https://doi.org/10.1186/s12987-018-0097-2
https://doi.org/10.1186/s12987-018-0097-2
https://doi.org/10.1097/NEN.0b013e31818f9ca8
https://doi.org/10.1093/ageing/9.1.1
https://doi.org/10.1097/NEN.0b013e318288a8dd
https://doi.org/10.1097/NEN.0b013e318288a8dd
https://doi.org/10.1523/JNEUROSCI.5507-05.2006
https://doi.org/10.1038/ncomms13249
https://doi.org/10.1096/fasebj.7.11.8370472
https://doi.org/10.1371/journal.pone.0130130
https://doi.org/10.1371/journal.pone.0130130
https://doi.org/10.1016/0006-8993(93)91681-h
https://doi.org/10.1007/s00401-008-0366-2
https://doi.org/10.1152/ajpheart.00637.2017
https://doi.org/10.1016/s0306-4522(98)00750-7
https://doi.org/10.1016/s0306-4522(98)00750-7
https://doi.org/10.1038/sj.sc.3100348
https://doi.org/10.1038/sj.sc.3100348
https://doi.org/10.1016/s0166-4328(89)80081-6
https://doi.org/10.1523/jneurosci.15-11-07427.1995
https://doi.org/10.1523/jneurosci.15-11-07427.1995
https://doi.org/10.1161/01.STR.18.2.311
https://doi.org/10.1161/01.str.14.6.924
https://doi.org/10.1126/science.7058341
https://doi.org/10.1126/science.7058341
https://doi.org/10.1016/j.neulet.2006.08.020
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Nizari et al. Cholinergic Denervation at the NVU

Wu, H., Williams, J., and Nathans, J. (2014). Complete morphologies of basal
forebrain cholinergic neurons in the mouse. Elife 3:e02444. doi: 10.7554/eLife.
02444

Wyss-Coray, T., Lin, C., Sanan, D. A., Mucke, L., and Masliah, E. (2000). Chronic
overproduction of transforming growth factor-beta1 by astrocytes promotes
Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am.
J. Pathol. 156, 139–150. doi: 10.1016/s0002-9440(10)64713-x

Yeo, T. T., Chua-Couzens, J., Butcher, L. L., Bredesen, D. E., Cooper, J. D.,
Valletta, J. S., et al. (1997). Absence of P75NTR causes increased basal
forebrain cholinergic neuron size, choline acetyltransferase activity and target
innervation. J. Neurosci. 17, 7594–7605. doi: 10.1523/JNEUROSCI.17-20-
07594.1997

Zhang, Y., Jiang, Y. Y., Shao, S., Zhang, C., Liu, F. Y., Wan, Y., et al.
(2017). Inhibiting medial septal cholinergic neurons with DREADD alleviated
anxiety-like behaviors in mice. Neurosci. Lett. 638, 139–144. doi: 10.1016/j.
neulet.2016.12.010

Zócalo, Y., Bia, D., Cabrera-Fischer, E. I., Wray, S., Galli, C., and Armentano, R. L.
(2013). Structural and functional properties of venous wall: relationship
between elastin, collagen and smooth muscle components and viscoelastic
properties. ISRN Physiol. 2013, 1–9. doi: 10.1155/2013/906031

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Nizari, Carare, Romero andHawkes. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 15 July 2019 | Volume 11 | Article 172

https://doi.org/10.7554/eLife.02444
https://doi.org/10.7554/eLife.02444
https://doi.org/10.1016/s0002-9440(10)64713-x
https://doi.org/10.1523/JNEUROSCI.17-20-07594.1997
https://doi.org/10.1523/JNEUROSCI.17-20-07594.1997
https://doi.org/10.1016/j.neulet.2016.12.010
https://doi.org/10.1016/j.neulet.2016.12.010
https://doi.org/10.1155/2013/906031
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	3D Reconstruction of the Neurovascular Unit Reveals Differential Loss of Cholinergic Innervation in the Cortex and Hippocampus of the Adult Mouse Brain
	INTRODUCTION
	MATERIALS AND METHODS
	Animals
	Intracerebroventricular Injections
	Tissue Processing
	Western Blotting
	Immunohistochemistry
	Image Acquisition and Analysis
	3D Reconstruction of the NVU
	Statistical Analysis

	RESULTS
	Cholinergic Loss in the Medial Septum, Hippocampus and Cortex Following Administration of Mu-Saporin
	Characterization of Cholinergic Loss at the NVU in the Hippocampus and Cortex
	Regional Variation in Perivascular Innervation
	Impact of Loss of Perivascular Innervation on Components of the NVU

	DISCUSSION
	DATA AVAILABILITY
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


